, program/ERC grant agreement #637503 (Pristine), and the ANR through a chaire d'excellence

S. Paris and C. , Parts of this work were supported by IPGP multidisciplinary program PARI, and by Region Île-de-France SESAME Grant no, 12015908.

N. M. Abreu, Petrographic evidence of shock metamorphism in CR2 chondrite GRO 03116 (abstract #5211), Meteoritics & Planetary Science, vol.46, 2011.

N. M. Abreu and E. S. Bullock, Opaque assemblages in CR2 Graves Nunataks (GRA) 06100 as indicators of shock-driven hydrothermal alteration in the CR chondrite parent body, Meteoritics and Planetary Science, vol.48, pp.2406-2429, 2013.

J. Akai, T-T-T diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites, Antarct. Meteor. Res, vol.5, pp.120-135, 1992.

C. M. Alexander, . O'd, R. Bowden, M. L. Fogel, K. T. Howard et al., The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets, Science, vol.337, pp.721-723, 2012.

C. M. Alexander, . O'd, K. T. Howard, R. Bowden, and M. L. Fogel, The classification of CM and CR chondrites using bulk H, C, and N abundances and isotopic compositions, Geochim. Cosmochim. Acta, vol.123, pp.244-260, 2013.

A. E. , Origin, age, and composition of meteorites, Space Sci. Rev, vol.3, pp.583-714, 1964.

J. A. Barrat, B. Zanda, F. Moynier, C. Bollinger, C. Liorzou et al., Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes, Geochim. Cosmochim. Acta, vol.83, pp.79-92, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00670053

P. Beck, V. De-andrade, F. Orthous-daunay, G. Veronesi, M. Cotte et al., The redox state of iron in the matrix of CI, CM, and metamorphosed CM chondrites by XANES spectroscopy, Geochim. Cosmochim. Acta, vol.99, pp.305-316, 2012.

P. Beck, T. Ferroir, and P. Gillet, Shock-induced compaction, melting, and entrapment of atmospheric gases in Martian meteorites, Geophys. Res. Lett, vol.34, p.1203, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00338909

P. Beck, A. Garenne, E. Quirico, L. Bonal, G. Montes-hernandez et al., Transmission infrared spectra (2-25µm) of carbonaceous chondrites (CI, CM, CV-CK, CR, C2 ungrouped): mineralogy, water, and asteroidal processes, Icarus, vol.229, pp.263-277, 2014.

A. Bischoff, Aqueous alteration of carbonaceous chondrites: evidence for preaccretionary alteration -a review, Meteoritics and Planetary Science, vol.33, pp.1113-1122, 1998.

A. Bischoff and D. Stöffler, Shock metamorphism as a fundamental process in the evolution of planetary bodies: information from meteorites, Eur. J. Mineral, vol.4, pp.707-755, 1992.

P. A. Bland, O. Alard, G. K. Benedix, A. T. Kearsley, O. N. Menzies et al., Volatile fractionation in the early solar system and chondrule/matrix complementarity, Proceedings of the National Academy of Sciences, vol.102, issue.39, pp.13755-13760, 2005.

A. J. Brearley, The action of water, Meteorites and the Early Solar System II, 2006.

D. S. Lauretta, (. Mcsween, and . )-h.y), University of Arizona Press, pp.587-624

G. Briani, E. Quirico, M. Gounelle, M. Paulhiac-pison, G. Montagnac et al., Short duration thermal metamorphism in CR chondrites, Geochim. Cosmochim. Acta, vol.122, pp.267-279, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003962

H. Chen, B. M. Nguyen, and F. Moynier, Zinc isotopic composition of iron meteorites: absence of isotopic anomalies and origin of the volatile element depletion, Meteoritics and Planetary Science, vol.48, pp.2441-2450, 2013.

W. H. Choe, H. Huber, A. E. Rubin, G. W. Kallemeyn, and J. T. Wasson, Compositions and taxonomy of 15 unusual carbonaceous chondrites, Meteoritics and Planetary Science, vol.45, pp.531-554, 2010.

R. N. Clayton and T. K. Mayeda, Oxygen isotope studies of carbonaceous chondrites, Geochim. Cosmochim. Acta, vol.63, pp.2089-2104, 1999.

E. A. Cloutis, P. Hudon, T. Hiroi, M. J. Gaffey, and P. Mann, Spectral reflectance properties of carbonaceous chondrites 2: CM chondrites, Icarus, vol.216, pp.309-346, 2011.

E. A. Cloutis, P. Hudon, T. Hiroi, and M. J. Gaffey, Spectral reflectance properties of carbonaceous chondrites 4: aqueously altered and thermally metamorphosed meteorites, Icarus, vol.220, pp.586-617, 2012.

J. Davidson, D. L. Schrader, H. Busemann, I. A. Franchi, H. C. Connolly et al., Petrography, stable isotope compositions, microRaman spectroscopy and presolar components of Roberts Massif 04133: a reduced CV3 carbonaceous chondrite, Meteoritics and Planetary Science, vol.49, pp.2133-2151, 2014.

J. M. Day and F. Moynier, Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the moon, Philos. Trans. R. Soc. A, vol.372, 2014.

J. M. Day, F. Moynier, A. P. Meshik, O. V. Pradivtseva, and D. R. Petit, Evaporation fractionation of zinc during the first nuclear detonation, Science Advances, vol.3, 2017.

J. M. Day, F. Moynier, and C. K. Shearer, Late-stage magmatic outgassing from a volatiledepleted Moon, Proceedings of the National Academy of Sciences, vol.114, issue.36, 2017.

A. Gale, C. A. Dalton, C. H. Langmuir, Y. Su, and J. Schilling, The mean composition of ocean ridge basalts, Geochemistry, Geophysics, Geosystems, vol.14, pp.489-518, 2013.

A. Garenne, P. Beck, G. Montes-hernandez, R. Chiriac, F. Toche et al., The abundance and stability of "water" in type 1 and 2 carbonaceous chondrites (CI, CM, and CR), Geochim. Cosmochim. Acta, vol.137, pp.93-112, 2014.

A. Ghosh, S. J. Weidenschilling, H. Y. Mcsween, and A. Rubin, Asteroidal heating and thermal stratification of the asteroid belt, Meteorites and the Early Solar System II, 2006.

D. S. Lauretta, (. Mcsween, and . )-h.y), University of Arizona Press, pp.555-566

G. F. Herzog, F. Moynier, F. Albarède, and A. A. Berezhnoy, Isotopic and elemental abundances of copper and zinc in lunar samples, Pele's hairs, and a terrestrial basalt, 2009.

, Geochim. Cosmochim. Acta, vol.73, pp.5884-5904

K. T. Howard, C. M. Alexander, D. L. Schrader, and K. A. Dyl, Classification of hydrous meteorites (CR, CM, and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal enironments, Geochim. Cosmochim. Acta, vol.149, pp.206-222, 2015.

G. R. Huss, A. P. Meshik, J. B. Smith, and C. M. Hohenberg, Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula, Geochim. Cosmochim. Acta, vol.67, pp.4823-4848, 2003.

G. R. Huss, A. E. Rubin, and J. N. Grossman, Thermal metamorphism in chondrites, Meteorites and the Early Solar System, pp.567-586, 2006.

M. Ikramuddin, S. Matza, and M. E. Lipschutz, Thermal metamorphism of primitive meteorites -V. Ten trace elements in Tieschitz H3 chondrite, pp.400-1000, 1977.

, Geochim. Cosmochim. Acta, vol.41, pp.1247-1256

C. Kato, F. Moynier, M. C. Valdes, J. K. Dhaliwal, and J. M. Day, Extensive volatile loss during formation and differentiation of the Moon, Nat. Comm, vol.6, issue.7617, 2015.
URL : https://hal.archives-ouvertes.fr/insu-02611933

M. A. Lange and T. J. Ahrens, The evolution of an impact-generated atmosphere, Icarus, vol.51, pp.96-120, 1982.

K. Lodders, Solar system abundances and condensation temperatures of the elements, Astrophys. J, vol.591, pp.1220-1247, 2003.

K. Lodders, (. ). Fegley, and B. , The Planetary Scientist's Companion, pp.311-317, 1998.

J. M. Luck, D. Ben-othman, and F. Albarède, Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes, Geochim. Cosmochim. Acta, vol.69, pp.5351-5363, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00098381

B. Mahan, J. Siebert, E. A. Pringle, and F. Moynier, Elemental partitioning and isotopic fractionation of Zn between metal and silicate and geochemical estimation of the S content of the Earth's core, Geochim. Cosmochim. Acta, vol.196, pp.252-270, 2017.
URL : https://hal.archives-ouvertes.fr/insu-02911694

N. Marechal, P. Telouk, and F. Albarède, Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry, Chem. Geol, vol.156, pp.251-273, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00005477

S. D. Matza and M. E. Lipschutz, Thermal metamorphism of primitive meteorites -VI. Eleven trace elements in Murchison C2 chondrite heat at 400-1000°C, Proc. Lunar Sci. Conf, vol.8, pp.161-176, 1977.

H. J. Melosh, Giant impacts and the thermal state of the early Earth, Origin of the Earth, pp.69-84, 1990.

F. Moynier, F. Albarède, and G. F. Herzog, Isotopic composition of zinc, copper, and iron in lunar samples, Geochim. Cosmochim. Acta, vol.70, pp.6103-6117, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00342738

F. Moynier, L. Borgne, and M. , High precision zinc isotopic measurements applied to mouse organs, J. Vis. Exp, vol.99, p.52479, 2015.

F. Moynier, P. Beck, F. Jourdan, Q. Yin, U. Reimold et al., Isotopic fractionatino of Zn in tektites, Earth Planet. Sci. Lett, vol.277, pp.482-489, 2009.

F. Moynier, P. Beck, Q. Yin, T. Ferroir, J. Barrat et al., Volatilization induced impacts recorded in Zn isotope composition of ureilites, Chem. Geol, vol.276, pp.374-379, 2010.
URL : https://hal.archives-ouvertes.fr/insu-00560125

F. Moynier, R. C. Paniello, M. Gounelle, F. Albarède, P. Beck et al., Nature of volatile depletion and genetic relationships in enstatite chondrite and aubrites inferred from Zn isotopes, Geochim. Cosmochim. Acta, vol.75, pp.297-307, 2011.

F. Moynier, D. Vance, T. Fujii, and P. Savage, The isotope geochemistry of Zinc and Copper, Rev. Mineral. Geochem, vol.82, pp.543-600, 2017.

T. Nakamura, Post-hydration thermal metamorphism of carbonaceous chondrites, Journal of Min. and Petr. Sci, vol.100, pp.260-272, 2005.

T. Nakamura, Yamato 793321 CM chondrite: dehydrated regolith material of a hydrous asteroid, Earth Planet. Sci. Lett, vol.242, pp.26-38, 2006.

T. Nakamura, R. Okazaki, and G. R. Huss, Thermal metamorphism of CM carbanaceous chondrites: effects on phyllosilicate mineralogy and presolar grain abundances, Lunar Planet. Sci. Conf. (A#1633), 2006.

A. Nakato, A. J. Brearley, T. Nakamura, T. Noguchi, I. Ahn et al., PCA 02012: a unique thermally metamorphosed carbonaceous chondrite, Lunar Planet. Sci, vol.44, p.2708, 2013.

H. S. O'neill and H. Palme, Composition of the silicate Earth: implications for accretion and core formation, The Earth's Mantle: Structure, Composition and Evolution -The Ringwood Volume, 1998.

H. S. O'neill and H. Palme, Collisional erosion and the non-chondritic composition of the terrestrial planets, Philos. Trans. R. Soc. A, vol.366, pp.4205-4238, 2008.

H. Palme and H. S. O'neill, Cosmochemical estimates of mantle composition, Treatise on Geochemistry, 2014.

R. Paniello, J. M. Day, and F. Moynier, Zinc isotopic evidence for the origin of the Moon, Nature, vol.490, pp.376-380, 2012.

R. Paniello, F. Moynier, P. Beck, J. Barrat, F. A. Podosek et al., Zinc isotopes in HEDs: clues to the format of 4-Vesta, and the unique composition of Pecora Escarpment 82502, Geochim. Cosmochim. Acta, vol.86, pp.76-87, 2012.

R. L. Paul and M. E. Lipschutz, Labile trace elements in some antarctic carbonaceous chondrites: antarctic and non-antarctic meteorite comparisons, Z Naturforsch, vol.44, pp.979-987, 1989.

E. A. Pringle, F. Moynier, P. S. Savage, J. Badro, and J. Barrat, Silicon isotopes in angrites and volatile loss in planetesimals, Proceedings of the National Academy of Sciences, vol.111, issue.48, 2014.
URL : https://hal.archives-ouvertes.fr/insu-01096922

E. A. Pringle and F. Moynier, Rubidium isotopic composition of the Earth, meteorite, and the Moon: Evidence for the origin of volatile loss during planetary accretion, Earth Planet. Sci. Lett, vol.473, pp.62-70, 2017.

A. E. Rubin, J. M. Trigo-rodgríguez, H. Huber, and J. T. Wasson, Progressive aqueous alteration of CM carbonaceous chondrites, Geochim. Cosmochim. Acta, vol.71, pp.2361-2382, 2007.

L. Schaefer and . B. Fegley, Volatile element chemistry during metamorphism of ordinary chondritic material and some of its implications for the composition of asteroids, Icarus, vol.205, pp.483-496, 2010.

L. Schaefer and . B. Fegley, Chemistry of atmsospheres formed during accretion and the Earth and other terrestrial planets, Icarus, vol.208, pp.438-448, 2010.

D. L. Schrader, H. C. Connolly, D. S. Lauretta, D. L. Zega, J. Davidson et al., The formation and alteration of the Renazzo-like carbonaceous chondrites III: toward understanding the genesis of ferromagnesian chondrules, Meteoritics and Planetary Sciences, vol.50, pp.15-50, 2015.

D. L. Schrader, I. A. Franchi, H. C. Connolly, R. C. Greenwood, D. S. Lauretta et al.,

M. , The formation and alteration of the Renazzo-like carbonaceous chondrites I: implications of bulk-oxygen isotopic composition, Geochim. Cosmochim. Acta, vol.75, pp.308-325, 2011.

F. H. Shu, H. Shang, and T. Lee, Towards an astrophysical theory of chondrites, Science, vol.271, pp.1545-1552, 1996.

M. Tharaud, S. Gardoll, O. Khelifi, M. F. Benedetti, and Y. Sivry, uFREASI: user-Friendly Elemental dAta procesSIing. A free and easy-to-use tool for elemental data treatment, 2015.

, Microchemical Journal, vol.121, pp.32-40

E. K. Tonui, M. E. Zolensky, M. E. Lipschutz, M. Wang, and T. Nakamura, Yamato 86029: aqueously altered and thermally metamorphosed CI-like chondrite with unusual texture, Meteoritics and Planetary Sciences, vol.38, pp.269-292, 2003.

E. K. Tonui, M. E. Zolensky, T. Hiroi, T. Nakamura, M. E. Lipschutz et al., Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrites, Geochim. Cosmochim. Acta, vol.126, pp.284-306, 2014.

M. Trieloff, E. K. Jessberger, I. Herrwerth, J. Hopp, C. Fiéni et al., Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry, Nature, vol.422, pp.502-506, 2003.

W. R. Van-schmus and J. A. Wood, A chemical-petrologic classification for the chondritic meteorites, Geochim. Cosmochim. Acta, vol.31, pp.747-765, 1967.

M. Wang and M. E. Lipschutz, Thermally metamorphosed carbonaceous chondrites from data for thermally mobile trace elements, Meteoritics and Planetary Sciences, vol.33, pp.1297-1302, 1998.

J. T. Wasson and C. Chou, Fractionation of moderately volatile elements in ordinary chondrites, Meteoritics, vol.9, pp.69-84, 1974.

M. K. Weisberg and H. Huber, The GRO 95577 CR1 chondrite and hydration of the CR parent body, Meteoritics and Planetary Sciences, vol.42, pp.1495-1503, 2007.

M. K. Weisberg, T. J. Mccoy, and A. N. Krot, Systematics and evaluation of meteorite classification, Meteorites and the Early Solar System II, 2006.

H. , University of Arizona Press, pp.19-52

M. K. Weisberg, C. Smith, G. Benedix, L. Folco, K. Righter et al., The meteoritical bulletin, Meteoritics and Planetary Sciences, vol.43, issue.94, pp.1551-1588, 2008.

J. A. Wood, P. Pellas, and C. P. Sonett, What heated the meteorite planets?, The Sun in Time, pp.740-760, 1991.

X. Xiao and M. E. Lipschutz, Labile trace elements in carbonaceous chondrites: a survey, J. Geophys. Res, vol.97, pp.10199-10211, 1992.

Q. Yin, From dust to planets: The tale told by moderately volatile elements, Chondrites and the Protoplanetary Disk, ASP Conference Series, vol.341, pp.632-644, 2005.

E. Young, H. Nagahara, B. O. Mysen, and D. M. Audet, Non-Rayleigh oxygen isotope fractionation by mineral evaporation: Theory and experiments in the system SiO2, Geochim. Cosmochim. Acta, vol.62, pp.3109-3116, 1998.

M. E. Zolensky, R. H. Hewins, D. W. Mittlefehldt, M. M. Lindstrom, X. Xiao et al., Mineralogy, petrology, and geochemistry of carbonaceous chondrite clasts in the LEW 85300 polymict eucrite, Meteoritics, vol.27, pp.596-604, 1992.

M. E. Zolensky, D. W. Mittlefehldt, M. E. Lipschutz, M. Wang, R. N. Clayton et al.,

M. M. Grady, C. Pillinger, and D. Barber, CM chondrites exhibit the complete petrologic range from type 2 to 1, Geochim. Cosmochim. Acta, vol.61, pp.5099-5115, 1997.