M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, ARA&A, vol.47, p.481, 2009.

K. Baillié, S. Charnoz, and E. Pantin, A&A, vol.590, p.60, 2016.

S. S. Barshay and J. S. Lewis, ARA&A, vol.14, p.81, 1976.

T. Birnstiel, H. Klahr, and B. Ercolano, A&A, vol.539, p.148, 2012.

S. Charnoz, F. C. Pignatale, and R. Hyodo, A&A, vol.212, p.1, 2015.

H. Chiang, L. W. Looney, and J. J. Tobin, ApJ, vol.756, p.168, 2012.

J. N. Connelly, M. Bizzarro, and A. N. Krot, Sci, vol.338, p.651, 2012.

E. G. Cox, R. J. Harris, and L. W. Looney, ApJ, vol.851, p.83, 2017.

C. Dominik and C. P. Dullemond, A&A, vol.491, p.663, 2008.

J. Dra?kowska, Y. Alibert, and B. Moore, A&A, vol.594, p.105, 2016.

C. P. Dullemond, D. Apai, and S. Walch, ApJL, vol.640, p.67, 2006.

D. S. Ebel, Meteorites and the Early Solar System II, p.253, 2006.

A. Z. Goldberg, J. E. Owen, and E. Jacquet, MNRAS, vol.452, p.4054, 2015.

C. Helling, J. M. Winters, and E. Sedlmayr, A&A, vol.358, p.651, 2000.

P. Hennebelle, B. Commerçon, G. Chabrier, and P. Marchand, ApJL, vol.830, p.8, 2016.

T. Henning and D. Semenov, ChRv, vol.113, p.9016, 2013.

R. Hueso and T. Guillot, A&A, vol.442, p.703, 2005.

B. Jacobsen, Q. Yin, and F. Moynier, E&PSL, vol.272, p.353, 2008.

E. Jacquet, S. Fromang, and M. Gounelle, A&A, vol.526, p.8, 2011.

L. P. Keller and S. Messenger, GeCoA, vol.75, p.5336, 2011.

S. S. Kimura, M. Kunitomo, and S. Z. Takahashi, MNRAS, vol.461, p.2257, 2016.

A. N. Krot, M. I. Petaev, and S. S. Russell, ChEG, vol.64, p.185, 2004.

K. K. Larsen, A. Trinquier, and C. Paton, ApJL, vol.735, p.37, 2011.

G. J. Macpherson, Meteorites and Cosmochemical Processes, p.139, 2014.

R. A. Mendybaev, F. M. Richter, and R. B. Georg, GeCoA, vol.123, p.368, 2013.

R. K. Mishra and M. Chaussidon, E&PSL, vol.390, p.318, 2014.

L. R. Nittler, E&PSL, vol.209, p.259, 2003.

J. E. Owen and P. J. Armitage, MNRAS, vol.445, p.2800, 2014.

, The condensation front of CAIs is the location of the T?=?1650?K isotherm (note that after t???220 kyr, when the flow of gas reverses toward the star in this region, this front inverses its displacement as well and moves closer to the star). The temperature profile evidences the presence of an outburst (an abrupt pulse with T?>?2000 K). If these pulses in temperature take place in a region outward from the condensation front of CAIs, already formed CAIs can experience thermal alteration or partial evaporation (see the point marked

, CAIs can then recondense as the condensation front moves back toward the inner disk regions (marked "c"). Note that temperatures as high as those required to evaporate the precursors of Fractionated and Unidentified Nuclear isotopic properties (FUN) CAIs (T???2200 K (Mendybaev et al. 2013) can be reached in these outbursts

F. C. Pignatale, S. T. Maddison, V. Taquet, G. Brooks, and K. Liffman, MNRAS, vol.414, p.2386, 2011.

F. M. Richter, R. A. Mendybaev, and A. M. Davis, M&PS, vol.41, p.83, 2006.

E. R. Scott and A. N. Krot, TrGeo, vol.1, p.711, 2003.

D. Semenov, T. Henning, C. Helling, M. Ilgner, and E. Sedlmayr, A&A, vol.410, p.611, 2003.

F. H. Shu, ApJ, vol.214, p.488, 1977.

J. I. Simon, M. K. Jordan, and M. J. Tappa, E&PSL, vol.472, p.277, 2017.

C. E. Terquem, ApJ, vol.689, p.532, 2008.

N. J. Turner and T. Sano, ApJL, vol.679, p.131, 2008.

P. H. Warren, GeCoA, vol.75, p.6912, 2011.

J. P. Williams and L. A. Cieza, ARA&A, vol.49, p.67, 2011.

L. Yang and F. J. Ciesla, M&PS, vol.47, p.99, 2012.

Z. Zhu, L. Hartmann, and C. Gammie, ApJ, vol.713, p.1143, 2010.

Z. Zhu, L. Hartmann, C. Gammie, and J. C. Mckinney, ApJ, vol.701, p.620, 2009.