C. Kummerow, W. Barnes, T. Kozu, J. Shiue, and J. Simpson, The Tropical Rainfall Measuring Mission (TRMM) Sensor Package, J. of Atmos. and Ocean. Technol, vol.15, issue.3, pp.809-817, 1998.

E. A. Smith, G. Asrar, Y. Furuhama, A. Ginati, C. Kummerow et al., International Global Precipitation Measurement (GPM) Program and Mission: An Overview, Springer -Measuring Precipitation from Space -EURAINSAT and the future, vol.28, pp.611-653, 2007.

N. Viltard, C. Burlaud, and C. D. Kummerow, Rain retrieval from TMI brightness temperature measurements using a TRMM PR-based database, J. Appl. Meteor. Climatol, vol.45, pp.455-466, 2006.

C. D. Kummerow, D. L. Randel, M. Kulie, N. Wang, R. Ferraro et al., The Evolution of the Goddard Profiling Algorithm to a Fully Parametric Scheme, J. Atmos. Oceanic Technol, vol.32, pp.2265-2280, 2015.

E. Moreau, C. Mallet, S. Thiria, X. Mabboux, F. Badran et al., Atmospheric Liquid Water Retrieval Using a Gated Expert Neural Network, J. of Atmos. and Ocean. Tech, vol.19, pp.457-466, 2002.

Y. Hong, K. Hsu, S. Sorooshian, and X. Gao, Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System, J. of Appl. Meteor, vol.43, pp.1834-1853, 2004.

C. Surussavadee and D. H. Staelin, 2208: Global Millimeter-Wave Precipitation Retrievals Trained With a Cloud-Resolving Numerical Weather Prediction Model, Part I: Retrieval Design, IEEE Transactions on Geosci. and R. Sens, vol.46, pp.99-108

C. Mahesh, S. Prakash, V. Sathiyamoorthy, and R. M. Gairola, Artificial neural network based microwave precipitation estimation using scattering index and polarization corrected temperature, Atmos. Res, vol.102, pp.358-364, 2011.

P. Sanò, G. Panegrossi, D. Casella, A. C. Marra, and L. P. ,

J. F. D'adderio, S. Rysman, and . Dietrich, The Passive Microwave Neural Network Precipitation Retrieval (PNPR) Algorithm for the CONICAL Scanning Global Microwave Imager (GMI) Radiometer. Remote Sens, vol.10, p.1122, 2018.

Y. Tao, X. Gao, A. Ihler, K. Hsu, and S. Sorooshian, Deep neural networks for precipitation estimation from remotely sensed information, IEEE Congress on Evol. Comp. (CEC), pp.1349-1355, 2016.

Y. Tao, X. Gao, A. Ihler, S. Sorooshian, and K. Hsu, Precipitation identification with bispectral satellite information using deep learning approaches, J. of Hydrometeor, vol.18, pp.1271-1283, 2017.

N. B. Adhikar, T. Iguchi, and S. Shinta, Rain retrieval performance of a dual-frequency precipitation radar technique with differential-attenuation constraint, IEEE Trans. Geo. and Rem. Sens, vol.45, pp.2612-2618, 2007.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, Int. Conf. on Med. Image Comput. and Computer-Assisted Interv, pp.234-241, 2015.

P. L. Petit, L. Barthès, C. Mallet, C. Ly, N. Viltard et al., Using Deep Leaning for Restoration of Precipitation Echoes in Radar Data, IEEE Transac. Gesosci. And R. Sensing. Conditionally accepted, 2020.

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proc. 13 th Int. Conf. on Artificial Intelligence and Statistics, pp.249-256, 2010.

P. D. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.