R. K. Stevenson and P. J. Patchett, Implications for the evolution of continental-crust from Hf-isotope systematics of Archean detrital zircons, Geochim Cosmochim Acta, vol.54, pp.1683-1697, 1990.

Y. Amelin, D. Lee, A. N. Halliday, and R. T. Pidgeon, Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons, Nature, vol.399, pp.252-255, 1999.

Y. Amelin, D. Lee, and A. N. Halliday, Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single grain zircons, Geochim Cosmochim Acta, vol.64, pp.4205-4225, 2000.

M. Humayun, Origin and age of the earliest Martian crust from meteorite NWA 7533, Nature, vol.503, pp.513-516, 2013.

F. M. Mccubbin, Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust, Journal of Geophysical Research: Planets, vol.121, pp.2120-2149, 2016.

L. T. Elkins-tanton, P. C. Hess, and E. M. Parmentier, Possible formation of ancient crust on Mars through magma ocean processes, Journal of Geophysical Research: Planets, vol.110, pp.12-13, 2005.

L. T. Elkins-tanton, Linked magma ocean solidification and atmospheric growth for Earth and Mars, Earth and Planetary Science Letters, vol.271, pp.181-191, 2008.

N. Dauphas and A. Pourmand, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo, Nature, vol.473, pp.489-492, 2011.

F. Nimmo and K. Tanaka, Early crustal evolution of Mars, Annual Review of Earth and Planetary Sciences, vol.33, pp.133-161, 2005.

L. E. Borg, G. A. Brennecka, and S. Symes, Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites, Geochimica et Cosmochimica Acta, vol.175, pp.150-167, 2016.

G. Caro, Early silicate Earth differentiation, Annual Review of Earth and Planetary Sciences, vol.39, pp.31-58, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02329920

R. W. Carlson, How did early Earth become our modern world? Annual Review of Earth and Planetary Sciences, vol.42, pp.151-178, 2014.

H. Y. Mcsween, Petrology on Mars. American Mineralogist, vol.100, pp.2380-2395, 2015.

M. Schiller, M. Bizzarro, and V. A. Fernandes, Isotopic evolution of the protoplanetary disk and the building blocks of Earth and Moon, Nature, 2018.

V. Debaille, A. D. Brandon, Q. Yin, and B. Jacobsen, Coupled 142 Nd-143 Nd evidence for protracted magma ocean in Mars, Nature, vol.450, pp.525-528, 2007.

T. S. Kruijer, The early differentiation of Mars inferred from Hf-W chronometry, Earth and Planetary Science Letters, vol.474, pp.345-354, 2017.

M. J. Whitehouse, A. A. Nemchin, and R. T. Pidgeon, What can Hadean detrital zircon really tell us? A critical evaluation of their geochronology with implications for the interpretation of oxygen and hafnium isotopes, Gondwana Research, vol.51, pp.78-91, 2017.

A. Bouvier, J. D. Vervoort, and P. J. Patchett, The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets, Earth and Planetary Science Letters, vol.273, pp.48-57, 2008.

M. Bizzarro, J. A. Baker, and D. Ulfbeck, A new digestion and chemical separation technique for rapid and highly reproducible of Lu/Hf and Hf isotope ratio in geological material by MC-ICP-MS, Geostandard Newsletters, vol.27, pp.133-145, 2003.

J. N. Connelly, D. G. Ulfbeck, K. Thrane, M. Bizzarro, and T. Housh, A method for purifying Lu and Hf for analysis by MC-ICP-MS using TODGA resin, Chemical Geology, vol.233, pp.126-136, 2006.

A. Kemp, Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons, Earth and Planetary Science Letters, vol.296, pp.45-56, 2010.

H. Y. Mcsween, J. Taylor, and M. B. Wyatt, Elemental Composition of the Martian Crust, Science, vol.324, pp.736-739, 2009.

R. L. Rudnick and S. Gao, Composition of the continental crustThe Crust, Treatise on Geochemistry. Rudnick RL, editorVol. 3, pp.2003-2004

V. Sautter, In situ evidence for continental crust on early Mars, Nature Geoscience, vol.8, pp.605-609, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02373385

S. Goossens, T. J. Sabaka, A. Genova, E. Mazarico, J. B. Nicholas et al., Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography, Geophysical Research Letters, vol.44, pp.7686-7694, 2017.

K. C. Condie, Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales, Chemical Geology, vol.104, pp.1-37, 1993.

A. Johansen, M. Low, M. M. Lacerda, P. Bizzarro, and M. , Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion, Sci Adv, vol.1, p.1500109, 2015.

J. Bollard, Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules, Sci Adv, vol.3, p.1700407, 2017.
URL : https://hal.archives-ouvertes.fr/insu-02594149

K. Mezger, V. Debaille, and T. Kleine, Core formation and mantle differentiation on Mars, Space Science Review, vol.174, pp.27-48, 2013.

U. Söderlund, P. J. Patchett, J. D. Vervoort, and C. E. Isachsen, The 176 Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions, Earth and Planetary Science Letters, vol.219, pp.311-324, 2004.

J. N. Connelly, The absolute chronology and thermal processing of solids in the solar protoplanetary disk, Science, vol.338, pp.651-655, 2012.

J. M. Mattinson, CA-TIMS") method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages, Chemical Geology, vol.220, pp.47-66, 2005.

D. J. Condon, B. Schoene, N. M. Mclean, S. A. Bowring, and R. R. Parrish, Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I), Geochimica et Cosmochimica Acta, vol.164, pp.464-480, 2015.

T. E. Krogh, A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochimica et Cosmochimica Acta, vol.37, pp.485-494, 1973.

F. Corfu, U-Pb age, setting and tectonic significance of the anorthosite-mangerite-charnockitegranite suite, Journal of Petrology, vol.56, pp.2081-2097, 2004.

H. Gerstenberger and G. Haase, A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations, Chemical Geology, vol.136, pp.309-312, 1997.

J. J. Bellucci, Pb-isotopic evidence for an early, enriched crust on Mars. Earth and Planetary Science Letters, vol.410, pp.34-41, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02475676

R. H. Steiger and E. Jager, Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology, Earth and Planetary Science Letters, vol.36, pp.359-362, 1977.

A. H. Jaffey, K. F. Flynn, L. E. Glendenin, W. C. Bentley, and A. M. Essling, Precision measurement of halflives and specific of 235 U and 238 U, Phys Rev, vol.4, pp.1889-1906, 1971.

C. Paton, J. Hellstrom, B. Paul, J. Woodhead, and J. Hergt, Iolite: freeware for the visualisation and processing of mass spectrometric data, J Anal At Spectrom, vol.26, pp.2508-2518, 2011.

M. Wiedenbeck, P. Allé, F. Corfu, W. L. Griffin, M. Meier et al., Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostandards Newsletter, vol.19, pp.1-23, 1995.

J. Blichert-toft, Hf isotopic composition of zircon reference material 91500, Chemical Geology, vol.253, pp.252-257, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00361588

, S24b7 and S25b10) using 176

, Considering the upper uncertainty of the zircon average ?Hf value (-1.35±0.22), it is not possible to account for the initial Hf isotope composition of these grains if they formed from the reworking of a basaltic crust since extraction ages older than the Solar System are required, Lu/ 177 Hf ratios of 0.020 and 0.011 for the basaltic and andesitic crusts, respectively23,25

, Lu/ 177 Hf ratios of 0.011 yields an extraction age of 4562 ?15 +5

. Ma, Note that the time evolution of this reservoir can account for the Hf isotope composition of the younger ~4450 Ma and ~4430 Ma zircons. Indeed, a regression of the mean of the ~4475 Ma, ~4450 Ma and ~4430 Ma zircons yields a slope corresponding to an andesite-like

. Lu, Uncertainty on the ?Hf values reflect the internal precision (2SE) or the external reproducibility of 22 ppm