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Abstract

Moderately volatile elements (MVEs) are sensitivacérs of vaporisation in geological and
cosmochemical processes owing to their balancddigaing between vapour and condensed phases.
Differences in their volatilities allows the therdymamic conditions, particularly temperature and
oxygen fugacity fO,), at which vaporisation occurred to be quantifiedwever, this exercise is
hindered by a lack of experimental data relevarihéoevaporation of MVEs from silicate melts. We
report a series of experiments in which silicaggiliis are evaporated in one-atmosphere (1-atm) gas-
mixing furnaces under controllefD,s, from the Fe-“FeO” buffer (iron-wistite, IW) tar §10°
bars), bracketing the range of most magmatic roGkse- ) and temperatureT] series were
conducted from 15 to 930 minutes and 1300-1550t@rabove the liquidus for a synthetic
ferrobasalt, to which 20 elements, each at 1000, ppere added. Refractory elementsg( Ca, Sc,

V, Zr, REE) are quantitatively retained in the meitder all conditions. The MVEs show highly
redox-dependent volatilities, where the extent ment loss as a function dO, depends on
the stoichiometry of the evaporation reaction(aheof which has the general formi"ROny. =
M*Q,;, + n/40,. Wheren is positive (as in most cases), the oxidation stztéhe element in the gas is
more reduced than in the liquid, meaning lower @xy§ugacity promotes evaporation. We develop a
general framework, by integrating element vapaosastoichiometries with Hertz-Knudsen-Langmuir
(HKL) theory, to quantify evaporative loss as adiion of t, T and fO,. Element volatilities from
silicate melts differ from those during solar nesidondensation, and can thus constrain the conditi
of volatile loss in post-nebular processes. Evammran a single event strongly discriminates betwe
MVEs, producing a step-like abundance pattern énrésiduum, similar to that observed in the Moon
or Vesta. Contrastingly, the gradual depletion ofE4 according to their volatility in the Earth is
inconsistent with their loss in a single evaporatavent, and instead likely reflects accretion from

many smaller bodies that had each experiencedeliffelegrees of volatilisation.
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1.0. Introduction

Phase transformation from condensed (liquid, kadid, s) to gaseous (g) form, termed evaporatfon,

a ubiquitous geological process occurring duringgassing of ascending magmas (Symonds and
Reed, 1993; Mather et al., 2012), upon heatingndittg meteorite impacts in the crust (Humayun and
Koeberl, 2004; Moynier et al., 2009) and, on adargcale, in planetary accretion processes (O'Neill
1991; Alexander, 2001; Visscher and Fegley, 20L8¢volatility of an element refers to its tendency to
partition into the gas phase relative to condengbdses, and at equilibrium, depends on the

thermodynamic conditions, especially the tempeeatindfO, at which these processes occur.

Under solar nebula conditions, the volatility of element is quantified by its ‘50% condensation
temperature’T.>°, the temperature at which half its mass is caledl#o condense from a gas of solar
composition at equilibrium (Larimer, 1967). A° of the elements vary among one another, their
abundances in chondrites may be used to conseaiperatures at which they accretedy( Keays et

al. 1971; Laul et al. 1973), a concept known asriwathermometry’ (Urey, 1954). Although elemental
abundances in chondrites correlate positively @jith, these temperatures refer to specific conditions;
that of a rarified (tenuous) nebular gas, with as=ili pressures, (g of 10°-10° bar (Larimer, 1967;
Grossman, 1972; Grossman and Larimer, 1974; Lod@&@3), in which H is the most abundant
species, such thaH, ~ Ry The correspondingly low J/H, (5 x 10% Rubin et al. 1988) of the solar
nebula promotes very reducing conditions, ~7 lotisupelow the iron-wistite (IW) oxygen buffer at
1400 K. Low total pressures result in condensaiomperatures that are below the silicate, metal and

sulfide solidi, such that condensation occurs satid phases (Ebel, 2004).

In the absence of any other scdlg® has been widely used to quantify element volgtilit various
other contexts, such as degassing from planetaie®oAlthough refractory elements and the main
components (Fe, Mg, Si) in the Earth and other gtiay bodies (the Moon, Mars, Vesta) have
abundances similar to those in chondritic metesiritee moderately volatile elements (MVES), witl® 65
< T5° (K) < 1300 at 10 bar (Palme et al., 1988), are variably depletewylJ1954; Ringwood, 1966;
Wanke and Dreibus, 1988; O’'Neill and Palme, 1998a£ede et al., 2015). The sub-equal distribution
of MVEs between the gas and condensed phasesgrolaisse for quantifying the conditions of volatile
loss processes, which neither refractory elemdmasdly lost) nor highly volatile elements (almost

entirely lost) address.

Chondrite-normalised abundances of lithophile M\iEghe mantles of differentiated rocky bodies
plotted against>° define ‘volatility trends’. Depletions of siderdfghMVEs relative to these trends
point to their additional loss to planetary coresy(Wood et al. 2006; Siebert and Shahar 2015).
However, the proportions of siderophile MVEs(.,Ga, Pb, In) inferred to reside in Earth’s core gsin

this approach are irreconcilable with their expertally-determined metal-silicate partition coaéfitts
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(Wang et al. 2016; Blanchard et al. 2017; Ballnetusl. 2017; Norris and Wood, 2017), suggesTiit)

may not be an apt descriptor of volatility at tieaditions relevant to the formation of Earth.

The assumption implicit in the use Bf° states that volatile loss occurred under the sotea nebular
conditions experienced by chondritic meteoritesl dnrerefore neglects variations in nebular chegnistr
(cf. Ebel and Grossman 2000; Schaefer and Fegley 2l aydition to the likelihood that planetary
bodies continued to accrete following dissipatiérine nebular gas. Indeed, numerical simulations of
planetary formation highlight the potential for ofieal fractionation to occur throughout their growt
(e.g.,Morbidelli et al. 2012; Carter et al. 2015). Thesst-nebulaprocesses include collisional erosion
of differentiated material (O’Neill and Palme, 20@®nsor et al., 2015) and melting and evaporatiion
planetesimals or planetia “°Al and*Fe decay (Sahijpal et al., 2007) or impact hedfahlevan et al.,
2011). Models for the Moon-forming impact invokemigeratures>4000 K €.g., Melosh 1990;
Nakajima and Stevenson 2014) and pressures befl@emnd 100 bar (Canup et al., 2015). TBg of

the gas evolved by evaporation of silicates isehusthe Fayalite-Magnetite-Quartz (FMQ) buffer
(De Maria et al., 1971; Visscher and Fegley, 2018sta et al., 2017), orders of magnitude higher
than in the solar nebula. Moreover, elemental dieple in planetary environments reflect not only
volatility, but also the ability for the gas speci® be carried away from the locus of vaporisation
which varies with physical factors such as planetize, molar mass and atmospheric structure
(Chamberlain and Hunten, 1989). As such, equilibris not mandated during evaporation (Young et
al. 2019) and the physical mechanism canaopriori, be treated as the inverse of equilibrium
condensation. Indeed, MVE depletion patterns in ymglanetary bodies are quite unlike those in
chondritic meteoritese(g.,O’'Neill and Palme, 2008), attesting to their adoretinder conditions and/or
via mechanisms distinct from those of the solar nebddatility trends established under these post-
nebular conditions should thus diverge from expemia based onT?°. Together, these
considerations call for more quantitative desasipgi of element volatility relevant to the evapanati

of silicate melts.

Existing experimental constraints (Chapman and iBehel969; Notsu et al., 1978; Bart et al., 1980;
Tsuchiyama et al., 1981; Kreutzberger et al., 1$fimaoka et al., 1994; Wulf et al., 1995; Norrisla
Wood, 2017; Braukmdaller et al., 2018) highlight epdndence of element volatility d@,; some
elements€.g.,Zn, Cd, Na) become more volatile at |6@, whereas otherg(g.,Ir, Au, As) become
less so. Differences were found between volasliiigferred from evaporation of silicate melts and
those calculated for solar nebula condensationlé/iiundances of elements that are refractoryen th
solar nebulad.g.,Al, Ti, Sc, REES) increased in evaporation ressd{@&hapman and Scheiber, 1969;
Notsu et al., 1978), KTF° = 1006 K) was observed to vaporise more readdy tNa {[°° = 958 K)
(Kreutzberger et al., 1986) while Ifif° = 536 K) was found to be less volatile than ZR%= 726 K)
(Norris and Wood, 2017). Norris and Wood (2017uadthat, because this order of volatility better

matched the MVE depletions observed in Earth’s haattiey were lostia evaporation from silicate
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melts rather than during nebular condensaftimvertheless, a theoretical understanding of tbeqas

studied in these experiments has hitherto not bddressed.

Here, we present experimental results of trace exieross during Langmuir (free) evaporation of a
ferrobasaltic melt composition as a function of tame, temperature arf@,. We develop a theoretical
approach based on Hertz-Knudsen-Langmuir (HKL) th€e.g, Knudsen 1909) that quantifies the
effect oft, T andfO, on element loss and determines stoichiometriedeohent vaporisation reactions.
This model enables extrapolation and predictioeva@porative element loss from silicate melts and is
used to better understand the conditions and mesharthat lead to volatile depletion among rocky

planetary bodies.
2.0. Methods
2.1.Experimental Methods

Reagent-grade, major-element oxide powdergdFmMgO-Al,Os-SiO,) were weighed out and ground

in an agate mortar. Calcium was added as carb¢@ateQ). The major element composition (Table
1) represents a compromise between achieving ditmidus temperature whilst still resembling a
realistic planetary mantle composition. To this e Anorthite-Diopside eutectic composition was
used, to which roughly 1%t. % each of forsterite and &; were added. Trace elements were added
to a separate mixture; the alkalis (Li, Na, K, Ri@re added as carbonates. The remaining elements
were added as oxides, so as to mimic their speniati silicate melts (addition of elements as
solutions,e.g.,nitrates was avoided as this may cause elemeiishi@mve abnormally during heating).
Oxides added were: @0, Ga0O;, GeQ, PbO, MnO, MoQ, V,0s, Zr0,, Sc0Os, Zn0O, TiO, LayOs,
Gd,0s, Yh,03, Ag,O and CdO, totalling 20 elements, six of which (3c, Ti, and the REES) are
nominally refractory. All oxides were added in poojons equivalent to one-another, to give
28,000 ppm of the element in the final trace eldmmaix, of which 3.6 wt. % was added to the
FCMAS composition to gives 1000 ppm of each element in the final mixture (€ab). The
ensemble was then decarbonated at 1000 °C for idalr and re-ground. Experiments were also
performed with the FCMAS mix prior to the additiohthe trace element mixture to assess the degree

of contamination during the experiments.

For each experiment, around 25 mg of powder wasedhixto a viscous slurry with 100,000
molecular weight polyethylene oxide and loaded @ntoetal wire loop. In order to minimise Fe, and
other metal loss to the loop, Re was used whersilgesat reducing conditions (below FMQ),
whereas Pt loops (and one Ir loop) were used abM®@. Oxygen fugacity was externally buffered
by CO-CQ gas mixtures metered from Tylan mass flow corgrel(range 0—200 and 0-20 standard
cubic centimetres per minute, sccm), whose perfoomavas checkeih-situ using a yttria-stabilised

zirconia SIRQ oxygen sensor at 1000 °C (see O’Neill and Egdt82). The sensor was not used in
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the actual experiments because of the high tempesatOxygen fugacities varied betweernt°lbar
(=IW) to 10°® bar (air) at a given temperature, at an estimadedracy of +0.05 log units. Excepting
experiments in air and at ANU, the total gas flaterwas kept constant at each oxygen fugasity,
200 sccm. Gas flow rates are listed in Table Z)@loith run duration and temperature. Experiments
performed at Westfalische Wilhelms-Universitat, Miem, are denoted by the code ‘M’, those at the
Research School of Earth Sciences, ANU, by ‘C’ anithe Institut de Physique du Globe de Paris, by
‘P

Samples were introduced into the 3-cm-long hotsgfoa 42-mm internal-diameter, 70-cm-long
GERO vertical alumina tube furnace directly at ske¢temperature, between 1300 < T (°C) < 1550,
with run times between 15 min and 930 min. Gase® wkowed to run and equilibrate in the sealed
furnace tube for 10 min prior to sample introduction. The gas aumily flowed through the tube,
and was evacuated by a line at the top of the éern@he volume of the furnace tube relative to that
of the sample is sufficiently large that vapour daoed upon sample evaporation was efficiently
removed from the hotspot and condensed in thezmnids of the tube, thereby approximating an open
system. Temperature was controlled with a thermpleoaxternal to the alumina muffle tube by a
Eurotherm® controller, limiting fluctuations to Wih +1 °C. Temperatures were independently
measured, and adjusted as necessary, with a TyiperBiocouple bead (Klemme and O’Neill, 2000)
located <5 mm above the sample. Run duration isrteg from the time of sample insertion and
therefore includes a thermal equilibration timeisTiime (defined as the time needed to reach 99% of
the set temperature) was determined to be betweenminutes, conforming to the relationshipa

= K(Tsna-T), Wherek is the response time constant. When integratetd vaspect to time and
temperature, this gives= (-In(Tsna-T)+IN(Tsina))/K. The value ok was experimentally determined to
be 0.018 at 1350°C from the observed increasempeeature for a Type B thermocouple bead 6f 10
m radius. The response time constant is relategéoific heat capacity (§; massif) and area (A) of
the material by the expressidn= hA/mC,, where h is the external heat transfer coefficiamd
depends on the properties of the gas phase. Slimagdesmelt spheres in our experiments have higher
heat capacities~( 1500 J/kgK) and surface areas 2x10° m) than the thermocouple bead,
equilibration times are expected to be similar. a@bs were quenched by dropping them into a

beaker of distilled water.
2.2 Analytical Methods

Trace element abundances in the quenched glassesmeasured by Laser-Ablation Inductively-
Coupled Plasma Mass Spectrometry (LA-ICP-MS) at lisitut fir Mineralogie, Westfalische
Wilhelms-Universitat Minster. Glasses were mouiiteelpoxy and polished before being placed in a
dual-volume Helex cell filled with He gas ( L/min; large cell and 0.33 L/min, small cell)bkation

was performed by a Photon Machines Analyte G2 X83AnF excimer laser with a repetition rate of
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10 Hz, a total fluence of 4 J/érand a spot size of 130 pm (@B for zoning profiles). The ablation
sequence consisted of 20 s background and 40 suoting time, in which the ablated material was
carried to therhermoFisheElement Il running in low resolution mode. Each mpeak is measured
four times (100 samples per peak with a mass winolio#fo) for a total of 0.02 s each. The isotopes
measured for this purpose wefki, *Na, 2°Si, **K, “Ca, **Sc, *'Ti, *°Ti, **v, **Cr, **Mn, *Ni, ®*Cu,
66Zn’ 6QGa’ 7269, 7369, 85Rb, QOZr, 93Nb, QSMO, 107Ag, lllCd, 115|n’ 133CS, 139La, 157Gd, 172Yb, 182\/\/,

8 Re, *Ir, °Pt, 2°%Pb, totalling an analytical pass time of roughlg 6. Oxide production rates, as
monitored by thé**Th**0/%?Th ratio, were < 0.1 %.

Samples were ablated between 6 — 12 times, with tedeen to analyse both the core and rim of the
glass bead, permitting detection of any zoningn@ads bracketed sample ablation every 12 — 24
points (.e., every two samples), and consisted of a set oEtNi&T-612 and two basaltic standards
(either BCR-2G, GSD-1G, GSE-1G or BIR-1G, dependimythe session). Standardisation was
performed in two stages. Firstly, the NIST-612 d&d glass, in which trace elements are present at
40 ppm levels, was used to produce calibrationesurelating counts per second to concentration for
a given isotope. Following this initial normalisa *°Si was used as an internal standard (41 wt. %
SiO, in samples) to correct for matrix effects betwdensamples and NIST-612 by comparison with
BCR-2G, GSD-1G, GSE-1G or BIR-1G, whose matrix igand analogue for the experimental

glasses.

Relative standard deviation (RSD) across all elésnem a given sample was 5.1+0.4% (SD),
excluding cases where the element concentratiomeasthe detection limit (frequently Cd and Ag,
but also in some experiments where elements hage feantitatively lost). In these instances, the
RSD increases to 15 — 20%, while Li also has a R§D £10%), presumably owing to the analyses
of Li tetra- and metaborate-fluxed fused discs lom LA-ICP-MS system. For major elements and
those with interference-free masseg(,Na, Sc, V, Cr, Mn, Rb and the REE), RSD is typic&i3

%. Analytical accuracy was assessed by analysbagafitic reference materials; concentrations of all
elements were found to be within 10% (and often 8%he most recent published analyses using
femtosecond LA-ICP-MS (Jochum et al. 2014; Li et 2015; Electronic Annex A). The sole
exception is Ge; its measured abundance is systahathigher in BCR-2G (Ge, 2.16+0.10 and
Ge, 2.23+0.16 ppm) and BIR-1GGe, 4.25+0.60 anfGe, 2.18+0.44 ppm) compared to published
values (1.51+0.10 and 1.2+0.1 ppm, respectivelfjs Tiscrepancy disappears for synthetic basaltic
glasses with higher Ge contents; GSD-1G (39.07+09490+1 ppm) and GSE-1G (391.6+13/§
402+16 ppm), pointing to the production BFe°0* and lesser amounts YFe'°0" and**Fe'®*0'H*

on “Ge and*Ge, respectively. While these interferences degtiagl@ccuracy of Ge measurements at
low abundancesx(1 ppm), they are negligible at the concentrati@hsvant to the experiments (10 —
1000 ppm).
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3.0. Theoretical Framework

The kinetic theory of gases states that particieaniisothermal ideal gas have a Maxwell-Boltzmann
distribution of kinetic energies (Maxwell, 1860; IBwnann, 1872). Such molecular chaos
(stosszahlansatzoccurs when the mean free path, the averagendest&ravelled by a gaseous
molecule prior to collision, is greater than thardeter of the particles. At 1673 K and 1 bar, tleam
free path iss5x10° metres, 10times larger than typical molecular diameters (@han and Cowling,
1970). In this framework, the number of particlegking a surface over a given time interval isegiv
by the Hertz-Knudsen-Langmuir (HKL) equation (HertB882; Knudsen, 1909; Langmuir, 1916;
Hirth and Pound, 1963; Richter et al., 2002):

@ A AeDisat — AcDi (1)
dt 2TRMT

Here,% is the flux (mol/s)A the surface area (‘ani,sat is the equilibrium partial pressure of the

gas species of elemen{Pa) andV its molar mass (kg/mol}p; its partial pressure at the surfaee,
anda, the dimensionless Langmuir coefficients for evagion and condensation respectivatythe

gas constant (J/mol.K) affdabsolute temperature.

Langmuir evaporationp{,: > p;) involves liquid-gas equilibrium only at infinitesally small
intervals, after which each parcel of gas is rerddvem the system, rendering it thermodynamically
irreversible. Theoretically, the HKL equation ingilly assumes thermal equilibrium between liquid
and gas. The high thermal mass of the surroundasgngth respect to sample in the furnace hotspot
satisfies this condition, under which the HKL edomtaccurately describes the Langmuir evaporation
flux (Littlewood and Rideal, 1956; Persad and Wa¥1,6).

The evaporation rate is maximal whgn= 0 (eq. 1). Though not measurable in these exaerts p;
relates to the accumulation of molecules @it the evaporating surface and hence dependseon th
evaporation rate relative to the transport ratei @fway from the surface. At our experimental
conditions, element evaporation rates are relatigedw & 10 cnf/s) relative to transport rates,
which are due to both diffusion and advection, arelof the order of several & (Electronic Annex

B). In this limit the gas is instantaneously remowvexhf the locus of evaporation, maintainipg= 0

and, for a sphere, eq. 1 reduces to:

a .
dn; = —4nr? AePisat_;, 2
2nRMT
- . n; 0 anrdp . .
Dividing eq. 2 by the total number of mole$, sincef )= X; andny = o dives:
T
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i = 3 | M it (3
i — aept,satrp 27RT '

Element loss rate is also affected by the radiyisutd density4) of the sample (eq. 3). A factor of 2
variation inr results in differences in concentration<of7%, and, because the major elements (Si,
Mg, Fe, Al and Ca) are non-volatile in the experitsep is near-constant (Electronic Annex B).
Thus,r = 0.001 m was used for all experiments andas calculated for each run using the model of
Bottinga and Weill (1970) and varied between 276d 2905 kg/m

Though the equilibrium partial vapour pressusgy,,, is not directly measurable in these kinetic
experiments, it may be calculated from equilibrishermodynamics if the chemical reaction(s)

describing the vaporisation are known. In the gaingase of the evaporation of a metal oxide species

dissolved in the meIt(M’””%O) (D), to a gaseous species that may have a differenhcale

state,(MXOE) (g9), the reaction is:
2

(Mx+n # 0) D = (M"Og) @)+ % 0, 4)

Here, M is the metalx its formal charge (an integer value) amdhe number of electrons in the
reaction. Because the evaporating gas is tenuceigssume ideal gas behaviour, such fhatp.

The equilibrium constant of eq. K, re-arranged to solve fpr, the partial pressure 81 0= in the
2

gas, is:

K(4)x(Mx+n0m>y(Mx+n0m)
Mm)= 2 2/, (5)
p< 7 F(0)7

In eq. 5,X andy refer to the mole fraction and activity coeffidigrespectively, oM**"Ox+n in the

2

liquid. For clarity, we make the substitutios= M**"0x+n. We take the standard state as that of the

2

pure liquid oxide at the temperature and presstimsterest. We assume that the concentration of an
evaporating element is in the Henry's law regiarghsthat its activity coefficieny;, is equivalent to
that at infinite dilution,y;”. Wherey;” = 1, the solution of componemtin the liquid is ideal.
Likewise, when the Langmuir evaporation coefficieptis unity, Langmuir evaporation is considered
ideal. As the values o, andy;” are not knowra priori, it is convenient to define a modified

equilibrium constantk *:

K" = ayPK. ©)
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It is the composite parametkr that will be determined from the experiments. s@me elements, K
andy;” are known from independent equilibrium thermocleinmeasurements, allowing, to be
calculated using eq. 6. Alternatively aif is defined thery” may be computed by the quotiéfit/K.
With this simplification, egs. 5 and 6 may be sitbd into eq. 3, giving:

K., 3 M
dx; = ——2 dt (7)
f(0)V*rp | 2nRT

Integrating eq. 7 with respect dX; anddt yields:

Xt Kia 3 | M . 8
X0~ P\ “Fo) i [Zerr ¢ T )

Equation 8 returns the mole fraction of elememémaining in the melt after a given time, (X})

relative to its initial mole fractio?, a ratio that is experimentally-measured. It ltasd refinable

parameters: the physically significant quantiti€s andn, andt,, a lag time that depends on the

t
experimental arrangemenk.g., heating time). They are found by minimising the finisf %

calculated by eq. 8 to the measured value, sumwedeaoset oN experiments at a single temperature

and run time but variablf®, by non-linear least squares:

2

t t

Xi o _ X
0 0

)(Z(K*,n,to)=z X"mec;t M car : ®)
m\ ()
L meas

wheres denotes the standard deviation. The valueK*ondn are derived solely from fits to the

experimental data using eq. 9 and do not dependngra priori knowledge of thermodynamic

guantities. By default,, is set to 0 but is refinable within the limits<@, <t.

¢
Plotted against Id@,, % varies as a sigmoid, whenedetermines the slope. If the oxidation state of

an element in the melt is known, then that in the gay be inferred from the slope of the curve
defined by the experimental datanlf> 0, the oxidation state of the element in the igdewer than
that in the liquid, and vice-versa. The changelé@ment volatility withfO, becomes sharper (steeper

slopes) as diverges from 0. Th&* controls the displacement of the curve along tutd, axis,
¢
where higher values df* result in Iower% (i.e, more evaporative loss), all else being equal. At

constant temperature, a systematic incread€*ofvith run time signals a non-zetg (evaporation

begins only after some timg,).



247  Values ofp; 4 reflect the sum of each of the possible vapopsateactions that may be written
248 Dbetween all relevant components containinig the melt, and all gas species containing the
249  vapour. If the element of interest has a given nemmbl; of valence states in the melt ang.N
250 species in the gas, there will bei{lNgs1) independent reactions..,one reaction if Iy, =1 and

251 Ngs1). We identify five possible scenarios in ordemareasing complexity:

252 1) Congruent associative evaporation with one spenidsth liquid and gas, the species
253 having the same oxidation states=(0).
xt «3 | M 10
254 %5 = exp <—K 2 - t0)> (10)
255 2) Congruent dissociative evaporation with one megalrimg species in both liquid and gas,
256 the species having different oxidation stateg Q). Elemental loss is given by eq. 8.
257 3) Congruent dissociative evaporation with a singliglation state in the liquid and multiple
258 in the gas.
259 This equation is a sum of the partial pressureshef gas species involved in the
260 vaporisation of a given element:
Xt _ _(_Kag Kap V3 [M_ 11
261 x) eXp< (f(oz)na/4 +f(oz)"b/4) rp~ 2mRT (t t°)> (h
262 Wherea andb refer to the different stoichiometries of eq. 4.
263 4) Congruent dissociative evaporation with multiplédation states in the liquid and a
264 single gas species.
265 The homogeneous equilibrium between two melt oxédenponents with different
266 oxidation states may be written:
267 (Mx+"0x+_n) ) = (Mxoz) D+ 30, (12)
2 2
268 The loK* 12 is related to the equilibrium constant in the pMr®© system by the
269 equation:

y Mx+nox+n>

270 log K(12) = log K,y —log| ——3+|. (13)
)
2
271 The melt oxide componenéM’””OH_n) and(Mxog) are denoted and;j respectively.
2 2
272 Expressions for the partial pressure of a givenspagsies can be substituted into eq. 3
273 (see Appendix A for derivation) and integrated imanner identical to that for eq. 8 to
274 give:
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P ey K f(0) @ 5 [n (14)
x0T &P\ T (0,)"a2)/*Vi 1\ 1p~ 2nRT (t —to)
13 (12)f 2) Vi+
AlthoughK|,,,is given by thermodynamic data in the pure metad@system, eq. 14 has an

additional degree of freedom, the ratio of the rogitle activity coefficients’% Therefore eq. 14
requires independent knowledge—:/_éto be able to solve uniquely f&r.
5) Congruent dissociative evaporation with multipledaxion states in the liquid and in the

gas.

This equation is the sum of the partial pressuféao@ gas species as derived in eq. 14

X @e¥ jKiaqf(05) "0 ey jKapyf(0) "ED/*\ Y 3 [Ty
xo = exp| = ey | N e EDID
! (K(lz)f(oz) a2 y_i+1) (K(1z)f(02) a2 V_i+1) P

These equations may be applied to any element. &@poration experiments in the future would

provide additional tests on the theory developadihe
4.0. Results

A total of 48 experiments were performed at temjppees of 1300, 1400, 1500 and 1550 °C with run
durations of 15, 60, 120, 720 and 930 minutes agi®D}s between air (-0.68) and -10 (Table 2). All
experiments quenched to homogeneous glasses (Figith the exception of some of the 1300 °C
experiments at loMO,, which contair=5% microphenocrysts of olivine and spinel (Elecitolhnnex
C), suggesting the liquidus temperature is clos&300 °C. Samples run on Pt loops at Ity

experienced minor(5 %) Fe loss to the wire (Electronic Annex C).
4.1 .Contamination and blank runs

Four experiments performed at @y = -8 (N = 3) and -0.68N = 1) at 1400°C and 1500°C on the
FCMAS mixture without trace elements (‘blank’ runggre analysed to quantify any contamination
within the furnace. At loi, = -8, the concentrations of all 20 trace elemevise < 1% of 1000
ppm, with an average of 1.8 ppm (Table 2). Thedaegaindicate negligible vapour pressures of
volatile elements in the furnace hotspot, ruling @icondensation and verifying the conditign=

0. In the air experiment (P28/05/18), all elements gresent below 3 ppm, excepting Na and K at
92.1 ppm and 77.7 ppm. That Na and K should not lzgpreciably evaporated after 15 minutes at

1400°C in air suggests they occur as impuritigkénmajor oxides.

In the trace element-bearing experiments, abundaatd& and particularly Na, increased through
contamination up to 2075 and 20028 ppm from theitial concentrations of 944+128 ppm and

32524281 ppm in the starting mixture, respectiv€lgntamination affected only the samples run at
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WWU Munster, likely reflecting the experimental toisy of the furnace and/or its alumina muffle
tube. As such, only the experiments performed ERBNU (C-17,18/12/15) and IPGP, Paris (P-
xx/xx/17,18), which have low background Na conte(ifable 2; Tuff and O’Neill 2010) are

considered for Li, Na and K.
4.2 Experimental reproducibility

We duplicated four experiments at 1400°C (TableEXperiments for pair P09-06-18b and P09-06-
18a, were run on Pt- and Re loops, respectivelg. dincentrations of volatile elements (K, Cr, Cu,
Zn, Ga, Ge, Rb, Mo, Ag, Cd, Pb; N = 38) are comghaneFig. 2and adhere closely to the 1:1 line.
The median misfit between the four pairs for eletmavith non-zero (> 5 ppm) concentrations is 6.0
% relative. This is two- to three-times larger thhe analytical RSD (see section 2.2.), reflecthmy
experimental error. These random errors includentass and shape of the experimental charge
(section 3.0.; Electronic Annex B) as well as measient of the temperature, run duration &g
(section 2.2.).

4.3 .Metal Loops

Because the solubility of an element into metatéases a0, decreases, depletion of some elements
in the glasses at lofD, may be partially attributable to alloying with nelinetal wires. In order to
test this hypothesis, the trace element contentids in 10 experiments (Table 2) were analysed

(Electronic Annex C).

No elements other than the metal were detectetarirtloop experiment (C18/12/15) and three Re
loop experiments measured (1M-1/3/16, 1M-1/3/168 @47/12/15c). For Pt loop experiments, Ga
and Cu dissolved into Pt metal, along with veryaniAg (Ag/Pt < 2x1d) and Pb (Pb/Pt < 7x1)in

experiments 1M-PS4, 1M-PS5 and 2M-15-07-16f. Taitel pair is so volatile that their abundances

were already negligible in silicate liquid.

Although Ga/Pt ratios are typically <7x4,0n one sample, 2M-17-07-16¢ (k@ = -8, T = 1500°C}
= 60 mins), Ga/Pt reaches 2.4(+0.1)R1The melt is also strongly depleted in Ga (67.thpwith
respect to the run at 6@, = -5.5 (775.1 ppm). Gallium abundances in Pt lo@39-06-18b) and Re
loops (P09-06-18a) at 1400°C andflog-9.23 are similar (439.9 ppm and 409.4 ppm), sstiug

that partitioning of Ga into Pt wire has no resbleainfluence on the quantity measured in the melt.

The Cu/Pt ratios of the Pt wire reach 4.7+2.9%1ut are highly heterogeneous, reflecting the low
diffusion coefficient of Cu in Pt, I§m?s at 1673 K (Liu et al., 2009). For a 15-minut@ensment,
Cu would have diffused only @m into the 0.1 mm diameter Pt wire. For a 0.5 cngike with mass

of 0.84 mg £7% of sample mass), the Cu budget in the wire,nasgu4000 ppm in the affected
zone, is 9%. Experiments P09-06-18b (Pt) and PG2826(Re) have similar Cu contents of 40.5 and
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11.2 ppm, respectively. It is concluded that thditi@ning of any given element into the metal wire
has no resolvable effect within experimental e(go6% relative) on its observed depletion in the

silicate melt.

4.4 Elemental Zoning

Implicit in the theoretical framework isection 3.0is the homogeneous distribution of evaporating
elements in the liquid. To test homogeneity, elen@@mcentrations were measured in each sample
with at least three 13@m laser spots in both the core and rim, often wifw points in betweerN(

= 6-12;Fig. 1). In addition, a representative subset eksesamples (two each at 1300°C, 1400°C,
1500°C and one at 1550°C; Table 2; Electronic AnG¢xvere analysed in detail by taking linear

profiles from rim to core, consisting of ten tad®n 25um spots spaced at pbn intervals (Fig. 3a).

Excepting one sample, 2M-15-07-16f, which represehé extremes of lowest temperature (1300
°C), fO, (10 bar) and shortest run time (15 mins) of the expenis, all elements in all other
samples measured show no analytically-resolvabhepositional zoning from core to rim (Fig. 3b
and Electronic Annex C). Homogeneous zoning prefifelicate that the characteristic timescale of
evaporation,tyc, found by solving fort in eq. (8), is greater than the diffusive timescal
approximated byp = r%2D, where D is the diffusion coefficient (see Etenic Annex D). The lack

of zoning can therefore set lower limits on theueabf D. In sample 2M-15-07-16f, the extent of
element zoning is inversely proportional to thecfien remaining after volatile loss. This suggests
zoning is more pronounced for elements with high@poration rates relative to their diffusion rates
This ratio increases (and hence zoning is mordylikir most elements to lowdiO,, because
vaporisation rates increase whereas diffusion ratesconstant as long as the melt oxide species is
unchanged. Accordingly, only sample 2M-15-07-166wegjected from the dataset. For the remaining
experiments, diffusion in the liquid was not thderhmiting step controlling measured element

abundances, thereby leaving evaporation from tHau
4.5.Data fitting

Three groups of elements can be classifiedon-volatile’ elements (Mn, Sc, Ti, V, Zr and tREES)
for which no statistically discernible change fréimeir initial concentrations is observei, volatile
elements that become relatively more volatile wigecreasindgO, (n > 0; Na, K, Cu, Zn, Ga, Ge, Rb,
Pb, Ag, Cd) andii) volatile elements that become relatively more til@avith increasingO, (n < 0;
Cr, Mo). Lithium is similarly volatile over the rge of fO, investigated At a givenfO,, loss of
elements belonging to groujis andiii) also increases with a) temperature and b) run fifalues of

to, n and lod<* fitted to the data for all volatile elements afeown in Table 3.

4.5.1. Congruent Dissociative Evaporation with one mets#fing species in both

liquid and gas, the species having different oxistastates
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One electron (n = 1) reactions (Na, K, Rb, Cu, Ag)

The order of alkali volatility observed in the erpgents increases down the group; Li < Na <K <Rb
(Fig. 4a-c), in line with the equilibrium vapourgssures above their pure oxides (Lamoreaux and
Hildenbrand, 1984). All alkali metals exist in sidte melts as KD, s species €.g., Charles 1967).

Lithium is deal with separately owing to its digtitvaporisation behaviour.

At 1400 °C, sodium and potassium become increasinglatile at low fO, (Fig. 4a, b). This
behaviour results from a lower mean valence stitieese elements in the gas compared to the liquid.
Using eq. 8 to fit the data, both Na and K confdaovann = 1 reaction (Fig. 4a, b), implying the
reaction MO, () = M°(g) + ¥%Q (Fig. 4a, b). This stoichiometry is supported hgrtnodynamic data
that show the overwhelming stability of the monatoigas above N®(s) and KO(s) (Lamoreaux
and Hildenbrand, 1984), and above natural silioagéis from Naughton et al. (1971), De Maria et al.
(1971)via Knudsen Effusion Mass Spectrometry (KEMS) and Thsuona et al. (1981yia Langmuir
evaporation. The higher 1&g of the evaporation reaction for K (-3.95+0.06)ateve to Na (-
4.25+0.10) at 1400°C attests to its higher volstilFig. 4a, b, Table 3).

Rubidium is more volatile than either Na or K (Fig). Like Na and K, its dependence @ is
consistent with am = 1 reaction, meaning Ris the stable gas species (Lamoreaux and Hildedbra
1984). In fitting the equilibrium constant of tRb vaporisation reaction, a positive dependence of
logK* with the time series (15, 60, 120 minutes) wasepled. In order to account for this, an
experimental ‘lag time’ is introduced, which debes the time at which Rb starts evaporating after
sample insertion. A best fit is found@t= 14.4 min (863 s), a constant for all time- aechperature

series.

Copper is observed to become more volatile at Id@gfFig. 4d), signalling a lower oxidation state
of Cu in the gas relative to the melt. Although pepis expected to be dominantly cuprous*jGui
silicate melts at very higfO, (e.g.,in air), it may also be present as*@(l) (e.g.Schreiber 1987).
Only Cu is detected in alkali-free, CMAS and CMAS+Fe licqidt 1300°C up taA\FMQ-1.5,
(Holzheid and Lodders 2001, and references ther®igNertheless, to check for the presence ét,Cu
fits to the experimental data were performedrfan eq. 8. At 1300°C, a formal valence of 1.14 is
calculated, at 1400°C it is 1.17, 0.84 at 15009 @.98 at 1550°C, yielding a weighted average of
1.06£0.15. Therefore, Cuy@is the only stable liquid oxide species consideneglaningn is set equal

to 1, implying the stability of Cig).

Silver is in its 1+ oxidation state in silicate mseloccurring as Aggx(l), however, due to its high
volatility, its vaporisation stoichiometry is noeW constrained by the present set of experimdrits.

few data points at 1300°C allow the expected oretgn ( = 1) reaction to be fit (Table 3).

Two electron (n = 2) reactions (Zn, Ge, Cd)
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The volatility of zinc is very sensitive f®,. Although it is less volatile than Cu or K in aimder
reducing conditions<{logfO, = -8), its abundance in the melt is negligibleakttemperatures (Fig
5a). The experimental data are best fit withren 2 reaction, reflecting the evaporation of ZnOi(§,
only stable melt component, to ¥g). Thermodynamic data for gases above ZnO(s) stiew that
Zn exists as Z4ig), be it below the IW buffer or in air, though@fg) becomes important <1000 K in
air (Lamoreaux et al., 1987). As for Rbt4f= 0 in eq. 8, then a positive dependence oKtogith
time is observed. For Zn, this time dependencensoved for a time lag of 9 minuteg € 540 s),
applied to all run durations and temperatures.K*sgncrease systematically with temperature (Fig.
5a; Table 3).

The vaporisation behaviour of Ge closely mirromat thf Zn (Fig. 5b)Although in silicate liquids Ge
transitions to 2+ at loO,, where G&7>Ge = 0.5 at IW and 1 atm for a CMAS composition (&a

et al., 2016), it exists exclusively as‘Gever thefO, range covered in our experiments. The data are
best fit with am = 2 reaction, implying GeO(q) is stable. This iscatorroborated by thermodynamic
data for vaporisation of Ge(3) (Lamoreaux et al., 1987). Like Zn, a constéimeé lag’ oft, = 624 s
(10.4 min) accounts for the observed dependendegif on time. The proportion of Ge lost from
the melt is indistinguishable from that of Zn aD03C, attested to by their overlapping kdg (Table

3), but at higher temperatures Ge becomes relgtiaele volatile than Zn (Fig. 5).

Cadmium, like silver, was too volatile to permisassment of its evaporation stoichiometry; only two
experiments contain measurable quantities of Cd;18M7-16¢ and 2M-15-07-15d, lf§gp = -0.67
and -3.44, for 15 min at 1300°C, respectively. Ciam which occurs as GHin silicate melts,
evaporates as &@) over allfO, above CdO(s) (Lamoreaux et al., 1987) suggesting®, the value

adopted for the fitting.

4.5.2. Congruent dissociative evaporation with a singlelaton state in the liquid

and multiple in the gas (Li, Ga, Pb)

For an element with a single melt oxidation state] more than a single species in the gas, thke tota
partial pressure of the element in the gas phageisum of two or more partial pressures (eq. 11).

This applies to the vaporisation of Li, Ga and Rérdhe TfO, conditions investigated.

The vaporisation behaviour of Li is distinct frolmt of other alkali metals; it is equally volatéé
highfO, as it is at lowfO, (Fig. 6a). The high-temperature gas species ablbive LyO(s) are Li(g),
Li,O(g), and LiO(qg) €.g.,Kimura et al. 1980), of which kD(g) is the most stable (Lamoreaux and
Hildenbrand, 1984). However, sinpfLi,0) is proportional t@(LiOq ) for a(LiOgs) ~ 10° as in our
experiments, LO is no longer the predominant gas species, leavifgy and LiO(g) (see Electronic
Annex E). Lithium depletion is generally observedlong 120 minute) duration experiments at

1400°C, and only these runs are fit. The time sdneair gives a log* for the reaction LiQs(l) +
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Y40, = LiO(g) of -3.39, whereas at Iffgy = -8 the logc* for LiOys(l) = Li(g) + %O, is -5.36 (Table
3, Fig. 6a).

No Ga evaporation is observed at 1300°C, but dienigemperatures Ga becomes more volatile at
lower fO, with close to am = 2 stoichiometry (Fig. 6b). Since Ga occurs as za@silicate melts,
there is no suitable Ga-bearing gas species thalidwesult in am = 2 reaction. Above G&s(s), the
stable gas species is G&g) (Burns, 1966; Lamoreaux et al., 1987), whoaetigd pressure is
proportional tofO, (ann = 4 reaction). However, as for L(Ga0) is proportional ta(GaQ 5)?,
meaning its stability decreases sharply as theigcaf GaQ s in the melt falls (Electronic Annex E),
such that it is stable only below IW-1 at 1700 K &GaQ <) = 10° (1000 ppm). Instead, the data is
fit by a combination of tha = 1 reaction involving GaO(g) and the= 3 reaction with Ga(g) (Table
3).

Lead is lost rapidly from the melt, and measurat®unts remain only in runs performed at 1300°C
and at highfO, at 1400°C. In all cases, Pb becomes more volatite decreasingO, with an
observed value of that is close to 1 (Fig. 6¢). In silicate melty B present as PID, be it at
oxidised €NNO) or reduced~IW) conditions (Watson et al., 1997; Wood and Hiali, 2010).
Evaporation of pure PbO(s, I) shows that Pb(g)asiidant below IW, both Pb(g) and PbO(g) are
found between IW and air, above which the oxidispécies predominates (Lamoreaux et al., 1987;
Kobertz et al., 2014; Kobertz, 2019a). As suchhhibien = 0 andn = 2 reactions are fit to the
experimental data. The partial pressures of Phitd) RbO(g) are found to be similar (Table 3) to

reproduce th@~ 1 slope of the data.

4.5.3. Congruent dissociative evaporation with multipleidation states in the

liquid and a single gas species (Mo)

Oxygen fugacity may also influence the oxidatioatestof a metal oxide dissolved in a silicate melt.
This is the case for molybdenum, whose two silicatdt components, M&O,(1) and MJ*Ox(l)
(Holzheid et al., 1994; O’Neill and Eggins, 20028 selated byfQ,)*? (see Appendix A).

Unlike the aforementioned elements, Mo becomeseasingly volatile at increasin®, (Fig. 7a),
reflecting the higher mean oxidation state of Motlie gas phase compared to the silicate melt.
Because the melt has M Mo < 1, this behaviour implies the presence of®l@g(g). Indeed,
calculation of Mo gas species from thermodynamia ¢@hase, 1998) shows the clear predominance
of MoO4(g) at allfO, > IW-2.5 (Electronic Annex E), and hence only thgecies is considered in

fitting the experimental data.

Because M&/Mo®" of the melt decreases witf0g)", the effective value af must also decrease as
fO, increases. This behaviour necessitates the usg.ofl4) to fit the data. Unique solutions for

p(Mo03) require tha(Mo03) andy(MoO,) are known. Here, a value p{Mo0;) = 0.3 is chosen
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from CMAS liquids (O'Neill and Eggins, 2002). Théoge of the datan) with fO, depends on
y(Mo03)/y(Mo0,), with a best fit across the experimental rangenfioat a ratio of 20.7. These

assumptions render the values for thekttgylisted in Table 3 approximate.

4.5.4. Congruent dissociative evaporation with multipleidation states in the

liquid and in the gas (Cr)

Chromium, like Mo, becomes more volatile from sitie melts at increasirf®, (Fig. 7b) because Cr

in the gas has a higher mean valence than in guéli In the liquid, both Gf and CF* occur €f.
Berry and O’Neill 2004), while four Cr-bearing gapecies are stable at high temperatures; Cr(g),
CrO(g), CrQ(g) and CrQg). However, only Crglg) is important for IW <fO, < FMQ+3, with
CrO4(g) only becoming dominant in air, though its slispiincreases to lower temperatures (see
Electronic Annex E). Tungsten also has oxidised gfxies; W@ and WQ (see also Fegley and
Palme 1985; O’'Neill 1991), indicating that thissigieneral feature of Group VI metals.

Two conditions are imposed in the fittingy(Cr0) = 3 (Pretorius and Muan, 1992) aiid the
y(Cr0,5)/y(Cr0O) ratio at 1400 °C is fixed at 6.13 to give akdgf 2.26 for the equilibrium CrO(l)

+ Y40, = CrO, 5(I) (at an optical basicity of 0.645 for the feredalt; Berry et al. 2006) and is taken to
remain constant at all temperatures. Fitting witld4g) did not improve the misfit and was therefore
neglected, hence the data was fit using eq. (14) ®@rO,(g) as the stable species. The 1300°C
experiments are anomalously more depleted thaighehtemperatures and were not fit. For these

reasons, the ld¢rs derived from fitting Cr data shown in Table & @emi-empirical.

4.6. Evaporation coefficients and activity coefficienfametal oxide species in silicate melts

In these experiments, gas speciation and thuseaatbichiometries were not measured, but inferred
from fits to concentratiod-fO, relations (Figs. 4 — 7), the potential complexatywhich limits the
extraction of reliable thermodynamic quantitieds*,( n) to elements with simple vaporisation
stoichiometries (eq. 8, 10). The sum of the expenital uncertainties that may affect precise
determination oK* andn, including sample properties (size, shape, denaitg other kinetic factors

that may influence vaporisation rate (diffusionitiea evaporation, gas flow rate), is relatively §ma

¢
(x6%; section 4.2.). As the determination wfrelies on how(%) changes relative to other

L

experiments in a givefD, series, it depends only on these random experaheatiables and is

derived with good precision and accuracy.

An additional experimental uncertainty arises ft, Rn and Ge because of the time lag from sample
insertion to vaporisatiortf= 9 — 14 minutes; Table 3), which almost coincidéth measured heating

times (4 — 7 minutes, section 2.1.). In equilibritgghniques such as KEMS, it is routine to run a
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standard material with known partial pressures oidntical conditions (Margrave, 1967; Drowart
et al. 2005) to identify any systematic erragy(,choice ofr, effect oft,, deviations from Langmuir
conditions), thereby calibrating* values. This was not done for these experimentrefore,
althoughK* values are relatively precise#6% to +30%; Table 3), their accuracy is harder to

quantify.

Here, accuracy is assessed by comparing the exgaalty-determined equilibrium constant of the
vaporisation reaction of the oxide component frolicage melts K*), with the known equilibrium
constant for the equivalent vaporisation reactibtine pure oxideK) calculated from thermodynamic
data €.9.,Lamoreaux et al. 1987; Chase 1998; Glushko €t99). The valueK* andK are related

by eq. 6, and are not equivalentyjf’ or a, deviate from unity. Fof% > 1 the vapour species is

favoured over the liquid component of the silicatelt relative to the same reaction between the pure

liquid oxide and gas, and vice-versa.

Activity coefficients of metal oxide species inicdte melts vary by orders of magnitude with
composition €.g.,Rammensee and Fraser 1982; Wood and Wade 201 Petature €.9.,Reyes and
Gaskell 1983) and metal oxidation state (O’Neiltl&ggins, 2002), with theoretical limits between
l/o < y; < w. However, for many trace elements, activity caifits remain poorly known.
Constraints on Langmuir evaporation coefficients similarly sparse. Because the HKL equation
describes only the flux of particles striking afage,a, was introduced posteriorias anad-hoc
adjustment to account for the energy required éntthnsformation of elementfrom the condensed
to gaseous state (see Ackermann et al. 1962) aisdhis theoretical limits &/< a, < 1. Unlikey;,

a, may depend not only on liquid composition, tempemand redox state, but also on the activation
energy of evaporation, surface properties, vaptioisaate and nature of the gas phasg.(Knacke
and Stranski 1956; Persad and Ward 2016) and hesimeot be determinedb-initio. Although
evaporation coefficients from simple solid metaborary metal oxides are <1, the equivalent liquids
havea, of unity (Burns, 1966; Safarian and Engh, 2013)r8itkov, 2015). For vaporisation of major
components from silicate melts Alexander (2002) &edkin et al. (2006) employed MELTS to
calculatey; and found 0.01 <, < 0.5 from fits to experimental data. Given thégptial variation of

a, andy;” in our system, values of, are calculated using independent estimatgs,gfroviding a

test of the accuracy of our theoretical framewasection 3.0.).

Evaporation coefficients calculated from eq. 6 sitewn in Table 4. The activity coefficients of Na
and K are well-characterised (O’Neill, 2005; Grand Wood, 2008; Borisov, 2009; Mathieu et al.,
2011) due to their importance in the vaporisatidncloondrules €.g., Tsuchiyama et al. 1981;
Shimaoka and Nakamura 1991; Georges et al. 20@Duaar basalts (De Maria et al., 1971; Gibson
and Hubbard, 1972; Gooding and Muenow, 1976; Dawd1979). From the Na vapour pressures

measured over natural basalts by DeMaria et alfi)land Gooding and Muenow (1976), activity
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coefficients~ 10° were calculated. Mathieu et al. (2008) also repto, . = 10° in the CMAS
system and 8.4x10- 2.2x10’ in the simpler CMS system (Mathieu et al., 20Thjs givesa, nao, .
between 0.3 — 1.7 for our experiments at 1400 “@ud&s ofyy,, .~ 5x10°to 7x10" were calculated

from De Maria et al. (1971), Gooding and Muenow7@Rin natural basalts and Hastie and Bonnell
(1985) for the KFCAS system, resultingap g, . from 0.3 to 3.4 at 1400 °C.

Reyes and Gaskell (1983) foupg,, = 0.25, 0.43, and 0.58 at 1400, 1500 and 1550€€phectively
in CAS melts by transpiration, yielding, ;,, = 2. Holzheid and Lodders (2001) determinggd,, .

= 10+1 at 1300°C for Fe-poor basaltic compositisgayrninga, c,o,. = 2.4+0.8. If the trends af*
are extrapolated with temperature to 1650°C, theryt,,, . = 3.5 determined by Wood and Wade
(2013) at this temperature givegc,o,. = 1.2. The two stable gases species evaporateigRivO(l)
allows a, ppo to be calculated from both reactions (Table 4)théligh the two points for Pb
evaporation do not permit extrapolation to higrenperaturesq, »,o, ranges between 0.3 and 1.7
when calculated fromp,, of Wood and Wade (2013), 0.22, at 1650°C for &p-Bich melt.

Therefore, evaporation coefficients are close tibyufwithin a factor of 2 - 3) for all elements for
which i) the experimentally determingd* is robust,ii) melt compositions and temperatures are
similar to literature data, and) the activity coefficient is well-determined (parttlarly Na, Cu and
Zn). Based on these observatiansis set to 1 ang;; is calculated fronkK*/K (eq. 6; Table 4, Fig.
8). The uncertainties on the reported activity Gioeits represent only the precision on the fitd a

do not include the uncertaintiesdp just discussed.

Aside from Li, alkali dissolution in silicate melfs strongly non-idealy{” << 1), meaning their
volatilities are much reduced from those of pukalaloxides. Furthermore, alkali metal oxide adjjvi
coefficients decrease in the order Li>>Na>K>Rb>((¢§)Charles, 1967; Borisov, 2009), a hierarchy

that is inversely proportional to their volatiligie

Zinc oxide activity coefficients, like other divalg first-row transition metals (O’Neill and Eggins
2002), are close to unity but show a weak positliependence on temperature. This behaviour is

mimicked byyge,,, albeit at lower absolute values. By contragl,, . is >1, (see also Holzheid et

al., 2001; Wood and Wade, 2013), and decreaseghertemperatures. In these three cagfs,

tends towards unity at high temperatures, a phenomdescribed by the van't Hoff equation:

dIn ]/ioo _ AH (16)

d(1/T) R’

whereAH refers to the partial molar enthalpy of solutidni an the silicate melt. For Cufg this is
calculated at 121+12 kJ/mol, -143+15 kJ/mol for Z@@mpared with -135 kJ/mol from Reyes and
Gaskell, 1983) and -147+25 kJ/mol for Gefver the temperature range 1573 to 1823 K.
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575
576 4.7.Gibbs Free Energy of vaporisation using thé taw method’

577  The modified equilibrium constants of vaporisatreactions K*) may be converted into Gibbs Free
578 Energies{G™):

579 The asterisk denotes that the Gibbs Free Energeaition includes) the non-ideality of trace
580 element dissolution in silicate melts amdany deviation of the evaporation coefficient fromity
581 and/or variation with temperature. Hene&*s calculated are relevant only to the investidateelt

582 composition at 1 bar pressure and temperaturesebatd573 and 1823 K.

583 Variation of AG* of a volatilisation reaction against the absoligmperatureT, in an Ellingham
584 diagram, results in a straight line (Fig. 9), inélegent of run time. This confirms that a reprodiggib

585 thermally-activated process is controlling elemklutss, namely, the equilibrium partial pressure.
586 At constant total pressure, the Gibbs-Helmoltz &qoas:
AG* = AH* —TAS™ (18)

587 Hence, the slope of the line is equivalent#S™ (entropy) and its intercegiH™ (enthalpy), which
588 are average values determined for the mid-poinpéeature over the temperature range. This & a 2
589 Ilaw treatment of the vaporisation data, requiriag tor more measurements of the equilibrium
590 constant, and is analogous to the integration efGlausius—Clapeyron equation generally used for
591 interpretation of vapour pressure data (Drowart @odtdfinger, 1967; Drowart et al., 2005; L'vov,
592  2007). It implicitly assumes that{* is much greater than the productAd®’ (molar heat capacity at
593 constant pressure) and temperature over the ihtefwaterest, such that slopes can be approximated

594  as linear within experimental uncertainty.

595 Values for the entropy and enthalpy of reactionnglwith those for the pure system, are listed in
596 Table 5. Typical relative standard deviationsA&* andAS™ range from 5 — 15 %, as compared with
597 1 -2 % for KEMS measurements for vaporisation oftitomponent systems (silicate melt, Markova
598 et al., 1986, Fraser and Rammensee, 1987; oli@nsta et al. 2017) or pure metal oxides (Kobertz
599 2019a, b). It is observed that* andAS™ are positively correlated (Fig. 10a), indicativieeathalpy-
600 entropy compensation, whengs tends to a common value at infinite temperatasee (Exner 1973;
601 Kemeny and Rosenberg 1973). The same is true ohtddynamic data in the pure M-O system,
602 though less marked (compare Fig. 10a and b). Thssgeffect of/;” is to smooth out variability in
603 AH™ vs.AS* compared witlAH® andAS°. Activity coefficients of divalent first-row traign metal
604 cations arexl in geologically-relevant silicate melts (Pretsriand Muan, 1992; Ohta and Suito,

605 1995; Holzheid et al., 1997; O’'Neill and Eggins02pand furthermore depend on melt composition
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in a similar manner (O’Neill and Eggins, 2002). kVihese caveats in mind, thaiH® andAS®° from

pure system thermodynamic data (Chase, 1998) sweshbwn in Table 5.

4.8. Comparison with previous work
Tsuchiyama et al. (1981) studied Na evaporatiomfohondrule-like melts at varying Ifig (-5 to -
10) between 1450 and 1600 °C (Fig. 11a). Their degavell-modelled by eq. (8), conforming toran
= 1 reaction with log*s that defineAG* = 444.4(+0.2) — 0.166(+0.008) (kJ/mol) for their
‘composition 1'. Na evaporation from ‘compositioh &ith SiO, (43.55 wt. %) and FelQ18.52 wt.
%) contents similar to the ferrobasalt, haskKibd@.5 log units higher (Id¢* = -3.30 at 1586 °C),
suggesting a compositional controlgg,,, . (cf. O'Neill 2005; Borisov 2009; Mathieu et al. 2011).

The experiments of Kreutzberger et al. (1986) waegformed on a DRiAn,s melt. The volatility
behaviour of Na, K and Rb is fit as a function iofi¢ (Fig. 11b) using an = 1 reaction. A uniform
sample radius of 0.0015 m and density of 2750 kgas assumed. The order of volatility observed
(Na < K < Rb) is in good agreement with this waoakd the fitted log*s for Na (-4.15) and Rb (-
3.04) overlap with our determination (-4.25+0.1@ aB.12+0.10, respectively, Table 3), while that of
K'is much higher (-3.26 compared to -3.95+0.06,|& &).

Norris and Wood (2017) performed vaporisation expents on a trace element-doped MORB melt,
stirred in an Ni crucible. The agreement in theeoraf volatility for elements common in both stuglie
is reasonable. At Id®, = -10 and 1300 °C, Norris and Wood (2017) showc@a < Zn < Pb: Cu <

Ag < Ge < Cd (Fig. 11c), compared with Cr < Ga <€idn~ Ge < Pb < Agz Cd in this work.
Given that not all variablese(q., stirring rate, eccentricity) were kept constantween their
experiments, element depletion factors in Norrigd &ood (2017) were normalised to a second

elementj, such that physical factors affecting element teswcel, leaving:

(5
Inl=%
X{’) K; Anj; M, (19)
=—(f0,) ¢ |—.
XA\ K (f02) ",
In F

]

t
Here,j = Zn, and hence depletion of an elemejﬁ;t) (by a single vaporisation reaction will be

An;_;
. .- j=i . — .
proportional to a constant multiplied §0,) + (eq. 19). Relative to the Zn vaporisation reaction

(n=2), Ang,_c, = 1 and best fits are found wiﬁéE = 10’ this compares with Z0from our work
Zn

(Table 3). For Pb, due to the reducing conditiamy &b(g) is considered, hense,_p, =0 and:%

Zn

~ 1.2, in reasonable agreement WEH# = 4 determined herein (Table 3). Similarly, o®a(g)
Zn

should be stable below < FMQ (Electronic AnnextBusAn,,_;, = -1. Satisfactory agreement is
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found whenﬁ% = 10°. ForAng,_¢. = 0 as determined in this work, no constant véilsehe gradual
Zn

t
decline in% with logfO, observed, suggesting thamn,, .. increases with decreasin@,.
Ge

Phenomenologically, this is consistent with inciegsproportions of G& in the melt <IW,

potentially explaining its more volatile behavienNorris and Wood (2017) than reported here.

5.0. Discussion

Our approach is to provide experimental constraintglement vaporisation from silicate melts under
a set of known and controlled experimental cond&ioather than to replicate any specific natural
process. As such, use of the results to quantifjorisation in natural samples is associated with
numerous caveats. We assume the synthetic ferdolimsa good approximation of natural melts,
however, activity coefficients can vary with compios (O’Neill and Eggins, 2002; Borisov, 2009;
section 4.6.) meaning our results are only indieator other basaltic melts. Moreover, the absefce
major volatiles (H, C, N, S and the halogens) im experiments prevents their complexation of
metal-bearing gas species, which could otherwisdifmelement volatility (Schaefer et al., 2012;
Fegley et al., 2016; Renggli et al., 2017). Newddsbs, even in volatile-laden volcanic gases, highe
temperatures and lower pressures favour simpleiespéaonatomic gases, oxides) with respect to
associated molecules..,Churakov et al., 2000). At low pressured (par), the major volatiles are
either sparingly soluble in silicate melts.d., Carroll and Webster 1995) and/or highly volatile,
leaving Q as the major volatile species. Such conditions beyelevant to degassed planetesimals,
with escape velocities too low to retain an atmeselof light elementsc{. Hin et al. 2017), as well
as volatile-poor chondrules (Fedkin and Grossmam320ulton et al., 2016), tektites (Chapman and
Scheiber, 1969; Koeberl, 1986) and other 1 atmaiterexperiments (Ertel et al., 1997). Experimental
and thermodynamic studies show that, in a vacuilivate vaporisation sets tH®, of the vapour
phase close to the FMQ buffer (De Maria et al., 11 9sscher and Fegley, 2013; Costa et al., 2017),
precisely the conditions covered by our experimams hereafter discuss our results in the context o

evaporation of planetary bodies.

5.1.Equilibrium evaporation and evaporation temperature

Experimentally-derived thermodynamic data (Table, Permit calculation of evaporation
temperatures. The partial pressure of an elemeantthe gas phase is related to its mole fraction

(X;“") and total pressuré;:

p; = X *Ppr. (20)
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Because the fraction ofin the gas£”*) and in the liquidf"? must sum to 1, an"? = x4 /x4

whereXéiq is the original mole fraction of elemeitit follows that:
li li
pi = (Xo7 — X;"*)Pr. (21)

Substituting eq. (21) into eq. (5), combining ithveq. (17) and solving for the temperatufg) (@t
which a fraction,f, of an elementi, has evaporated, gives, for congruent dissociaixagporation

reactions (eq. 4):

—AH}

vap .

n i
R(ZInfO, +InPp +1In—"—pme | — AS?
< <4 nfOx+intr n(l—fim)> ‘)

Tef, = (22)

For more complicated evaporation stoichiometﬂg@s is computed analytically. Although 50%

condensation temperatures are calculated by cdowerany fraction evaporated could be chosen.

Here, because the temperatures of the experimamge between 1573 K and 1823 K, it is favourable

to keep the eventual calculatégf within this range to minimise extrapolation andertfore

uncertainties. As such, 1% evaporation temperatiifes are calculated, at 16@s; -10 ("), -5

(T}~°) and in airT}%" (Table 6).

Relative to nebulaf>® (Lodders, 2003, Fig. 12a; Wood et al. 2019, Figb)1 the higher total
pressures (1 bar) and oxygen fugacities at wHigh'® are calculated offsets them to higher
temperatures (eq. 22; Fig. 12). These effects mlostgindingthe correlation betweeR” *° andTS°

for lithophile elements, (Cr), Mg, Li, Mn, (Ga), N, Rb and Zn, is excellentz(F 0.93 for Lodders,
2003; f = 0.90 for Wood et al. 2019). Siderophile andiabghile elements tend to have relatively
lower T, ~° than their lithophile counterparts at a giviel (Fig. 12). This likely reflects their early
condensation, under nebular conditions, into aralfes or sulfide phase. An exception is Pb, for
which Lodders (2003) calculated’?® as 727 K by assuming ideal condensation into Fealme
whereas Wood et al. (2019), considering its lovulsitity in Fe as Pband in FeS as PbS, calculated
495 K. As such, Pb sits below and above, respdgtitlee lithophile element trends in Fig. 12. This
highlights not only the need for solubility data toace elements in major nebula condensate phases
to better constraiffi>?, but also that element volatility is sensitivetite phases present (silicate melt

in our experiments; solid FeS, silicates and mattie solar nebula).

A volatility scale of elements evaporating fromearbbasaltic liquid at 1 bar (Table 6) as a funttio
of fO, is shown in Fig. 13. Lead h&% within liquidus temperatures of basaltic rocks1673 K),
even at oxidising conditions, suggesting Pb (andemvolatile elements such as Tl and Cd) might be
slightly volatile in subaerial eruptions (see alorman et al. 2004; Johnson and Canil 2011,

Vlastélic et al. 2013; Edmonds et al. 2018). Zind &e show similar volatility over alD, due to
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their equivalentn = 2 vaporisation reactions, where deviations inGén should signal metal
segregation, as Ge is more siderophile thaneZg.,Siebert et al. 2011; Wood et al. 2014). Alkali
metal volatilities increase monotonically down GQuoly with Na, K and Rb showing identical
vaporisation stoichiometries. Lithium is the leastlatile of the alkalis, except under oxidising
conditions, and becomes more refractory than efigkFMQ-2) or Co (<IW+1). Manganese also
becomes more volatile than Li aiW-6, a prediction verified by the observation digistly
decreasing Mn/Li with increasing volatile depletioncarbonaceous chondrites (Siebert et al., 2018)
and lower T calculated by Wood et al. (2019). Thus, Mn (andaRd Mg) vaporises sparingly in
oxidising, post-nebular settings. The depletionhafse elements by volatility is therefore a halknar
of nebular depletion wherf®, is sufficiently low to render them volatile (O’Nleand Palme, 2008).
Although Cr is relatively refractory at lofD,, it becomes more volatile withD,, such thaf;, =
1785 K in air is lower than all elements studiedept Pb. The same progression is observed for Mo
(and W), and hence ratios of the abundances ottBsup VI elements to volatile metals with
opposite behavioum(> 0) are able to constraf®, during evaporation (see also Fegley and Palme
1985).

5.2.0rigin of moderately volatile elements in the tetrial planets

Element depletion factors relevant to planet-botdprocesses after dispersal of the solar nebala ar

conveniently expressed by normalising to the mahophile element in rocky planets, Mg. These

xt .
X’('fg, were calculated as a function of temperature 31870 1973
M

t
depletion factors, defined é’%/
i g

K) andfO, (FMQ-4 to FMQ+4) at 1 bar, and plotted in Fig. 14.

t
Differences in molar mass play only a secondarg 'nmlcontrolling% (eq. 19) because equilibrium

partial pressures of stable gas species of modgnattatile elements vary by orders of magnitude
among one another. This is manifest in the pronedndiscrimination of MVE abundances in
evaporation residues at a givi&p, andT. That is, the most volatile MVE®.Q.,Pb and Ge), will be
guantitatively vaporised before evaporation of mafactory elements, including Fe and Mg, has
begun (Fig. 14). Evaporation therefore results near-binary distribution of elements in the residu
those that are preserved and those that are vagpmgth the transition between them defining a
sharp ‘cut-off’ temperature. While this cut-off tparature will vary with total pressure af@, (eq.
22), the general step-function form of the MVE eattin the residuum is insensitive to these
variables, or indeed to the accuracy of Kfevalues. The binary element distribution resulterfr
relative differences in partial pressures among MVEs, n@kira diagnostic feature of single-stage

evaporation.
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Urey (1952, 1954) first proposed that volatile edetn abundances could be used as
‘cosmothermometers’ to track accretion temperatafeplanetary materials, an approach rendered
guantitative by the calculation of condensationgeratures (Larimer, 1967). The fact that MVEs are
easily decoupled during evaporation was recognised ,employed as an argument by Anders (1964)
and further developed by Keays et al. (1971), ledudl. (1973), Larimer (1973) and Grossman and
Larimer (1974) to exclude vaporisation as a magrtigbutor to the gradual depletion of MVE with
volatility observed in chondrites as theréns one temperature at which they will all be conded

to the same fractional degree’As in chondrites, the abundances of lithophile B4Vin the BSE

decline smoothly as a function of volatility (Fity).

Volatile depletion in the Earth must reflect bdtlihe fraction of the element in the atmosphere.(Fig
14) and, unlike chondrited) its proclivity to escape. Atmospheric escape frigarth is, however,
ineffective in fractionating MVEs abundances. Thalfgrbased Jeans escape requires prohibitively
high temperatures (>10000 K) due to the Earth’'é leigcape velocity (11.2 km/s) and would produce
a correlation with M-, which is not observed (Sossi and Fegley, 2018}h Biydrodynamic escape
(Hunten et al., 1987; Genda and Abe, 2003; YoungleR019) and outflow of ionised particles
(Yamauchi and Wahlund, 2007) are nearly mass-inudg® processes, meaning MVE losses should

reflect their equilibrium partial pressures. Fig. 14).

Many MVE ratios in the Earth are chondritie.q., O’Neill and Palme, 2008; Mann et al., 2009;
Siebert et al., 2018) suggesting minimal post-rebpérturbation by evaporative processes. Unlike
elemental ratios, isotope ratios are readily messtibnated during Langmuir evaporation (Humayun
and Clayton, 1995; Yu et al., 2003; Wombacher et 2004; Richter et al., 2007). Hence, the
agreement in MVE stable isotope compositions beatwearth and carbonaceous chondritesy.(
Wombacher et al. 2008; Pringle et al., 2017; Sessal., 2018) also suggests terrestrial volatile
depletion occurred in a similar manner to thathordrites. Contrastingly, the higher abundancenof |
(T5° = 530 K) relative to CdT>° =~ 500 — 650 K) and ZrT£° = 700 K) in the BSE despite its higher
siderophilicity and volatility permits deviationcim canonical nebular conditions during volatileslos
(Wang et al., 2016; Norris and Wood, 2017), thoatiter explanations, including collisional erosion,
are feasible (Witt-Eickschen et al. 2009). Indethe@, condensation/vaporisation behaviour of these
highly volatile elementsTP® < 750 K), whose abundances flatten out Wi in carbonaceous
chondrites (Wolf et al., 1980; Humayun and Cas&090; Braukmdiller et al., 2018), is poorly
understood. Whether these elements also definenstarti-abundance plateau in the BSE requires
additional work to distinguish between the relatdffects of core formation and volatilitgf( Wang

et al., 2016; Ballhaus et al., 201For the MVESs, their gradual depletion with volayilin Earth’s
mantle, coupled with their chondritic elemental aisdtope ratios, appear at-odds with partial
evaporation and loss at a single temperaturef@apduch as may be expected during a giant impact
(Fig. 14).
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A potential mechanism that could satisfy both ipatand elemental constraints is the accretion of
the Earth from a distribution of partially vapouiskodies. In each body, the elements below a given
cut-off temperature are lost entirely while thobe\ it are not lost at all (hormalised abundarces

‘1" above and ‘0’ below), where the cut-off poirdnes stochastically from body to body. Integration

of material from many such bodies, each with its1dinary pattern, would sum to a smooth pattern
in which MVE depletion correlates with volatilitput whose MVE isotopic composition is dominated

by the contributions from material that has seegligible volatilisation.

By contrast, smaller bodies such as Vesta, thditédrand Angrite parent bodies and the Moon record
significant depletions, <1& CI, in highly volatile elements (Cd, Ag, Pb, G&) coupled with
modest losses<(0" to 10°xCl) of the moderately volatile elements, such as Kland Ga (Janssens
et al., 1987; O'Neill, 1991; Ruzicka et al., 20@H)d a lack of depletion in elements more refractory
than Li (see also Magna et al. 2006). Volatile elatrabundances in the Moon exemplify a highly
fractionated, binary pattern consistent with sirgilege evaporation, where Mg-normalised
abundances of Ge, Zn, and the alkalis are very(\o'alf and Anders, 1980), whereas Li and Mn are
undepleted relative to Earth’s mantle (Fig. 14)rtirermore, these bodies do exhibit fractionated
stable isotope signatures in elements such aegnRaniello et al. 2012), K (Wang and Jacobsen,
2016), Ga (Kato and Moynier, 2017) and Cl (Boycealet 2018); but not Li (Magna et al. 2006),
consistent with its retention during volatility-s¢éd processes. These lines of evidence are more
compatible with a partial evaporation origin, thenditions and mechanisms of which will require
quantitative assessment of temperatures, gas cdiopes accretion scenarios and vapour loss

processes.
Conclusion

In order to determine the behaviour of moderateliatle elements during evaporation of silicate
melts, experiments were conducted in 1-atm vertighé gas-mixing furnaces in which samples of
synthetic ferrobasalt in the FCMAS system, dopeith D00 ppm each of Li, Na, K, Cu, Rb, Ga, Ge,
Pb, Mn, Mo, Zn, V, Zr, Sc, Ti, La, Gd, Yb, Ag and Gvere suspended on noble metal wire loops and
heated to 1300 °C, 1400 °C, 1500 °C and 1550 °@dboween 15 and 930 minutes atflog between

air (-0.68) and -10. Element loss from the meltdetermined from LA-ICP-MS measurements of the
quenched glasses, varied strongly vitth. Alloying with the metal wire and incomplete diion of

the element to the surface were unimportant, lgavaporisation as the sole cause of the observed

depletion relative to the starting composition.

The degree of elemental loss depends on the stoietiiies of the vaporisation reaction(s), which
have the general form TWO(X+n),2(I) = M*Oy,(g) + n/40,. These reactions are solved for the
equilibrium partial pressure of the gas species iandrporated into the Hertz-Knudsen-Langmuir

equation, enabling element evaporation from a sptebe quantitatively modelled. Stoichiometries
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of the reaction(s)), and equilibrium constant(* are calculated from fits to the experimental data.
Most MVEs evaporate with > 0, where stoichiometries of 1 (Cu, Na, K, Rb) Agd 2 (Zn, Ge, Cd)
are common. The Group VI metals, Cr and Mo, shawitlrerse behavioun(< 0) by virtue of their
stable oxide-bearing gas species with oxidatiotesthigher than those in the silicate liquid. Hte
value is the product of the activity coefficiemt, the evaporation coefficient, and the equilibrium
constant of reactionK{, the first two of which are not knowa priori. Evaporation coefficients
calculated using literature values for activity ffiogents return values near unity, verifying the
accuracy of the approach and suggesting evaporetioear-ideal. Givem, of 1, y; of melt oxide
components vary by ~10shifting their volatilities compared with evaptioa from pure oxides. For
all volatile elements, Idg* increases with temperature, which, when convettedG*, allows a

straight line to be fit to the data, where the sl@pequal to AS* and the interceptH*.

These fundamental data are useful for understandipgur loss during chondrule melting, degassing
of anhydrous magmas, tektite formation and othetrt furnace experiments. Although lithophile
elements show good agreement with nebular condendamperatures at lofD,, chalcophile and
siderophile elements are generally more volatilenguevaporation of silicate melts relative to sola
nebular environments. Evaporation of a silicatetraeh single temperature af@, results in a near-
binary element distribution in the residuum, stigngdiscriminating the volatile elements from the
non-volatile. This type of fractionation among MVIEss observed in small telluric bodies (Moon,
Vesta) but not on Earth, where element depletiaan gsadual function of volatility. This observation
argues against volatile loss from Earth duringamgimpact, suggesting that it accreted from alead

volatile-depleted components.
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Figure captions

Fig. 1. Back-scattered electron images of four experim@hases at the same magnification (1p@0scale bar shown), a)
3M-29/02/16, 1400 °C, Id®, = -0.68, 60 minutes; b) 1M-1/3/16, 1400 °C,flog= -10.01, 60 minutes; c) 2M-16/07/16h,
1550 °C, lo¢O, = -6.01, 15 minutes; d) P-11/06/18b, 1550 °Cf@ag- -5.48, 15 minutes.

Fig. 2. Concentrations of volatile elements (K, Cr, Cu, &a, Ge, Rb, Mo, Ag, Cd, Pb; N = 38) in an experirakeglass

(pair 1) plotted relative to their concentrationsanother experimental glass run under the sameittams (pair 2) for four
experimental pairs. The different shades corresporide following experimental pairs (pair 1, p2)r black (P-09/06/18b,
P-09/06/18a), 1400 °C, 16@, = -9.23, 15 minutes; dark grey (P-08/02/17h, 3N22&5), 1400 °C, lofp, = -0.68, 60
minutes; light grey (P-09/06/18c, 1M-PS1), 1400 RgfO, = -5.50, 60 minutes; white (1M-2/3/16, C18/12/1R400 °C,

logfO, = -3.07, 60 minutes.

Fig. 3. Measurement of elemental zoning profiles in san3d1-29/02/16 (1400 °C, 60 mins, air). Panel a) shaweflected
light image of the glass and laser spot profilemd® b) displays the fraction of a volatile elemergmaining in the glass
(Ga, green; Zn, red; Cu, blue; Ge, purple; Rb, blle, orange) as a function of distance from rimito, rcorresponding to

the uppermost profile in panel a), with @& spots at 10Qm spacing.

Fig. 4. Vaporisation of a) Na, b) K, c) Rb, and d) Cu -naats with one oxidation state in the liquid ané species in the

gas, corresponding to vaporisation reactions with1 stoichiometry (eq. 4). The fraction of themaknt remaining in the

glass after a run duration of 60 minutes (Na an@di)5 minutes (Rb and Cu), relative to its initi@hcentration in the glass
t

(%) are plotted as a function of Ifi. Lines at the top denote the location of the FM@dry as a function of temperature.

Curves are non-linear least-squares fits (see en. B experimental data using eq. (8), showngaleith the lodg* values
to which they correspond. Colours of lines, curved symbols denote the temperature of the experinbdun = 1300 °C,
green = 1400 °C, yellow = 1500 °C, red = 1550 °C.

Fig. 5. Vaporisation of a) Zn and b) Ge — elements with oridation state in the liquid and one gas spec@sesponding

to vaporisation reactions with = 2 stoichiometry (eq. 4). The fraction of thenaémt remaining in the glass after a run
t

duration of 15 minutes, relative to its initial @@mtration in the glas(s}%) is plotted as a function of 18@,. Lines at the top

denote the location of the FMQ buffer. Colours anthanclature are as per Fig. 4.

Fig. 6. Vaporisation of a) Li, b) Ga and c) Pb — elememith one oxidation state in the liquid and mukigpecies in the

gas. The fraction of the element remaining in tlesg after an experimental run, relative to itidhiconcentration in the
glass(%) is plotted as a function of a) time for Li. Shoare experiments performed at a single temperat4d@) °C, at

two logfO,s, -0.68 (white circles) and -8.00 (black circleBpth series are fit by non-linear least squaresagusiq. 8
corresponding to the reactions Lig) + %20, = LiO(g) for a lod* of -3.39 (white circles) and Ligx(l) = Li(g) + %0,

t
with logk* of -5.36 (black circles). Parts b) and c) ;4)%(({;) against loé0, for Ga and Pb, respectively. Lines at the top

denote the location of the FMQ buffer. Symbols andhenclature as per Fig. 4. All experiments shovemewun for 15
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minutes. The two ldg*s for Ga correspond to the reactions @)= GaO(g) + ¥4@ (normal script) and GaQ(l) = Ga(qg)
+ %0; (italic); and for Pb, PbO(l) = PbO(g) (normal styiand PbO(l) = Pb(g) + “4italic).

Fig. 7. Vaporisation of the Group VI elements — a) Mo &)dCr — that have multiple species in the liquid a least one
species in the gas, whose net vaporisation reacti@ven < 0 stoichiometry (see eq. 4). The fraction of glement

AN
remaining in the glass after a run duration of iButes, relative to its initial concentration irett;lass(%) is plotted as a

function of lodO,. Lines at the top denote the location of the FMGfdy. Colours and nomenclature are as per Figo#. F
Mo, the lod* values shown correspond to the reaction: M& MoO5(g), and for Cr the ldg* values shown correspond
to the reaction: CrO(l) + ¥20= CrOx(Qg).

Fig. 8. Activity coefficients {) of melt oxide species (i) at infinite dilutiom) in a ferrobasaltic FCMAS liquid calculated
by eq. 6, as a function of temperature. Melt oxsdecies are: Cu3 = teal, LiQ s = yellow, AgQ s = grey, ZnO = blue,
PbO = light orange, CdO = red, Ge© purple, Na@s = sky blue, K@s = dark orange, Rb{3 = black. The two light
orange ‘PbO’ series denotg},, calculated by two reactions, PbO(l) = PbO(gyver series) and PbO(l) = Pb(g) + %0
(upper series). The two data points shown forglsi@enotey;, _ calculated at loig, -8.00 by the reaction Ligy(1) = Li(g)

+ %0, and at lo§O, = -0.68 by the reaction Ligx(l) + ¥4 O, = LiO(g).

Fig. 9. The Gibbs Free Energy\G*, in kJ/mol against temperature (K) for elememtperisation reactions from a
ferrobasaltic liquid in the FCMAS system at 1 baepRb, Rb@s(l) = Rb(g) + ¥4Q b) Cu, Cu@s(l) = Cu(g) + ¥4Q c) Zn,
ZnO(l) = Zn(g) + ¥2Q d) Ge, Gedl) = GeO(g) + ¥2Q. Greyscale denotd®, series run at constant temperature with
different times, White = 15 minutes, Black = 60 nigr) Grey = 120 minute. Best fits to all data poingsthe 2% aw

method yield the\G* as a function of temperature (shown in panel).

Fig. 10. Enthalpy AH)-Entropy (AS) correlations for vaporisation reactions that@rexperimentally-derived (see section
4.7. and Table 5) and b) in the pure system (sb&e™). Labels refer to the stable gas species.utoks per Fig. 8 with the
addition of Ga and GaO (fuchsia), Gr@reen) for the reaction CrO(l) + %G CrO,(g) and MoQ (magenta) for the
reaction MoQ)(l) + %20, = MoOs(g).

Fig. 11. Experimental data from the literature. a) FractidiNa remaining in chondrule-like glass as a funtof time at
different temperatures (Tsuchiyama et al., 1981cl€s refer to ‘composition 1'; blue = 1450 °C, gree 1500 °C, yellow

= 1550 °C, red = 1600 °C; the square symbols refaimposition 2’ at 1586 °C. Curves are fits with 8qassuming an =

1 evaporation stoichiometry, and numbers corresgoridgk* values. b) Data of Kreutzberger et al. (1986) shgwhe
fraction of Na (blue), K (orange) and Rb (blackneeéning in a DisAn,s glass composition at 1400 °C in air as a functibn o
time. Curves are fits with eq. 8 assumingnan 1 evaporation stoichiometry, and numbers comadpo lod* values. c)
Data of Norris and Wood (2017) showing the fract@nCu (teal), Zn (blue), Ga (crimson), Ge (purpg@d Pb (orange)
remaining in MORB glass after 60 minutes at 1300 ¥Ca &unction of logO,. The fits to the data are made relative to Zn,
with eq. (19).

Fig. 12. Nebular half condensation temperaturé8®) of a) Lodders (2003) and b) Wood et al. (2019npared to 1%
evaporation temperatures for metal oxides fromreolf@saltic silicate melt at 1 bar and i@ = -10, calculated from the
experiments, except for Mn, Mg, Fe, Co, Ni and Criciwtare taken from thermodynamic data in the pystesn (Table 5).
Chalcophile = orange, Siderophile = grey, Lithopkilgreen. Line of best fit (black) to lithophilesetents only.

Fig. 13.1% evaporation temperatures for metal oxides fedi@rrobasalt in the FCMAS system at 1 bar as atifumof log
fO,, calculated from thermodynamic data from the expents, except for Mn, Mg, Fe, Co, Ni and Cr (beldW+1), which
are taken from the pure system (Table 5). Dottddured lines (Li, Na, K, Mo, Cr) indicate that evagiion temperatures

are calculated assuming their activity coefficiesats constant with temperature (For Li, Na, K cltad at 1673 K, for Mo
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1300
1301
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1304
1305
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1309

and Cr fixed by literature values at 1673 K) anddeeuncertain outside of this temperature. In génesaition should be
exercised in use of evaporation temperatures Galiloutside of the experimental range (grey fidiBshed grey lines
show thefO, defined by mineral oxygen buffers (IW = lron-WiistiFMQ = Fayalite-Magnetite-Quartz, MH = Magnetite

Hematite).

Fig. 14. Elemental depletion factors normalised to Mg iresidual ferrobasalt melt after Langmuir evaporatrl bar
calculated with eq. 19. Elements are plotted ineomf their volatilities from the ferrobasalt congitidon. a) At constant
relativefO, (FMQ buffer) and variable temperature (listed nextines in K) and b) At constant temperature sadable
relative fO, (AFMQ listed next to lines). Also plotted are theirested elemental abundances of lithophile and weakl
siderophile elements in the Earth’s primitive mantiPalme and O’Neill, 2014; green circles) and Mhaon’s primitive
mantle (O'Neill, 1991, Ni et al. 2019; grey circles
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Table 1. Major (in wt. %) and trace element (in
ppm) composition of the starting mixture. The
‘calculated’ column refers to that expected from
added weights. The ‘measured’ column refers to
EPMA analyses of glasses unaffected by Fe-loss
or crystallisation post-experiment (major
elements) and solution ICP-MS analyses of the
de-carbonated powder pre-experiment (trace

elements).

Calculated Measured St. Dev.
wt. % N=8
SiO, 40.76 40.60 0.21
Al,Os 10.52 10.67 0.22
MgO 15.78 15.40 0.23
FeO 16.25 16.26 0.12
CaO 16.69 16.82 0.12
ppm N=2
Li 1008.7 1020.0 17.8
Na 993.4 3252.3 281.3
K 1039.4 944.0 128.0
Sc 970.8 850.8 28.9
Ti 1008.0 1045.0 46.6
\Y 1019.7 1024.6 324
Cr - 36.8 0.5
Mn 992.4 690.2 3.8
Cu 1009.5 1034.5 49.8
Zn 1015.5 1043.8 51.1
Ga 1019.3 1036.7 23.3
Ge 994.5 1007.7 44.6
Rb 1052.8 1036.1 62.4
Zr 991.9 1118.1 34.8
Mo 1029.0 1044.1 56.6
Ag 994.3 998.2 33.0
Cd 1037.0 991.1 33.2
La 1038.9 969.8 21.2
Gd 1063.3 1060.6 25.2
Yb 1036.2 1111.0 26.4

Pb 1002.7 1078.7 15.5




Table 2. Run conditions and LA-ICP-MS trace element dataafbexperiments. ‘Y’ denotes expeirments analylse®5 um zoning profiles (‘Profile’) and trace element tenmts in the wire loop (‘Metal’). Experiments matk®' denote repeat experiments.

Run# T t co CcOo, logfO, Loop Profile  Metal Li Na K Sc Ti \ Cr Mn Ni Cu Zn Ga Ge Rb Zr Mo Ag Cd La Gd Yb Pb
(°C) (min)  (sccm) (sccm)

2M-15-07-16¢ 1300 15 - - -0.68 Pt Y 1429.4 6501.21245.0 1085.4 13124 10989 55  759.6 - 1024.7 4104 1093.8 10345 961.7 1088.1 999.9 3584 448.013.81 1276.0 1273.7 896.2
2M-15-07-16d 1300 15 - 200 -3.44 Pt 1446.9 10876 1570.7 1040.7 1196.3 11418 10.7 7470 514 2071.996.1 1020.1 1003.8 1003.2 11847 957.2 1949 3 84.973.9 11259 11248 4787
2M-15-07-16g 1300 15 1.8 200 -5.63 Pt 14452 8535 1868.9 1100.5 12854 1270.7 20.1 775.6 - 7748455 10729  795.2 960.3  1193.6 1108.0 5.3 0.2 53805 1192.3 1207.0 150.3
2M-15-07-16h 1300 15 24 175 -7.99 Pt 1477.8 2140 17989 1138.9 14256 14122 327 8059 403 .6435 29.1 1095.9 48.1 963.3 12629 1006.2 0.4 0.0 412 1293.8 1296.7 51

2M-15-07-16f 1300 15 156 100 -10.10 Pt Y Y

P11-06-18a* 1300 60 - 200 -3.44 Pt 11211 3222.8162.0 1023.2 1120.8 12117 7.8 709.6 7.0 888.3 1.298 1005.2 876.4 792.8 12288  967.6 0.2 0.1 10611340.4 1073.8 275.0
1M-15-07-16a* 1300 60 - 200 -3.44 Pt 1272.2 6812 1358.7 1064.7 12359 1113.7 81 7345 8.5 885.1954.5 1069.0 866.4 7825 11909 9723 4.1 0.2 00091164.9 1175.6 244.7
1M-15-07-16b 1300 60 1.9 200 -5.67 Pt 1406.2 185B 20755 1203.7 13857 1403.4 222 800.5 112.701.14 264.8 1046.1  248.6 589.7 13741 975.0 0.3 0.21184.5 1358.1 1366.1 15
1M-PS6 1300 60 25 180 -8.00 Pt 1201.3  16757.9 5330 1184.2 1368.3 1343.1 344 7829 581 95.6 10.6.083.9 21.3 198.7  1252.8 1092.8 0.5 0.1 1087.5 1217 1149.3 0.3

3M-18-07-16b 1300 120 - - -0.68 Pt 1384.2 7547.01011.0 1053.5 12243 10157 2.8 5934 246 1019H87.6 9934 10040 577.0 11934  263.7 0.4 0.0 40191175.1  1197.6 7.2

2M-18-07-16a 1300 120 - 200 -3.44 Pt 1314.2 8P11 1495.8 10929 1255.8 12945 4.7 7565 46.2 728.512.2 1068.0 640.8 9839 12195 7655 0.2 0.2 $0681211.1 12187 154
2M-18-07-16¢ 1300 120 12 188 -7.33 Pt Y 14059 5%6 1500.9 1149.6 14175 12834 327 7216 426 2219 20 1186.1 4.3 899.1 13415 9803 0.1 0.2 11321284.3 1284.6 0.0

1M-PS3 1400 15 - 180 -3.07 Pt 1046.6  13784.1 7168 1209.1 1276.6 1181.1 30.7 8284 118 837.0 1908.1055.6  782.0 977.3  1193.7 9233 3.6 0.1 1028.8 9810 1101.8 52.7
1M-PS2 1400 15 5 180 -5.49 Pt 1054.4  10421.8 4B0 12299 1258.3 1188.1 344 760.4 5.3 623.3 353.6032.1 2722 961.7 11982  962.1 0.7 0.1 1024.4 1110 1091.8 10.7
1M-PS4 1400 15 66 133 -8.00 Pt Y 1084.6  14426.056217 1240.4 1350.8 1218.0 352 8339 105 1421 4 1. 8957 0.8 749.0 12428 1000.4 0.2 0.1 1067.2 .1701167.3 0.1

P09/06/18b* 1400 15 130 65 -9.23 Pt 1199.2 13. 7324  1006.1 1156.0 1179.1 387 8021 13.0 405 4 0 4399 1.2 521.5 1092.2 1031.1 0.1 0.1 1003.8 .5930 947.3 0.0

P09/06/18a* 1400 15 130 65 -9.23 Re 1161.9 1901. 684.2 1087.0 1180.8 1129.2 36.7 722.0 0.8 11.2 3 0. 409.4 0.1 5785 11265 989.7 0.1 0.0 1026.6  978.1006.7 0.0

1M-PS5 1400 15 167 33 -10.01 Pt Y 1110.8 8419.116810 1177.3 1290.5 12235 374 851.2 6.9 15.6 0.3283.2 0.4 436.3  1209.0 957.2 0.2 0.1 1020.5 10961090.7 0.0

P08-02-17b* 1400 60 - - -0.68 Pt 1034.8 3076.2 129  1112.2 11882 1190.2 9.1  692.7 9.1 840.3  10391031.2  729.2 677.1  1076.3  467.2 0.1 0.1 1033.8 01.20 992.6 0.0

3M-29/2/16* 1400 60 - - -0.68 Pt Y 1028.3 5703.4921.1  1100.3 1084.4 1025.8 113 7214 5.5 816.6 .79531028.4  800.6 708.0 1119.2 4419 0.1 0.1 915.9 2.299 984.1 0.3

1M-2/3/16* 1400 60 - 200 -3.07 Pt 1129.1  10167.2895.7  1279.7 1273.1 11486 281 863.9 135 695.148.03 878.0 214.0 358.6 1232.1  792.1 0.4 2.4 1074171545 1178.0 3.4

C18/12/15* 1400 60 0 27 -3.07 Ir 1038.8 3167.7 11.9  1230.0 1346.1 11323 29.0 8525 8.5 833.8  4183.971.2 115.8 426.7 1090.0 820.8 0.1 0.2 1044.3 1812 1110.6 0.4

1M-PS1* 1400 60 5 180 -5.50 Pt Y 1069.5 9048.0 6318 1008.1 11353 11948 356 784.8 55 300.5 6.5930.5 1.6 57.7 1085.8  951.0 0.1 0.1 1037.6  1129.61135 0.1

P09/06/18c* 1400 60 55 195 -5.51 Re 1033.0 IB45 547.1 10495 11357 11558 36.1 7493 9.4 327.70.4 876.6 0.2 32.2 1011.0  983.2 0.1 0.1 1049.7 (M51. 967.6 0.0

C17/12/15a 1400 60 13 27 -7.97 Re 1048.1 1068.840.2 12945 14189 11408 356 8204 137 13.9 0.3677.3 0.5 0.3 1499.7  980.2 0.1 0.1 10839 1199.7 93B1L 0.0

1M-1/3/16 1400 60 167 33 -10.01 Re Y 1149.9 3924. 5.2 1363.5 1396.8 14499 385 8458 357 6.5 0.8122.6 4.9 0.1 1132.6 9475 0.1 0.1 1203.8 1276.6 768 0.0

3M-1/3/16 1400 120 - - -0.68 Pt 858.8 20028.4 021 1102.7 13232 12585 3.6 7793 76.6 772.6  5774.1041.6 5775 368.7 1187.9 9.4 0.1 0.0 1117.6  .02191247.2 0.2
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Table 3. The log* values and SD uncertainty and stoichiometriegattion ) found by non-linear least-squares fit to the eixpental data.

Element Reaction n to (min) logK*
1573.15 K 1673.15 K 1773.15 K 1823.15 K
Li LiOox(l) = Li(g) + %0 1 0 -5.36+0.05
N 2
Li LiOg.(l) + %40, = LiO(Q) -1 0 -3.3910.07
N 2
Na NaQy (1) = Na(g) + ¥4Q 1 0 -4.25+0.10
N 2
K KOo(l) =K(g) + ¥2Q 1 0 -3.95+0.06
N 2
Rb RbGy () = Rb(g) + ¥4Q 1 14.4 -4.15 -3.12+0.10 -2.63+0.02 -2.26
N 1 3 2 1
Cu CuQy(l) = Cu(g) + ¥2Q 1 0 -4.09+0.12 -3.70£0.10 -3.13+0.06 -2.90
N 3 3 2 1
Ag AgOy () = Ag(g) + v4Q 1 0 -2.23
N 1
Zn ZnO(l) = Zn(g) + ¥2Q 2 9.0 -5.06+0.09 -3.96+0.09 -2.9240.17 -2.57
N 3 4 2 1
Ge GeOy(l) = GeO(g) + ¥2Q 2 104 -5.04+0.13 -3.70+0.06 -2.71+0.13 -2.29
N 3 4 2 1
Cd CdO(l) = Cd(g) + »2Q 2 0 -2.48
N 1
Ga GaOQ () = Ga(g) + ¥%Q 3 0 -9.92+0.32 -8.42+0.07 -7.76
N 3 2 1
Ga GaQ () = GaO(g) + %@ 1 0 -5.10£0.26 -4.45+0.04 -4.16
N 3 2 1
Pb PbO(l) = PbO(g) 0 0 -2.90+0.12 -2.00
N 2 1
Pb PbO(l) = Pb(g) + ¥%2© 2 0 -4.47+0.19 -3.49
N 2 1
Mo MoO(l) = MoO3(g) 0 0 -4.67 -4.34+0.00 -3.64+0.01 -3.41
N 1 2 2 1
Mo MoOy(l) + 20, = MoOx(Q) -2 0 -2.87 -2.86+0.00 -2.48+0.01 -2.39
N 1 2 2 1
Cr CrO(l) + %2GQ = CrOx(g) -2 0 -2.70 -2.40+0.03 -2.29
N 1 2 1
Cr CrO(l) + %40, = CrOx(g) -1 0 -4.96 -4.41+0.03 -4.20
N 1 2 1




Table 4. Evaporation- ¢) and activity coefficientsy() of melt oxide species. Evaporation coefficiergkglated with eq. 6
using activity coefficients shown in the referen@givity coefficients calculated witlh = 1 from eq. 6.

Species

Zn0O

RbQOy 5
Ge(G
CuQys

KOos

NaG s

PbO”

Pbd

LiOg s, (air)
LiOos (-8)
AgOo 5
CdO

vi (this work)
vi (literature)
Ole

vi (this work)
vi (this work)
vi (this work)
vi (literature)
Ole

vi (this work)
vi (literature)
Oe

vi (this work)
vi (literature)
Ole

vi (this work)
vi (literature)
Oe

vi (this work)
vi (literature)
Ole

vi (this work)
vi (this work)
vi (this work)
vi (this work)

Temperature (K)
1573.15 1673.15 1773.15 1823.15 1923.15
0.24+0.02 0.51+0.13 0.97+0.38 1.01
0.2% 0.43 0.58
2.0 2.2 1.7
1.3x10+1.5x10°  7.4x10°+5.9x10° 9.0x10°
0.04+0.01 0.11+0.01 0.18+0.07 0.19
24.046.3 11.8+1.7 8.5+0.1 6.4 4.2*
10+1 3.5
2.4+0.8 1.2
2.2x10+5.5x10°
5x10- 7x10* ¢
0.3-34
1.0x18+2.2x10*
8.4x10- 2.2x10>¢
03-1.7
0.06+0.02 0.17
0.27
0.3* 0.8*
0.21+0.09 0.38
0.27
1.0% 1.7%
1.840.2
15.4+3.1
0.67
0.15

a = Reyes and Gaskell, 1983; b = Holzheid et @120 = Wood and Wade, 2013; d = Hastie et al. 1882 Mathieu et al.

2011

A = calculated from the reaction PbO(l) = PbO(g)

# = calculated from the reaction PbO(l) = Pb(g) @,%2

* extrapolated to 1923.15 K




Table 5. Equilibrium thermodynamic data (entropy and ent)dpy reactions investigated herein (experimeritaBddition to those in the metal-oxygen systenrépmystem).

Experimental Pure System
Element Reaction n # points  AS* (kJ/molK) + AH* (kJ) * AS’ (kJ/molK)  AH°(kJ)  Source
Experimental
Li* LiOos(l) = Li(g) + 1/4G 1 1 0.133 413.0 0.139 413.0 1
Li* LiOo() = Li(g) + 1/40, -1 1 0.130 326.3 0.107 326.3 1
Na* NaQy(l) = Na(g) + 1/4Q 1 1 0.071 255.0 0.128 255.0 2
K* KOosl) = K(g) + 1/4Q 1 1 0.050 209.5 0.120 209.5 2
Cr* CrO(l) + 1/2G = CrOy(g) -2 4 0.046 0.016 163.1 28.6 0.080 2376 1,6
Cr* CrOyu5(l) + 1/4 G = CrOx(g) -1 4 0.085 0.017 301.2 29.1 0.128 4143 1
Cu CuQygl) = Cu(g) + 1/2Q 1 9 0.089 0.009 264.0 15.7 0.135 3777 1,4
Zn ZnO(l) =Zn(g) + 1/2 Q 2 10 0.253 0.011 548.6 19.6 0.177 411.7 3
Ga GaQ ) = Ga(g) + 3/4Q 3 6 0.334 0.026 885.9 45.7 0.245 7604 3
Ga GaQ () = GaO(g) + 1/4Q 1 6 0.117 0.015 358.9 24.6 0.199 633.7 3
Ge GeOy(l) = GeO(g) +1/2Q 2 10 0.294 0.014 612.7 23.9 0.219 453.8 3
Rb RbGy (1) = Rb(g) + 1/4Q 1 6 0.123 0.024 306.4 41.6 0.255 4024 2
M o* MoOx(l) = MoOx(g) 0 6 0.118 0.016 3324 16.4 0.120 3163 1
M o* MoOy(l) + 1/20, = MoO,(g) -2 6 0.033 0.004 143.2 7.8 0.075 151.2 1
Pb PbO(l) = PbO(g) 0 3 0.232 0.043 452.1 70.6 0.119  238.0 3
Pb PbO(l) = Pb(g) + 1/2© 2 3 0.227 0.070 490.9 112.1 0.159 364.7 3
Pure System’
Mg MgO(l) = Mg(g) + 1/2Q 2 0.186 666.4 1
Ni NiO(l) = Ni(g) + 1/2Q 2 0.200 597.5 15
Fe FeO(l) = Fe(g) + 1/2Q 2 0.183 644.4 1
Mn MnO(l) = Mn(g) + 1/2Q 2 0.173 606.3 14
Co CoO(l) = Co(g) + 1/2Q 2 0.192 600.0 14
Cr cro(l) = Cr(g) + 1/2Q 2 0.197 712.6 16

1 Chase 1998 ; 2 Lamoreaux and Hildenbrand, 13384amoreaux et al., 1987; 4 O'Neill and Powncel893; 5 Robie and Hemingway, 1995; 6 Toker et 8911

* denotes elements for which li§y was measured at only 1 temperatw8* andAH* determined by assumingremains constant over all temperatures.

# pure system elements were calculated assuming at all temperatures.
° enthalpies and entropies of formation for puraesyscalculated fromG® = AH®-TAS’ from T = 1000 to 2000 K



Table 6. 1% Evaporation temperatures from silicate melt barl

logfO,
Element
Pb
Ge
Zn

Rb
Cu

K

Ga
Na

Li

Cr
Mo
Mg

Ni

Fe
Mn
Co

-10 -5 -0.68

T (K) * T (K) + T (K) +

1360 50 1563 9 1669 6

1432 9 1612 3 1809 4

1418 10 1618 5 1843 2

1465 28 1668 5 1863 16

1507 9 1746 3 2023 22

1548 1867 2290

1703 1 1959 17 2239 47

1623 1914 2267

1886 2092 1976

2155 2096 52 1785 4
2138 41 1816 3

2080 2445 2883

1787 2086 2439

2033 2394 2830

1974 2339 2783

1842 2159 2538






