E. Albalat, J. Blichert-toft, P. Telouk, and F. Albarède, The lunar neutron energy spectrum inferred from the isotope compositions of rare-earth elements and hafnium in Apollo samples, Earth Planet. Sci. Lett, vol.429, pp.147-156, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02110381

K. Bajo, C. T. Olinger, A. J. Jurewicz, D. S. Burnett, I. Sakaguchi et al., Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis, Geochem. J, vol.49, pp.559-566, 2015.

J. Birck and C. J. Allègre, Evidence for the presence of 53 Mn in the early solar system, 1985.

, Geophys. Res. Lett, vol.12, pp.745-748

M. R. Bloch, Meteorite impact craters, crater simulations, and the meteoroid flux in the early solar system, Proc. 2nd Lunar Sci. Conf, pp.2639-2652, 1971.

D. D. Bogard and W. C. Hirsch, Noble gas studies on grain size separates of Apollo 15 and 16 deep drill cores, Proc. 6th Lunar Sci. Conf, pp.2057-2084, 1975.

P. Bonnand, I. J. Parkinson, and M. Anand, Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon, Geochim. Cosmochim. Acta, vol.175, pp.208-221, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01924574

M. Boyet and R. W. Carlson, A highly depleted moon or a non-magma ocean origin for the lunar crust?, Earth Planet. Sci. Lett, vol.262, pp.505-516, 2007.

M. Boyet, R. W. Carlson, L. E. Borg, and M. Horan, Sm-Nd systematics of lunar ferroan anorthositic suite rocks: Constraints on lunar crust formation, Geochim. Cosmochim. Acta, vol.148, pp.203-218, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01145933

R. M. Canup, Forming a Moon with an Earth-like composition via a giant impact, Science, vol.338, pp.1052-1055, 2012.

R. M. Canup, Simulations of a late lunar-forming impact, Icarus, vol.168, pp.433-456, 2004.

R. W. Carlson, L. E. Borg, A. M. Gaffney, and M. Boyet, Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation, Phil Trans R Soc A, vol.372, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01135368

M. ?uk and S. T. Stewart, Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning, Science, vol.338, pp.1047-1052, 2012.

M. ?uk, D. P. Hamilton, S. J. Lock, and S. T. Stewart, Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth, Nature, vol.539, pp.402-406, 2016.

N. Dauphas, The isotopic nature of the Earth's accreting material through time, Nature, vol.541, pp.521-524, 2017.

N. Dauphas, C. Burkhardt, P. H. Warren, and T. Fang-zhen, Geochemical arguments for an Earth-like Moon-forming impactor, Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci, vol.372, 2014.

N. Dauphas, L. Remusat, J. H. Chen, M. Roskosz, D. A. Papanastassiou et al., Neutron-rich chromium isotope anomalies in supernova nanoparticles, Astrophys. J, vol.720, pp.1577-1591, 2010.

N. Dauphas, J. H. Chen, J. Zhang, D. A. Papanastassiou, A. M. Davis et al., Calcium-48 isotopic anomalies in bulk chondrites and achondrites: Evidence for a uniform isotopic reservoir in the inner protoplanetary disk, Earth Planet. Sci. Lett, vol.407, pp.96-108, 2014.

A. El-goresy, P. Ramdohr, and L. A. Taylor, The opaque minerals in the lunar rocks from Oceanus Procellarum. Proc. 2nd Lunar. Sci. Conf, pp.219-235, 1971.

T. Elliot and R. Steele, Non-Traditional Stable Isotopes, Reviews in Mineralogy and Geochemistry, vol.82, pp.511-542, 2017.

O. Eugster, F. Tera, D. S. Burnet, and G. J. Wasserburg, Isotopic composition of gadolinium and neutron-capture effects in some meteorites, J. Geophys. Res, vol.75, pp.2753-2768, 1970.

M. Fischer-gödde and H. Becker, Osmium isotope and highly siderophile element constraints on ages and nature of meteoritic components in ancient lunar impact rocks, 2012.

, Geochim. Cosmochim. Acta, vol.77, pp.135-156

C. Fitoussi and B. Bourdon, Silicon isotope evidence against an enstatite chondrite Earth, Science, vol.335, pp.1477-1480, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00684109

C. Göpel, J. Birck, A. Galy, J. Barrat, and B. Zanda, Mn-Cr systematics in primitive meteorites: Insights from mineral separation and partial dissolution, 2015.

, Cosmochim. Acta, vol.156, pp.1-24

A. Grimberg, H. Baur, P. Bochsler, F. Bühler, D. S. Burnett et al.,

A. J. Jurewicz and R. Wieler, Solar wind neon from genesis: Implications for the lunar noble gas record, Science, vol.314, pp.1133-1135, 2006.

D. Herwartz, A. Pack, B. Friedrichs, and A. Bischoff, Identification of the giant impactor Theia in lunar rocks, Science, vol.344, pp.1146-1150, 2014.

H. Hidaka, M. Ebihara, and S. Yoneda, Neutron capture effects on samarium, europium, and gadolinium in Apollo 15 deep drill-core samples, Meteorit. Planet. Sci, vol.35, pp.581-589, 2000.

M. Honda and M. Imamura, Half-life of Mn-53, Phys Rev, vol.4, pp.1182-1188, 1971.

S. B. Jacobsen, M. I. Petaev, S. Huang, and D. D. Sasselov, An isotopically homogeneous region of the inner terrestrial planet region (Mercury to Earth): Evidence from E chondrites and implications for giant Moon-forming impact, 2013.

M. Javoy, The integral enstatite chondrite model of the Earth, Geophys. Res. Lett, vol.22, pp.2219-2222, 1995.

M. Javoy, E. Kaminski, F. Guyot, D. Andrault, C. Sanloup et al., The chemical composition of the Earth: Enstatite chondrite models, Earth Planet. Sci. Lett, vol.293, pp.259-268, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00591424

B. K. Kitts, F. A. Podosek, R. H. Nichols, J. C. Brannon, J. Ramezani et al., Isotopic composition of surface-correlated chromium in Apollo 16 lunar soils, Geochim. Cosmochim. Acta, vol.67, pp.4881-4893, 2003.

C. Koeberl, A. Shukolyukov, and G. W. Lugmair, Chromium isotopic studies of terrestrial impact craters: Identification of meteoritic components at Bosumtwi, Earth Planet. Sci. Lett, vol.256, pp.534-546, 2007.

R. L. Korotev, The meteoritic component of Apollo 16 noritic impact melt breccias, Lunar Planet. Sci. 17th Conf. Proc, vol.92, pp.491-512, 1987.

F. T. Kyte, A. Shukolyukov, A. R. Hildebrand, G. W. Lugmair, and J. Hanova, Chromium-isotopes in Late Eocene impact spherules indicate a likely asteroid belt provenance, Earth Planet. Sci. Lett, vol.302, pp.279-286, 2011.

I. Leya, R. Wieler, and A. N. Halliday, The influence of cosmic-ray production on extinct nuclide systems, Geochim. Cosmochim. Acta, vol.67, pp.529-541, 2003.

J. Liu, M. Sharp, R. D. Ash, D. A. Kring, and R. J. Walker, Diverse impactors in Apollo 15 and 16 impact melt rocks: Evidence from osmium isotopes and highly siderophile elements, Geochim. Cosmochim. Acta, vol.155, pp.122-153, 2015.

S. J. Lock, A new model for lunar origin: equilibration with Earth beyond the hot spin stability limit, Lunar Planet. Sci. Conf, vol.47, p.2881, 2016.

K. Lodders, An oxygen isotope mixing model for the accretion and composition of rocky planets, Space Sci. Rev, vol.92, pp.341-354, 2000.

K. Lodders, Solar System abundances and condensation temperatures of the elements, 2003.

, Astrophys. J, vol.591, pp.1220-1247

W. Lugmair and K. Marti, Neutron capture effects in lunar gadolinium and the irradiation histories of some lunar rocks, Earth Planet. Sci. Lett, vol.13, pp.32-42, 1971.

T. Magna, K. Zak, A. Pack, F. Moynier, B. Mougel et al., Zhamanshin astrobleme provides evidence for carbonaceous chondrite and post-impact exchange between ejecta and Earth's atmosphere Nature Com, vol.8, p.227, 2017.

D. S. Mckay, G. Heiken, A. Basu, G. Blanford, S. Simon et al.,

J. Papike, The lunar regolith, Lunar Sourcebook, pp.285-356, 1991.

C. L. Mcleod, A. D. Brandon, and R. M. Armytage, Constraints on the formation age and evolution of the Moon from 142 Nd-143 Nd systematics of Apollo 12 basalts, 2014.

. Sci and . Lett, , vol.396, pp.179-189

C. Meyer, Lunar Sample Compendium, 2004.

B. Mougel, A. Agranier, C. Hemond, and P. Gente, A highly unradiogenic lead isotopic signature revealed by volcanic rocks from the East Pacific Rise, Nat. Commun, vol.5, p.4474, 2014.
URL : https://hal.archives-ouvertes.fr/insu-01026191

B. Mougel, F. Moynier, C. Göpel, and C. Koeberl, Chromium isotope evidence in ejecta deposits for the nature of Paleoproterozoic impactors, Earth Planet. Sci. Lett, vol.460, pp.105-111, 2017.

C. Mourão, M. Moreira, J. Mata, A. Raquin, and J. Madeira, Primary and secondary processes constraining the noble gas isotopic signatures of carbonatites and silicate rocks from Brava Island: evidence for a lower mantle origin of the Cape Verde plume, 2012.

, Mineral. Petrol, vol.163, pp.995-1009

F. Moynier, J. M. Day, W. Okui, T. Yokoyama, A. Bouvier et al., Planetary-scale strontium isotopic heterogeneity and the age of volatile depletion of Early Solar System materials, Astrophys. J, vol.758, pp.45-51, 2012.

F. Moynier, J. I. Simon, F. A. Podosek, B. S. Meyer, J. Brannon et al., Ca isotope effects in Orgueil leachates and the implications for the carrier phases of 54 Cr anomalies, Astrophys. J. Lett, vol.718, pp.7-13, 2010.

M. D. Norman, V. C. Bennett, and G. Ryder, Targeting the impactors: siderophile element signatures of lunar impact melts from Serenitatis, Earth Planet. Sci. Lett, vol.202, pp.217-228, 2002.

L. E. Nyquist, H. Wiesmann, B. Bansal, C. Shih, J. E. Keith et al., 146 Sm-142 Nd formation interval for the lunar mantle, Geochim. Cosmochim. Acta, vol.59, pp.2817-2837, 1995.

K. Pahlevan and D. J. Stevenson, Equilibration in the aftermath of the lunar-forming giant impact, Earth Planet. Sci. Lett, vol.262, pp.438-449, 2007.

I. S. Puchtel, R. J. Walker, O. B. James, and D. A. Kring, Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: Implications for the late accretion history of the Moon and Earth, Geochim. Cosmochim. Acta, vol.72, pp.3022-3042, 2008.

L. Qin, C. M. Alexander, R. W. Carlson, M. F. Horan, and T. Yokoyama, Contributors to chromium isotope variation of meteorites, Geochim. Cosmochim. Acta, vol.74, pp.1122-1145, 2010.

L. Qin, L. R. Nittler, C. M. Alexander, J. Wang, F. J. Stadermann et al., Extreme 54 Cr-rich nano-oxides in the CI chondrite Orgueil -Implication for a late supernova injection into the solar system, Geochim. Cosmochim. Acta, vol.75, pp.629-644, 2011.

G. Rivalenti, M. Mazzucchelli, R. Vannucci, A. W. Hofmann, L. Ottolini et al., The relationship between websterite and peridotite in the Balmuccia peridotite massif (NW Italy) as revealed by trace element variations in clinopyroxene, 1995.

, Contrib. Mineral. Petrol, vol.121, pp.275-288

G. P. Russ, Neutron capture on Gd and Sm in the Luna 16, G-2 soil, Earth Planet. Sci, 1972.

. Lett, , vol.13, pp.384-386

G. Ryder and M. D. Norman, Shock metamorphic effects in lunar microcraters, Proc. 7th, 1980.

, Lunar Sci. Conf, pp.1039-1054

D. G. Sands, J. R. De-laeter, and K. J. Rosman, Measurements of neutron capture effects on Cd, Sm and Gd in lunar samples with implications for the neutron energy spectrum, Earth Planet. Sci. Lett, vol.186, pp.335-346, 2001.

C. K. Shearer, P. V. Burger, J. J. Papike, F. M. Mccubbin, and A. S. Bell, Crystal chemistry of merrillite from Martian meteorites: Mineralogical recorders of magmatic processes and planetary differentiation, Meteorit. Planet. Sci, vol.50, pp.649-673, 2015.

W. R. Shields, J. T. Murphy, E. J. Cantazaro, and E. L. Garner, Absolute isotopic ratios and the atomic weight of a reference sample of chromium, J Natl Bur Stand, vol.70, pp.193-197, 1966.

W. Shima and M. Honda, Distribution of spallation produced chromium between alloys in iron meteorites, Earth Planet. Sci. Lett, vol.1, pp.65-74, 1966.

P. Sossi and F. Moynier, Chemical and isotopic kinship of iron in the Earth and Moon deduced from the lunar Mg-Suite, Earth Planet. Sci. Lett, vol.471, pp.125-135, 2017.

A. Trinquier, J. Birck, and C. J. Allègre, Widespread 54 Cr Heterogeneity in the Inner Solar System, Astrophys. J, vol.655, pp.1179-1185, 2007.

A. Trinquier, J. Birck, C. J. Allègre, C. Göpel, and D. Ulfbeck, 53Mn-53Cr systematics of the early Solar System revisited, Geochim. Cosmochim. Acta, vol.72, pp.5146-5163, 2008.

A. Verhulst, E. Balaganskaya, Y. Kirnarsky, and D. Demaiffe, Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion, Lithos, vol.51, pp.1-25, 2000.

P. H. Warren, J. Wasson, and T. , Pristine nonmare rocks and the nature of the lunar crust, Proc. 8th Lunar Sci. Conf, pp.2215-2235, 1977.

P. H. Warren, Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites, Earth Planet. Sci. Lett, vol.311, pp.93-100, 2011.

U. Wiechert, A. N. Halliday, D. Lee, G. A. Snyder, L. A. Taylor et al., Oxygen isotopes and the Moon-forming giant impact, Science, vol.294, pp.345-348, 2001.

E. D. Young, I. E. Kohl, P. H. Warren, D. C. Rubie, S. A. Jacobson et al., Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact, Science, vol.351, pp.493-496, 2016.

. Trinquier, The black line represents the linear regression related to lunar measurements. The dashed black line represents the predicted Cr isotopic composition for lunar material with cosmic-ray exposure ages of 100 to 500 Myr, and Fe/Cr = 45, 2003.

, Figure 3 -Correction of cosmogenic Cr isotopic effects in lunar samples (blue squares)

, Sm/ 152 Sm (normalized to 147 Sm/ 152 Sm) data in Table 1 versus A) ? 53 Cr, and B) ? 54 Cr

. Cr,