E. Agrafioti, G. Bouras, D. Kalderis, and E. Diamadopoulos, Biochar production by sewage sludge pyrolysis, J. Anal. Appl. Pyrolysis, vol.101, pp.72-78, 2013.

M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan et al., Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, vol.99, pp.19-33, 2014.

A. Apha and . Wef, Standard Methods for the Examination of Water and Wastewater, 2012.

, American Water Works Association

L. Appels, J. Baeyens, J. Degrève, and R. Dewil, Principles and potential of the anaerobic digestion of waste activated sludge, Prog. Energy Combust. Sci, vol.34, pp.755-781, 2008.

J. Ariunbaatar, O. Ozcan, R. Bair, G. Esposito, R. Ball et al., Bioaugmentation of the anaerobic digestion of food waste by dungs of herbivore, carnivore, and omnivore zoo animals, Environ. Technol, vol.39, pp.516-526, 2017.

M. Bai, B. Wilske, F. Buegger, J. Esperschütz, C. I. Kammann et al., Degradation kinetics of biochar from pyrolysis and hydrothermal carbonization in temperate soils, Plant Soil, vol.372, pp.375-387, 2013.

C. J. Banks, Y. Zhang, Y. Jiang, and S. Heaven, Trace element requirements for stable food waste digestion at elevated ammonia concentrations, Bioresour. Technol, vol.104, pp.127-135, 2012.

J. Cai, P. He, Y. Wang, L. Shao, and F. Lu, Effects and optimization of the use of biochar in anaerobic digestion of food wastes, Waste Manag. Res, vol.34, pp.409-416, 2016.

Y. Chen, J. J. Cheng, and K. S. Creamer, Inhibition of anaerobic digestion process: a review, Bioresour. Technol, vol.99, pp.4044-4064, 2008.

B. Demirel and P. Scherer, Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane, Biomass Bioenergy, vol.35, pp.992-998, 2011.

A. Deressa, Effects of soil moisture and temperature on carbon and nitrogen mineralization in grassland soils fertilized with improved cattle slurry manure with and without manure additive, J. Environ. Hum, vol.2, pp.2373-8332, 2015.

M. O. Fagbohungbe, B. M. Herbert, L. Hurst, C. N. Ibeto, H. Li et al., The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion, Waste Manag, vol.61, pp.236-249, 2017.

M. O. Fagbohungbe, B. M. Herbert, L. Hurst, H. Li, S. Q. Usmani et al., Impact of biochar on the anaerobic digestion of citrus peel waste, Bioresour. Technol, vol.216, pp.142-149, 2016.

F. G. Fermoso, G. Collins, J. Bartacek, V. O'flaherty, and P. Lens, Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors, Biodegradation, vol.19, pp.725-737, 2008.

I. H. Franke-whittle, A. Confalonieri, H. Insam, M. Schlegelmilch, and I. Körner, Changes in the microbial communities during co-composting of digestates, Waste Manag, vol.34, pp.632-641, 2014.

B. Frosteil, Process control in anaerobic wastewater treatment, Water Sci. Technol, vol.17, pp.173-189, 1995.

J. Gomez-romero, A. Gonzalez-garcia, I. Chairez, L. Torres, and E. I. García-peña, Selective adaptation of an anaerobic microbial community: biohydrogen production by co-digestion of cheese whey and vegetables fruit waste, Int. J. Hydrogen Energy, vol.39, pp.12541-12550, 2014.

R. Goswami, P. Chattopadhyay, A. Shome, S. N. Banerjee, A. K. Chakraborty et al., An overview of physicochemical mechanisms of biogas production by microbial communities: a step towards sustainable waste management. 3 Biotech, vol.6, p.72, 2016.

K. Hagos, J. Zong, D. Li, C. Liu, and X. Lu, Anaerobic co-digestion process for biogas production: progress, challenges and perspectives, Renew. Sustain. Energy Rev, vol.76, pp.1485-1496, 2017.

Y. D. He, Y. B. Zhai, C. T. Li, F. Yang, L. Chen et al., The fate of Cu, Zn, Pb and Cd during the pyrolysis of sewage sludge at different temperatures, Environ. Technol, vol.31, pp.567-574, 2010.

W. Huang, Z. Wang, Y. Zhou, and W. J. Ng, The role of hydrogenotrophic methanogens in an acidogenic reactor, Chemosphere, vol.140, pp.40-46, 2015.

I. H. Hwang, Y. Ouchi, and T. Matsuto, Characteristics of leachate from pyrolysis residue of sewage sludge, Chemosphere, vol.68, pp.1913-1919, 2007.

C. Ji, C. Kong, Z. Mei, L. , and J. , A review of the anaerobic digestion of fruit and vegetable waste, Appl. Biochem. Biotechnol, vol.183, pp.906-922, 2017.

R. C. Kistler, F. Widmer, and P. H. Brunner, Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge, Environ. Sci. Technol, vol.21, pp.704-708, 1987.

J. Lehmann, J. , and S. , Biochar for environmental management: an introduction, Routledge), pp.33-46, 2015.

J. N. Lester, R. M. Sterrit, and P. W. Kirk, Significance and behaviour of heavy metals in wastewater treatment process. II. Sludge treatment and disposal, Sci. Total Environ, vol.30, pp.45-83, 1983.

G. Q. Lu, J. C. Low, C. Y. Liu, and A. C. Lua, Surface area development of sewage sludge during pyrolysis, Fuel, vol.74, pp.344-348, 1995.

G. Luo, A. , and I. , Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture, Biotechnol. Bioeng, vol.109, pp.2729-2736, 2012.

G. Luo, W. Wang, A. , and I. , Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology, Environ. Sci. Technol, vol.47, pp.10685-10693, 2013.

N. Mahmoud, G. Zeeman, H. Gijzen, and G. Lettinga, Anaerobic stabilisation and conversion of biopolymers in primary sludge, effect of temperature and sludge retention time, Water Res, vol.38, pp.983-991, 2004.

S. O. Masebinu, E. T. Akinlabi, E. Muzenda, A. , and A. O. , A review of biochar properties and their roles in mitigating challenges with anaerobic digestion, Renewable Sustain. Energy Rev, vol.103, pp.291-307, 2019.

J. Mata-alvarez, J. Dosta, M. S. Romero-güiza, X. Fonoll, M. Peces et al., A critical review on anaerobic co-digestion achievements between, Renew. Sustain. Energy Rev, vol.36, pp.412-427, 2010.

L. Milios and A. Reichel, Municipal Waste Management in the Netherlands, European Environment Agency. Available, 2013.

D. Montecchio, A. Gallipoli, A. Gianico, G. Mininni, P. Pagliaccia et al., Biomethane potential of food waste: modeling the effects of mild thermal pretreatment and digestion temperature, Environ. Technol, vol.38, pp.1452-1464, 2017.

A. Mukherjee and A. R. Zimmerman, Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures, Geoderma, vol.193, pp.122-130, 2013.

J. Mumme, F. Srocke, K. Heeg, and M. Werner, Use of biochars in anaerobic digestion, Bioresour. Technol, vol.164, pp.189-197, 2014.

A. Nielfa, R. Cano, and M. Fdz-polanco, Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge, Biotechnol. Rep, vol.5, pp.14-21, 2015.

A. Pathak, M. G. Dastidar, and T. R. Sreekrishnan, Bioleaching of heavy metals from sewage sludge: a review, J. Environ. Manage, vol.90, pp.2343-2353, 2009.

H. Pobeheim, B. Munk, J. Johansson, and G. M. Guebitz, Influence of trace elements on methane formation from a synthetic model substrate for maize silage, Bioresour. Technol, vol.101, pp.836-839, 2010.

R. Priyadarshini, L. Vaishnavi, D. Murugan, M. Sivarajan, A. Sivasamy et al., Kinetic studies on anaerobic co-digestion of ultrasonic disintegrated feed and biomass and its effect substantiated by microcalorimetry, Int. J. Environ. Sci. Technol, vol.12, pp.3029-3038, 2015.

R. Rajagopal, D. I. Massé, and G. Singh, A critical review on inhibition of anaerobic digestion process by excess ammonia, Bioresour. Technol, vol.143, pp.632-641, 2013.

C. Sawatdeenarunat, K. C. Surendra, D. Takara, H. Oechsner, and S. K. Khanal, Anaerobic digestion of lignocellulosic biomass: challenges and opportunities, Bioresour. Technol, vol.178, pp.178-186, 2015.

Y. Shen, J. L. Linville, P. A. Ignacio-de-leon, R. P. Schoene, and M. Urgun-demirtas, Towards a sustainable paradigm of the waste-to-energy process: enhanced anaerobic digestion of sludge with woody biochar, J. Clean. Prod, vol.135, pp.1054-1064, 2016.

Z. Shen, F. Jin, F. Wang, O. Mcmillan, A. et al., Sorption of lead by Salisbury biochar produced from British broadleaf hardwood, Bioresour. Technol, vol.193, pp.553-556, 2015.

J. Shi, F. Xu, Z. Wang, J. A. Stiverson, Z. Yu et al., Effects of microbial and non-microbial factors of liquid anaerobic digestion effluent as inoculum on solid-state anaerobic digestion of corn stover, Bioresour. Technol, vol.157, pp.188-196, 2014.

W. Somitsch, Prozesstechnische und biochemische Wirkungsweise von Betriebhilfsmitteln in der Methangärung, OTTI-Symposium Bioenergie, 2007.

R. E. Speece, G. F. Parkin, and D. Gallagher, Nickel stimulation of anaerobic digestion, Water Res, vol.17, pp.677-683, 1983.

N. M. Sunyoto, M. Zhu, Z. Zhang, and D. Zhang, Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste, Bioresour. Technol, vol.219, pp.29-36, 2016.

A. Thangamani, S. Rajakumar, and R. A. Ramanujam, Anaerobic codigestion of hazardous tannery solid waste and primary sludge: biodegradation kinetics and metabolite analysis, Clean Technol. Environ. Policy, vol.12, pp.517-524, 2010.

A. Tiwary, I. D. Williams, D. C. Pant, and V. V. Kishore, Assessment and mitigation of the environmental burdens to air from land applied food-based digestate, Environ. Pollut, vol.203, pp.262-270, 2015.

B. Wang, Y. S. Jiang, F. Y. Li, Y. , and D. Y. , Preparation of biochar by simultaneous carbonization, magnetization, and activation for norfloxacin removal in water, Bioresour. Technol, vol.233, pp.159-165, 2017.

L. Wang, J. Liu, Q. Zhao, W. Wei, and Y. Sun, Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems, Bioresour. Technol, vol.211, pp.1-5, 2016.

A. J. Ward, P. J. Hobbs, P. J. Holliman, and D. L. Jones, Optimisation of the anaerobic digestion of agricultural resources, Bioresour. Technol, vol.99, pp.7928-7940, 2008.

P. Weiland, Biogas production: current state and perspectives, Appl. Microbiol. Biotechnol, vol.85, pp.849-860, 2010.

D. L. Wise, C. L. Cooney, and D. C. Augenstein, Biomethanation: Anaerobic fermentation of CO 2 , H 2 and CO to methane, Biotechnol. Bioeng, vol.20, pp.1153-1172, 1978.

S. Wongrod, S. Simon, G. Guibaud, P. N. Lens, Y. Pechaud et al., Lead sorption by biochar produced from digestates: consequences of chemical modification and washing, J. Environ. Manag, vol.219, pp.277-284, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02052996

H. Xu, S. Gong, Y. Sun, H. Ma, M. Zheng et al., High-rate hydrogenotrophic methanogenesis for biogas upgrading: the role of anaerobic granules, Environ. Technol, vol.36, pp.529-537, 2015.

J. H. Yuan, R. K. Xu, and H. Zhang, The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresour. Technol, vol.102, pp.3488-3497, 2011.

M. Zamanzadeh, L. H. Hagen, K. Svensson, R. Linjordet, and S. J. Horn, Anaerobic digestion of food waste-effect of recirculation and temperature on performance and microbiology, Water Res, vol.96, pp.246-254, 2016.

C. Zhang, H. Su, J. Baeyens, and T. Tan, Reviewing the anaerobic digestion of food waste for biogas production, Renew. Sustain. Energy Rev, vol.38, pp.383-392, 2014.

J. Zhang, F. Lü, H. Zhang, L. Shao, D. Chen et al., Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication, Sci. Rep, vol.5, p.9406, 2015.

L. Zhang, J. , and D. , , 2012.

, Waste Manag, vol.32, pp.1509-1515

L. Zhang, Y. W. Lee, J. , and D. , Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements, Bioresour. Technol, vol.102, pp.5048-5059, 2011.

Z. Zhao, Y. Zhang, T. L. Woodard, K. P. Nevin, and D. R. Lovley, Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials, Bioresour. Technol, vol.191, pp.140-145, 2015.