, issues about the character and evolution of crust-atmosphere-hydrosphere 762 interactions that span the breadth of Earth history. Detrital quartz and zircon are two clear cases 763 where mineral-scale observations -and corresponding predictions about the composition of the 764 host rock -will be of value. The most obvious application to target is zircon because it can be 765 dated by U-Pb geochronology, though by sediment volume

C. A. We, Macris for a particularly insightful review, and two anonymous reviewers for 771 their detailed comments and suggestions which improved the content of this manuscript. We 772 also thank the handling editor Edwin Schauble for useful comments and suggestions. This work 773 was supported by NSF grants EAR-1447404 and EAR-1650033, and NERC grant 774 NE/R002134/1. DT thanks Jacob Buettner, Yanling Yang, Wriju Chowdhury, and Chis Pratt for 775 assistance, p.776

, Delphine Limmois), where much of the measurement for this work were made, as well as Eva 777 Stueeken and Finlay Morrison for use of their furnace facilities at St Andrews. PS would also 778 like to cite the support of a Carnegie Trust Research Incentive Grant, which helped the setup of 779 various isotope techniques in the St Andrews Isotope Geochemistry (STAiG) laboratories. FM 780 thanks the ERC under the European Community's H2020 framework program/ERC grant 781 agreement # 637503 (Pristine) and for the UnivEarthS Labex program

K. Abraham, A. Hofmann, S. F. Foley, D. Cardinal, C. Harris et al., Coupled silicon-oxygen isotope fractionation traces Archaean silicification, Earth 789 and Planetary Science Letters, vol.788, pp.222-230, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00758298

M. R. Ackerson, B. O. Mysen, N. D. Tailby, and E. B. Watson, Low-temperature 791 crystallization of granites and the implications for crustal magmatism, Nature, vol.559, pp.94-97, 2018.

J. C. Ayers, J. M. Brenan, E. B. Watson, D. A. Wark, and W. G. Minarik, A new capsule 793 technique for hydrothermal experiments using the piston-cylinder apparatus, American 794 Mineralogist, vol.77, pp.1080-1086, 1992.

J. C. Ayers and T. J. Peters, Zircon/fluid trace element partition coefficients measured by 796 recrystallization of Mud Tank zircon at 1.5 Pa and 800-1000oC, Geochemica et 797 Cosmochimica acta 223, pp.60-74, 2018.

J. C. Ayers and E. B. Watson, Solubility of Apatite, Monazite, Zircon, and Rutile in 799, 1991.

, Supercritical Aqueous Fluids with Implications for Subduction Zone Geochemistry

, Philosophical Transactions of the Royal Society A: Mathematical, Physical and 801 Engineering Sciences, vol.335, pp.365-375

J. C. Ayers and E. B. Watson, Apatite/fluid partitioning of rare-earth elements and 803 strontium: Experimental results at 1.0 GPa and 1000°C and application to models of 804 fluid-rock interaction, Chemical Geology, vol.110, pp.299-314, 1993.

J. C. Ayers and E. B. Watson, Rutile solubility and mobility in supercritical aqueous 806 fluids, Contrib Mineral Petrol, vol.114, pp.321-330, 1993.

F. Béjina and O. Jaoul, Silicon self-diffusion in quartz and diopside measured by nuclear 808 micro-analysis methods, Physics of the Earth and Planetary Interiors, vol.97, pp.145-162, 1996.

I. N. Bindeman, K. E. Watts, A. K. Schmitt, L. A. Morgan, and P. W. Shanks, 810 Voluminous low ?18O magmas in the late Miocene Heise volcanic field, Idaho: 811 Implications for the fate of Yellowstone hotspot calderas, Geology, vol.35, pp.1019-1022, 2007.

P. Boehnke, E. B. Watson, D. Trail, T. M. Harrison, and A. K. Schmitt, Zircon saturation 813 re-revisited, Chemical Geology, vol.351, pp.324-334, 2013.

G. Caro, P. Morino, S. J. Mojzsis, N. L. Cates, and W. Bleeker, Sluggish Hadean 815 geodynamics: Evidence from coupled 146,147 Sm-142,143 Nd systematics in 816 Eoarchean supracrustal rocks of the Inukjuak domain (Québec). Earth and Planetary 817, Science Letters, vol.457, pp.23-37, 2017.

A. J. Cavosie, N. T. Kita, and J. W. Valley, Primitive oxygen-isotope ratio recorded in 819 magmatic zircon from the Mid-Atlantic Ridge, American Mineralogist, vol.94, pp.926-934, 2009.

A. J. Cavosie, J. W. Valley, S. A. Wilde, and E. I. , Magmatic ?18O in 4400-3900 Ma 821 detrital zircons: A record of the alteration and recycling of crust in the Early Archean, 822 Earth and Planetary Science Letters, vol.235, pp.663-681, 2005.

P. A. Cawood and C. Hawkesworth, Continental crustal volume, thickness and area, and 824 their geodynamic implications, Gondwana Research, vol.66, pp.116-125, 2019.

T. Chacko, D. R. Cole, and J. Horita, Equilibrium oxygen, hydrogen and carbon isotope 826 fractionation factors applicable to geologic systems, Reviews in mineralogy and 827 geochemistry, vol.43, pp.1-81, 2001.

B. W. Chappell, A. J. White, and R. Hine, Granite provinces and basement terranes in 829 the Lachlan Fold Belt, southeastern Australia, Australian Journal of Earth Sciences, vol.35, pp.830-505, 1988.

D. J. Cherniak, Si diffusion in zircon, Physics and Chemistry of Minerals, vol.35, pp.179-187, 2008.

H. Chiba, T. Chacko, R. N. Clayton, and J. R. Goldsmith, Oxygen isotope fractionations 833 involving diopside, forsterite, magnetite, and calcite: Application to geothermometry, 1989.

, Geochimica et Cosmochimica Acta, vol.53, pp.2985-2995

K. L. Currie, J. Knutson, and P. A. Tembly, The Mud Tank carbonatite complex, central 836 Australia-an example of metasomatism at mid-crustal levels, Contr. Mineral. and Petrol, vol.837, pp.326-339, 1992.

Z. Deng, M. Chaussidon, P. S. Savage, F. Robert, R. Pik et al., Titanium 839 isotopes as a tracer for the plume or island arc affinity of felsic rocks, Proc Natl Acad Sci, vol.840, pp.1132-1135, 2019.

T. Ding, Silicon Isotope Geochemistry, 1996.

J. M. Ferry and E. B. Watson, New thermodynamic models and revised calibrations for 843 the Ti-in-zircon and Zr-in-rutile thermometers, Contributions to Mineralogy and 844 Petrology, vol.154, pp.429-437, 2007.

P. Frings, W. Clymans, G. Fontorbe, C. L. De-la-rocha, and D. J. Conley, The 846 continental Si cycle and its impact on the ocean Si isotope budget, Chemical Geology, vol.847, issue.425, pp.12-36, 2016.

B. Georg, Geochemistry of stable silicon isotopes measured by high-resolution multi-849 collector inductively coupled plasma mass spectrometry (HR-MC-ICPMS), p.850, 2006.

R. B. Georg, B. C. Reynolds, M. Frank, and A. N. Halliday, New sample preparation 852 techniques for the determination of Si isotopic compositions using MC-ICPMS, 2006.

, Chemical Geology, vol.235, pp.95-104

T. Geisler, M. Ulonska, H. Schleicher, R. T. Pidgeon, and W. Van-bronswijk, Leaching 855 and differential recrystallization of metamict zircon under experimental hydrothermal 856 conditions, Contributions to Mineralogy and Petrology, vol.141, pp.53-65, 2001.

C. B. Grimes, T. Ushikubo, R. Kozdon, and J. W. Valley, Perspectives on the origin of 858 plagiogranite in ophiolites from oxygen isotopes in zircon, Lithos, vol.179, pp.48-66, 2013.

R. S. Harmon and J. Hoefs, Oxygen isotope heterogeneity of the mantle deduced from 860 global 1SO systematics of basalts from different geotectonic settings, Contrib Mineral 861 Petrol, vol.120, pp.95-114, 1995.

T. M. Harrison, E. A. Bell, and P. Boehnke, Hadean Zircon Petrochronology. Reviews in 863 Mineralogy and Geochemistry, vol.83, pp.329-363, 2017.

P. R. Heck, J. M. Huberty, N. T. Kita, T. Ushikubo, R. Kozdon et al., SIMS 865 analyses of silicon and oxygen isotope ratios for quartz from Archean and 866 Paleoproterozoic banded iron formations, Geochimica et Cosmochimica Acta, vol.75, pp.5879-867, 2011.

S. Keay, W. J. Collins, and M. Mcculloch, A three-component Sr-Nd isotopic mixing 869 model for granitoid genesis, Lachlan fold belt, eastern Australia, Geology, vol.25, pp.307-310, 1997.

A. I. Kemp, M. J. Whitehouse, C. J. Hawkesworth, and M. K. Alarcon, A zircon U-Pb 871 study of metaluminous (I-type) granites of the Lachlan Fold Belt, southeastern Australia: 872 implications for the high/low temperature classification and magma differentiation 873 processes, Contributions to Mineralogy and Petrology, vol.150, pp.230-249, 2005.

S. W. Kieffer, Thermodynamics and lattice vibrations of minerals: 5. applications to 875 phase equilibria, isotopic fractionation, and high-pressure thermodynamic properties, 1982.

, Geophys. Space Phys, vol.20, pp.827-849

B. I. Kleine, A. Stefánsson, S. A. Halldórsson, M. J. Whitehouse, and K. Jónasson, Silicon and oxygen isotopes unravel quartz formation processes in the Icelandic crust, p.878, 2018.

, Geochemical Perspectives Letters, pp.5-11

J. S. Lackey, J. W. Valley, J. H. Chen, and D. F. Stockli, Dynamic Magma Systems, p.881, 2008.

, Crustal Recycling, and Alteration in the Central Sierra Nevada Batholith: the Oxygen 882 Isotope Record, Journal of Petrology, vol.49, pp.1397-1426

C. Lazar, E. D. Young, and C. E. Manning, Experimental determination of equilibrium 884 nickel isotope fractionation between metal and silicate from 500°C to 950°C. Geochimica 885 et, Cosmochimica Acta, vol.86, pp.276-295, 2012.

M. W. Loewen and I. N. Bindeman, Oxygen isotope and trace element evidence for three-887 stage petrogenesis of the youngest episode (260-79 ka) of Yellowstone rhyolitic 888 volcanism, Contributions to Mineralogy and Petrology, vol.170, 2015.

M. W. Loewen and I. N. Bindeman, Oxygen isotope thermometry reveals high magmatic 890 temperatures and short residence times in Yellowstone and other hot-dry rhyolites 891 compared to cold-wet systems, American Mineralogist, vol.101, pp.1222-1227, 2016.

C. A. Macris, E. D. Young, and C. E. Manning, Experimental determination of equilibrium 893 magnesium isotope fractionation between spinel, vol.600, p.894, 2013.

. °c, Geochimica et Cosmochimica Acta, vol.118, pp.18-32

A. Mathews, J. R. Goldsmith, and R. N. Clayton, Oxygen isotope fractionations involving 896 pyroxenes: the calibration of mineral-pair geothermometers Geochim, Cosmochim. Acta, vol.897, pp.631-644, 1983.

Y. Matsuhisa, J. R. Goldsmith, and R. N. Clayton, Mechanisms of hydrothermal 899 crystallization of quartz at 250 C and 15 kbar, Geochimica et Cosmochimica Acta, vol.42, pp.173-182, 1978.

M. Méheut, M. Lazzeri, E. Balan, and F. Mauri, Structural control over equilibrium 902 silicon and oxygen isotopic fractionation: A first-principles density-functional theory 903 study, Chemical Geology, vol.258, pp.28-37, 2009.

M. Méheut and E. A. Schauble, Silicon isotope fractionation in silicate minerals: Insights 905 from first-principles models of phyllosilicates, albite and pyrope, Geochimica et, p.906, 2014.

, Cosmochimica Acta, vol.134, pp.137-154

S. J. Mojzsis, T. M. Harrison, and R. T. Pidgeon, Oxygen-isotope evidence from ancient 908 zircons for liquid water at the Earth's surface 4,300 Myr ago, Nature, vol.409, pp.178-181, 2001.

J. M. Montel, Monazite end members and solid solutions: synthesis, unit-cell 910 characteristics, and utilization as microprobe standards, Mineralogical Magazine, vol.52, pp.120-123, 1989.

J. R. O'neil and B. W. Chappell, Oxygen and hydrogen isotope relations in the 913 Berridale batholith, J. Geol. Soc. Lond, vol.133, pp.559-571, 1977.

S. Opfergelt and P. Delmelle, Silicon isotopes and continental weathering processes: 915 Assessing controls on Si transfer to the ocean, Comptes Rendus Geoscience, vol.344, pp.723-916, 2012.

F. Z. Page, B. Fu, N. T. Kita, J. Fournelle, M. J. Spicuzza et al., , p.918

M. A. Valley and J. W. , Zircons from kimberlite: New insights from oxygen 919 isotopes, trace elements, and Ti in zircon thermometry, Geochimica et Cosmochimica 920 Acta, vol.71, pp.3887-3903, 2007.

A. D. Pollington, R. Kozdon, L. M. Anovitz, R. B. Georg, M. J. Spicuzza et al., Experimental calibration of silicon and oxygen isotope fractionations between 923 quartz and water at 250°C by in situ microanalysis of experimental products and 924 application to zoned low ?30Si quartz overgrowths, Chemical Geology, vol.922, pp.127-142, 2016.

T. Qin, F. Wu, Z. Wu, and F. Huang, First-principles calculations of equilibrium 926 fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon, Contributions to 927 Mineralogy and Petrology 171, 2016.

B. C. Reynolds, J. Aggarwal, L. Andre, D. Baxter, C. Beucher et al., , p.930

S. H. Boorn, P. Z. Vroon, and D. Cardinal, An inter-laboratory comparison of 931 Si isotope reference materials, Journal of Analytical Atomic Spectrometry, vol.22, pp.561-568, 2007.

J. H. Reynolds and . Verhoogen, J Natural variations in the isotopic constitution of silicon

, Geochimica et Cosmochimica Acta, 1952.

P. S. Savage, R. M. Armytage, R. B. Georg, and A. N. Halliday, High temperature 935 silicon isotope geochemistry, Lithos, pp.500-519, 2014.

P. S. Savage, R. B. Georg, H. M. Williams, K. W. Burton, and A. N. Halliday, Silicon 937 isotope fractionation during magmatic differentiation, Geochimica et Cosmochimica Acta, vol.938, issue.75, pp.6124-6139, 2011.

J. W. Valley, P. D. Kinny, D. J. Schulze, and M. J. Spicuzza, Zircon megacrysts from 986 kimberlite: oxygen isotope variability among mantle melts, Contrib Mineral Petrol, vol.133, pp.987-988, 1998.

E. Watson and D. Cherniak, Oxygen diffusion in zircon, Earth and Planetary Science 989 Letters, vol.148, pp.527-544, 1997.

E. Watson and T. Harrison, SiO 2 1083 ? 50 wt.%", curve is estimated from the offset of Duluth Gabbro zircons from Si isotope 1084 composition of the mantle (? 30 Si(BSE) = -0.29 ?; Savage et al., 2014) and an estimated 1085 formation temperature of ~800 °C, assuming ? 30 Si(WR-zrc) ? 0 as T ? ?. Note that the two 1086 WR examples, while illustrative of the overall qualitative trend we wish to highlight, do not 1087 capture the complexities of fractional crystallization and zircon saturation in intermediate and 1088 mafic systems, Zircon thermometer reveals minimum melting conditions on Qin et, 1983.

, 14 is used to describe Si isotope fractionation and 2.33±0.24 is used for O 1092 isotopes (Trail et al. 2009), the latter of which is in broad agreement with the empirical 1093 calibration reported by, vol.1096, p.1098, 2003.