A. Woolley and B. A. Kjarsgaard, Paragenetic types of carbonatites as indicated by the diversity and relative abundances of associated silicate rocks: Evidence from a global database, Can. Mineral, vol.46, pp.741-752, 2008.

K. Bell and G. R. Tilton, Probing the mantle: The story from carbonatites, Eos, Trans. Am. Geophys. Union, vol.83, pp.273-277, 2002.

M. J. Walter, G. P. Bulanova, L. S. Armstrong, S. Keshav, J. D. Blundy et al., Primary carbonatite melt from deeply subducted oceanic crust, Nature, vol.454, pp.622-625, 2008.

D. S. Barker, Consequences of recycled carbon in carbonatites, Can. Mineral, vol.34, pp.373-387, 1996.

R. Doucelance, N. Bellot, M. Boyet, T. Hammouda, and C. Bosq, What coupled cerium and neodymium isotopes tell us about the deep source of oceanic carbonatites, Earth Planet. Sci. Lett, vol.407, pp.175-186, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01134266

K. Hoernle, G. Tilton, M. J. Le-bas, S. Duggen, and D. Garbe-schönberg, Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate, Contrib. to Mineral. Petrol, vol.142, pp.520-542, 2002.

J. B. Dawson, A supposed sövite from Oldoinyo Lengai, Tanzania: Result of extreme alteration of alkali carbonatite lava, Mineral. Mag, vol.57, pp.93-101, 1993.

J. Keller and A. N. Zaitsev, Calciocarbonatite dykes at Oldoinyo Lengai, Tanzania: The fate of natrocarbonatite, Can. Mineral, vol.44, pp.857-876, 2006.

A. N. Zaitsev and J. Keller, Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos, vol.91, pp.191-207, 2006.

M. Orazio, F. Innocenti, S. Tonarini, and C. Doglioni, Carbonatites in a subduction system: The Pleistocene alvikites from Mt. Vulture (southern Italy), vol.98, pp.313-334, 2007.

T. P. Fischer, P. Burnard, B. Marty, D. R. Hilton, E. Füri et al., Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites, Nature, vol.459, pp.77-80, 2009.

J. Mata, M. Moreira, R. Doucelance, M. Ader, and M. L. Silva, Noble gas and carbon isotopic signatures of Cape Verde oceanic carbonatites: Implications for carbon provenance, Earth Planet. Sci. Lett, vol.291, pp.70-83, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00530989

C. Mourão, M. Moreira, J. Mata, A. Raquin, and J. Madeira, Primary and secondary processes constraining the nobel gas isotopic signatures of carbonatites and silicate rocks from Brava Island: Evidence for a lower mantle origin of the Cape Verde plume, Contrib. Mineral. Petrol, vol.163, pp.995-1009, 2012.

R. Halama, W. F. Mcdonough, R. L. Rudnick, and K. Bell, Tracking the lithium isotopic evolution of the mantle using carbonatites, Earth. Plnaet. Sci. Lett, vol.265, pp.726-742, 2008.

J. M. Day, D. G. Pearson, C. G. Macpherson, D. Lowry, and J. Carracedo, Pyroxenite-rich mantle formed by recycled oceanic lithosphere: Oxygen-osmium isotope evidence from Canary Island lavas, Geology, vol.37, pp.555-558, 2009.

S. R. Hulett, A. Simonetti, E. T. Rasbury, and N. G. Hemming, Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes, Nat. Geosci, vol.9, pp.904-908, 2016.

A. Deyhle and A. J. Kopf, The use and usefulness of boron isotopes in natural silicate-water systems, Phys. Chem. Earth, vol.30, pp.1038-1046, 2005.

A. M. Mccaig, S. S. Titarenko, I. P. Savov, R. A. Cliff, D. Banks et al., No significant boron in the hydrated mantle of most subducting slabs, Nat. Commun, vol.9, p.4602, 2018.

E. M. Smith, S. B. Shirey, S. H. Richardson, F. Nestola, E. S. Bullock et al., Blue boron-bearing diamonds from Earth's lower mantle, Nature, vol.560, pp.84-87, 2018.

A. R. Woolley and A. A. Church, Extrusive carbonatites: A brief review, Lithos, vol.85, pp.1-14, 2005.

D. G. Pearson, D. Canil, and S. B. Shirey, Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds, Treatise on Geochemistry (The Mantle and Core, A. M. Davis, vol.3, pp.169-253, 2014.

M. S. Fantle and E. T. Tipper, Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy, Earth-Sci. Rev, vol.129, pp.148-177, 2014.

J. Kang, D. A. Ionov, F. Liu, C. Zhang, A. V. Golovin et al., Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the bulk silicate earth, Earth Planet. Sci. Lett, vol.474, pp.128-137, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01686768

S. Huang, J. Farka?, and S. B. Jacobsen, Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites, Earth Planet. Sci. Lett, vol.292, pp.337-344, 2010.

S. Huang, J. Farka?, and S. B. Jacobsen, Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle, Geochim. Cosmochim. Acta, vol.75, pp.4987-4997, 2011.

F. Liu, X. Li, G. Wang, Y. Liu, H. Zhu et al., Marine carbonate component in the mantle beneath the southeastern Tibetan Plateau: Evidence from magnesium and calcium isotopes, J. Geophy. Res. Solid Earth, vol.122, pp.9729-9744, 2017.

A. Banerjee, R. Chakrabarti, and N. , Sr and stable Ca isotopic study of carbonatites and associated silicate rocks from the ~65Ma old Ambadongar carbonatite complex and the Phenai Mata igneous complex, Gujarat, India: Implications for crustal contamination, carbonate recycling, hydrothermal alteration and sourcemantle mineralogy, Lithos, vol.326, pp.572-585, 2019.

J. I. Simon and D. J. Depaolo, Stable calcium isotopic composition of meteorites and rocky planets, Earth Planet. Sci. Lett, vol.289, pp.457-466, 2010.

F. Pineau, M. Javoy, and M. C. Allegre, Systematic study of isotopes of oxygen, carbon and strontium in carbonatites, Geochim. Cosmochim. Acta, vol.37, pp.2363-2377, 1973.

J. Kang, H. Zhu, Y. Liu, F. Liu, F. Wu et al., Calcium isotopic composition of mantle xenoliths and minerals from Eastern China, Geochim. Cosmochim. Acta, vol.174, pp.335-344, 2016.

E. Amsellem, F. Moynier, E. A. Pringle, A. Bouvier, H. Chen et al., Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes, Earth Planet. Sci. Lett, vol.469, pp.75-83, 2017.

Y. Wang, Y. He, H. Wu, C. Zhu, S. Huang et al., Calcium isotope fractionation during crustal melting and magma differentiation: Granitoid and mineral-pair perspectives, Geochim. Cosmochim. Acta, vol.259, pp.37-52, 2019.

C. Chen, W. Dai, Z. Wang, Y. Liu, M. Li et al., Calcium isotope fractionation during magmatic processes in the upper mantle, Geochim. Cosmochim. Acta, vol.249, pp.121-137, 2019.

H. Zhang, Y. Wang, Y. He, F. Teng, S. B. Jacobsen et al., No measurable calcium isotopic fractionation during crystallization of Kilauea Iki Lava Lake, Geochem. Geophy. Geosys, vol.19, pp.3128-3139, 2018.

A. V. Lapin, Carbonatite Differentiation Processes, vol.24, pp.1079-1089, 1982.

C. Feng, T. Qin, S. Huang, Z. Wu, and F. Huang, First-principles investigations of equilibrium calcium isotope fractionation between clinopyroxene and Ca-doped orthopyroxene, Geochim. Cosmochim. Acta, vol.143, pp.132-142, 2014.

J. R. Smyth and D. L. Bish, Crystal Structures and Cation Sites of the Rock-Forming Minerals, p.332, 1988.

F. Moynier and T. Fujii, Calcium isotope fractionation between aqueous compounds relevant to low-temperature geochemistry, biology and medicine. Sci. Rep, vol.7, p.44255, 2017.
URL : https://hal.archives-ouvertes.fr/insu-02611247

J. Madeira, J. Mata, C. Mourão, A. B. Da-silvera, S. Martins et al., Volcano-stratigraphic and structural evolution of Brava Island (Cape Verde) based on 40 Ar/ 39 Ar, U-Th and field constraints, J. Volcanol. Geotherm. Res, vol.196, pp.219-235, 2010.

C. Mourão, J. Mata, R. Doucelance, J. Madeira, M. Millet et al., Geochemical temporal evolution of Brava Island magmatism: Constraints on the variability of Cape Verde mantle sources and on carbonatite-silicate magma link, Chem. Geol, vol.334, pp.44-61, 2012.

M. J. Le-bas, Carbonatite magmas. Mineral. Mag, vol.44, pp.133-140, 1981.

N. K. Basu and A. Mayila, Petrographic and chemical characteristics of the Panda Hill carbonatite complex, Tanzania. J. Afri. Earth Sci, vol.5, pp.589-598, 1986.

A. R. Thomson, M. J. Walter, S. C. Kohn, and R. A. Brooker, Slab melting as a barrier to deep carbon subduction, Nature, vol.529, pp.77-79, 2016.

V. Stagno, D. O. Ojwang, C. A. Mccammon, and D. J. Frost, The oxidation state of the mantle and the extraction of carbon from Earth's interior, Nature, vol.493, pp.84-88, 2013.

X. Zhao, Z. Zhang, S. Huang, Y. Liu, X. Li et al., Coupled extremely light Ca and Fe isotopes in peridotites, Geochim. Cosmochim. Acta, vol.208, pp.368-380, 2017.

D. A. Ionov, Y. Q. , J. Kang, A. V. Golovin, O. B. Oleinikov et al., Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle, Geochim. Cosmochim. Acta, vol.248, pp.1-13, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02072845

J. C. Alt, E. M. Schwarzenbach, G. L. Früh-green, W. C. Shanks, I. et al., The role of serpentinites in cycling of carbon and sulfur: Seafloor serpentinization and subduction metamorphism, Lithos, vol.178, pp.40-54, 2013.

J. C. Alt, C. J. Garrido, W. C. Shanks, I. , A. Turchyn et al., Recycling of water, carbon and sulfur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain. Earth Planet. Sci. Lett, pp.50-60, 2012.

T. Hammouda and S. Keshav, Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites, Chem. Geol, vol.418, pp.171-188, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01277770

T. John, N. Gussone, Y. Y. Podladchikov, G. E. Bebout, R. Dohmen et al., Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs, Nat. Geosci, vol.5, pp.489-492, 2012.

C. Chen, Y. Liu, L. Feng, S. F. Foley, L. Zhou et al., Calcium isotope evidence for subduction-enriched lithospheric mantle under the northern North China Craton, Geochim. Cosmochim. Acta, vol.238, pp.55-67, 2018.

G. Shields and J. Veizer, Precambrian marine carbonate isotope database: Version 1.1, Geochem. Geophys. Geosyst, vol.3, pp.1-12, 2002.

J. Farka?, D. Buhl, J. Blenkinsop, and J. Veizer, Evolution of the oceanic calcium cycle during the late Mesozoic: Evidence from ? 44/40 Ca of marine skeletal carbonates, Earth Planet. Sci. Lett, vol.253, pp.96-111, 2007.

M. S. Fantle and D. J. Depaolo, Variations in the marine Ca cycle over the past 20 million years, Earth Planet. Sci. Lett, vol.237, pp.102-117, 2005.

M. E. Wallace and D. H. Green, An experimental determination of primary carbonatite magma composition, Nature, vol.335, pp.343-346, 1988.

G. M. Yaxley and G. P. Brey, Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites, Contrib. to Mineral. Petrol, vol.146, pp.606-619, 2004.

S. F. Foley and T. P. Fischer, An essential role for continental rifts and lithosphere in the deep carbon cycle, Nat. Geosci, vol.10, pp.897-902, 2017.

S. Tappe, R. L. Romer, A. Stracke, A. Steenfelt, K. A. Smart et al., Sources and mobility of carbonate melts beneath cratons with implications for deep carbon cycling, metasomatims and rift initiation, Earth Planet. Sci. Lett, vol.466, pp.152-167, 2017.

C. Mourão, J. Mata, R. Doucelance, J. Maderia, A. B. Da-silvera et al., Quaternary extrusive calciocarbonatite volcanism on Brava Island (Cape Verde): A nephelinite-carbonatite immiscibility product, J. African Earth Sci, vol.56, pp.59-74, 2010.

A. Dongre and S. Tappe, New insights to mineralogical-genetic classifications and magma CO2 degassing, Lithos, vol.338, pp.155-173, 2019.

E. Amsellem, F. Moynier, H. Bertrand, A. Bouyon, J. Mata et al., , p.3269

, Sci Adv REFERENCES

, This article cites 58 articles, 4 of which you can access for free