M. Ejder-korucu, A. Gurses, Ç. Do?ar, S. Sharma, and M. Aç?ky?ld?z, Removal of Organic Dyes from Industrial Effluents: An Overview of Physical and Biotechnological Applications, pp.1-22, 2015.

E. Forgacs, T. Cserháti, and G. Oros, Removal of synthetic dyes from wastewaters: a review, Environ Int, vol.30, pp.953-971, 2004.

B. Lellis, C. Z. Fávaro-polonio, J. A. Pamphile, and J. C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnology Research and Innovation, vol.3, pp.275-290, 2019.

J. A. Kiernan, Dyes and other colorants in microtechnique and biomedical research, Color Technol, vol.122, pp.1-21, 2006.

N. Bordoloi, M. D. Dey, R. Mukhopadhyay, and R. Kataki, Adsorption of Methylene blue and Rhodamine B by using biochar derived from Pongamia glabra seed cover, Water Sci Technol, vol.77, pp.638-646, 2017.

E. R. Nestmann, G. R. Douglas, T. I. Matula, C. E. Grant, and D. J. Kowbel, Mutagenic activity of rhodamine dyes and their impurities as detected by mutation induction in Salmonella and DNA damage in Chinese hamster ovary cells, Cancer Res, vol.39, pp.4412-4417, 1979.

G. Upendar, S. Dutta, P. Bhattacharya, and A. Dutta, Bioremediation of methylene blue dye using Bacillus subtilis MTCC 441, Water Sci Technol, vol.75, pp.1572-1583, 2017.

G. D. Menezes, T. A. De-carvalho, W. D. Almeida, E. M. Sussuchi, P. R. Viegas et al., Bioremediation potential of filamentous fungi in methylene blue: Solid and liquid culture media, Cienc Agrotec, pp.526-532, 2017.

H. H. Gan, H. N. Zhang, J. W. Cai, H. X. Jin, and K. F. Zhang, Bio-adsorption properties of Rhodamine B from aqueous solution onto natural camphor tree leaf powder, Desalin Water Treat, vol.57, pp.15241-15249, 2016.

D. Pathania, S. Sharma, and P. Singh, Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arab J Chem, vol.10, pp.1445-1451, 2017.

N. N. Marnani and A. Shahbazi, A novel environmental-friendly nanobiocomposite synthesis by EDTA and chitosan functionalized magnetic graphene oxide for high removal of Rhodamine B: Adsorption mechanism and separation property, Chemosphere, vol.218, pp.715-725, 2019.

A. Verma, R. Dash, and P. Bhunia, A Review on Chemical Coagulation/Flocculation Technologies for Removal of Colour from Textile Wastewaters, J Environ Manage, vol.93, pp.154-168, 2012.

A. K. Al-jibouri, J. Wu, and S. R. Upreti, Continuous ozonation of methylene blue in water, Journal of Water Process Engineering, vol.8, pp.142-150, 2015.

M. S. Kumar, S. H. Sonawane, and A. B. Pandit, Degradation of methylene blue dye in aqueous solution using hydrodynamic cavitation based hybrid advanced oxidation processes, Process Intensification, vol.122, pp.288-295, 2017.

C. P. Bai, X. F. Xiong, W. Q. Gong, D. X. Feng, M. Xian et al., Removal of rhodamine B by ozone-based advanced oxidation process, Desalination, vol.278, pp.84-90, 2011.

S. H. Chang, K. S. Wang, H. C. Li, M. Y. Wey, and J. D. Chou, Enhancement of Rhodamine B removal by low-cost fly ash sorption with Fenton pre-oxidation, J Hazard Mater, vol.172, pp.1131-1136, 2009.

Z. Li, Y. Sun, Y. Yang, Y. Han, T. Wang et al., Comparing biochar-and bentonitesupported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway, Environmental Research, vol.183, p.109156, 2020.

E. S. El-ashtoukhy and Y. O. Fouad, Liquid-liquid extraction of methylene blue dye from aqueous solutions using sodium dodecylbenzenesulfonate as an extractant, Alex Eng J, vol.54, pp.77-81, 2015.

Q. Li, Y. Li, X. Ma, Q. Du, K. Sui et al., Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water, Chem Eng J, pp.623-630, 2017.

S. S. Shenvi, A. M. Isloor, A. F. Ismail, S. J. Shilton, and A. Ahmed, Humic Acid Based Biopolymeric Membrane for Effective Removal of Methylene Blue and Rhodamine B, Ind Eng Chem Res, vol.54, pp.4965-4975, 2015.

S. Bolisetty, M. Peydayesh, and R. Mezzenga, Sustainable technologies for water purification from heavy metals: review and analysis, Chem Soc Rev, vol.48, pp.463-487, 2019.

G. Crini and E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ Chem Lett, vol.17, pp.145-155, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02082890

R. Tang, C. Dai, C. Li, W. Liu, S. Gao et al., Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies, J Chem-Ny, p.10, 2017.

M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: A review, J Hazard Mater, vol.177, pp.70-80, 2010.

D. Kailash, P. Dharmendra, and V. , Low Cost Adsorbents for Heavy Metal Removal from Wastewater: A Review, Res J Chem Environ, vol.14, pp.100-103, 2010.

F. L. Fu, W. J. Han, Z. H. Cheng, and B. Tang, Removal of hexavalent chromium from wastewater by acid-washed zero-valent aluminum, Desalin Water Treat, vol.57, pp.5592-5600, 2016.

S. Ahmed, J. Brockgreitens, K. Xu, and A. Abbas, A Nanoselenium Sponge for Instantaneous Mercury Removal to Undetectable Levels, Adv Funct Mater, vol.27, p.1606572, 2017.

F. S. Fateminia and C. Falamaki, Zero valent nano-sized iron/clinoptilolite modified with zero valent copper for reductive nitrate removal, Process Saf Environ, vol.91, pp.304-310, 2013.

K. Gupta, N. Khandelwal, and G. Darbha, Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles, p.14, 2020.

W. Thalgaspitiya and S. Suib, Transition metal doped TiO2/ reduced graphene oxide composites for highly efficient dye adsorption, Abstr Pap Am Chem S, p.255, 2018.

I. Khan, K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities, Arab J Chem, 2017.

W. L. Guo, F. F. Hao, X. X. Yue, Z. H. Liu, Q. Y. Zhang et al., Rhodamine B removal using polyaniline-supported zero-valent iron powder in the presence of dissolved oxygen, Environ Prog Sustain, vol.35, pp.48-55, 2016.

R. Cheng, X. Y. Xue, G. Q. Li, L. Shi, M. Kang et al., Removal of waterborne phage and NO3-in the nZVI/phage/NO3-system: competition effect, vol.7, pp.25369-25377, 2017.

X. Guan, Y. Sun, H. Qin, J. Li, I. M. Lo et al., The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades, Water Res, vol.75, pp.224-248, 1994.

H. J. Zhu, Y. F. Jia, X. Wu, and H. Wang, Removal of arsenic from water by supported nano zero-valent iron on activated carbon, J Hazard Mater, vol.172, pp.1591-1596, 2009.

Z. H. Diao, X. R. Xu, H. Chen, D. Jiang, Y. X. Yang et al., Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: Reactivity and mechanism, J Hazard Mater, vol.316, pp.186-193, 2016.

S. A. Kim, S. Kamala-kannan, S. G. Oh, M. Cho, S. Bae et al., Simultaneous removal of chromium(VI) and Reactive Black 5 using zeolite supported nano-scale zero-valent iron composite, Environ Earth Sci, p.75, 2016.

X. S. Lv, Y. L. Zhang, W. Y. Fu, J. Z. Cao, J. Zhang et al., Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium (VI) removal, J Colloid Interf Sci, vol.506, pp.633-643, 2017.

Y. Sun, I. K. Yu, D. C. Tsang, X. Cao, D. Lin et al., Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater, Environ Int, vol.124, pp.521-532, 2019.

N. Khandelwal, M. P. Behera, J. K. Rajak, and G. K. Darbha, Biochar-nZVI nanocomposite: optimization of grain size and Fe0 loading, application and removal mechanism of anionic metal species from soft water, hard water and groundwater, Clean Technol Envir, 2020.

L. Peng, P. F. Qin, M. Lei, Q. R. Zeng, H. J. Song et al., Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water, J Hazard Mater, vol.209, pp.193-198, 2012.

Z. Y. Liang, Q. J. Wen, X. Wang, F. W. Zhang, and Y. Yu, Chemically stable and reusable nano zerovalent iron/graphite-like carbon nitride nanohybrid for efficient photocatalytic treatment of Cr(VI) and rhodamine B under visible light, Appl Surf Sci, vol.386, pp.451-459, 2016.

A. O. Dada, F. A. Adekola, E. O. Odebunmi, A. A. Inyinbor, B. A. Akinyemi et al., Kinetics and Thermodynamics of Adsorption of Rhodamine B onto Bentonite Supported Nanoscale Zerovalent Iron Nanocomposite, Journal of Physics: Conference Series, vol.1299, p.12106, 2019.

W. Guo, F. Hao, X. Yue, Z. Liu, Q. Zhang et al., Rhodamine B removal using polyanilinesupported zero-valent iron powder in the presence of dissolved oxygen, p.35

Z. Li, Y. Sun, Y. Yang, Y. Han, T. Wang et al., Biochar-supported nanoscale zerovalent iron as an efficient catalyst for organic degradation in groundwater, J Hazard Mater, vol.383, p.121240, 2020.

C. Lei, Y. Sun, E. Khan, S. S. Chen, D. C. Tsang et al., Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron, Chemosphere, vol.196, pp.9-17, 2018.

B. Calderon and A. Fullana, Heavy metal release due to aging effect during zero valent iron nanoparticles remediation, Water Res, vol.83, pp.1-9, 2015.

H. Dong, F. Zhao, G. Zeng, L. Tang, C. Fan et al., Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: Chemical transformation and structural evolution, J Hazard Mater, pp.234-242, 2016.

H. Dong, L. Li, Y. Wang, Q. Ning, B. Wang et al., Aging of zero-valent iron-based nanoparticles in aqueous environment and the consequent effects on their reactivity and toxicity, Water Environ Res, vol.92, pp.646-661, 2020.

T. Pasinszki and M. Krebsz, Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects, p.10, 2020.

X. Sun, T. Kurokawa, M. Suzuki, M. Takagi, and Y. Kawase, Removal of cationic dye methylene blue by zero-valent iron: Effects of pH and dissolved oxygen on removal mechanisms, J Environ Sci Heal A, vol.50, pp.1057-1071, 2015.

Q. Wang, X. Song, S. Y. Tang, and L. Yu, Enhanced removal of tetrachloroethylene from aqueous solutions by biodegradation coupled with nZVI modified by layered double hydroxide, Chemosphere, p.243, 2020.

X. D. Shi, W. Q. Ruan, J. W. Hu, M. Y. Fan, R. S. Cao et al., Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO) Using an Artificial Neural Network-Genetic Algorithm, vol.7, 2017.

S. Zhu, S. Ho, X. Huang, D. Wang, F. Yang et al., Magnetic Nanoscale Zerovalent Iron Assisted Biochar: Interfacial Chemical Behaviors and Heavy Metals Remediation Performance, 2017.

M. Ahmad, A. R. Usman, M. I. Rafique, and M. I. , Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions, Environ Sci Pollut R, vol.26, pp.15136-15152, 2019.

H. Naderpour, M. Noroozifar, and M. Khorasani-motlagh, Photodegradation of methyl orange catalyzed by nanoscale zerovalent iron particles supported on natural zeolite, J Iran Chem Soc, vol.10, 2013.

R. , Advances in Application of Natural Clay and Its Composites in Removal of Biological, Organic, and Inorganic Contaminants from Drinking Water, Adv Mater Sci Eng, p.2011, 2011.

T. A. Brady, M. Rostam-abadi, and M. J. Rood, Applications for activated carbons from waste tires: natural gas storage and air pollution control, pp.97-102, 1996.

W. Zhang, T. Yu, X. Han, and W. Ying, Removal of 2-ClBP from soil-water system using activated carbon supported nanoscale zerovalent iron, Journal of Environmental Sciences, vol.47, pp.143-152, 2016.

H. B. Gu, H. Lou, D. Ling, B. Xiang, and Z. H. Guo, Polystyrene controlled growth of zerovalent nanoiron/magnetite on a sponge-like carbon matrix towards effective Cr(VI) removal from polluted water, Rsc Adv, vol.6, pp.110134-110145, 2016.

N. Khandelwal, N. Singh, E. Tiwari, and G. K. Darbha, Novel synthesis of a clay supported amorphous aluminum nanocomposite and its application in removal of hexavalent chromium from aqueous solutions, vol.9, pp.11160-11169, 2019.

W. Cherdchoo, S. Nithettham, and J. Charoenpanich, Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea, Chemosphere, pp.758-767, 2019.

C. Lei, S. Yuqing, D. Tsang, and D. Lin, Environmental transformations and ecological effects of ironbased nanoparticles, Environ Pollut, p.232, 2017.

M. Stefaniuk, P. Oleszczuk, and Y. S. Ok, Review on nano zerovalent iron (nZVI): From synthesis to environmental applications, Chem Eng J, vol.287, pp.618-632, 2016.

Y. P. Sun, X. Q. Li, J. S. Cao, W. X. Zhang, and H. P. Wang, Characterization of zero-valent iron nanoparticles, Adv Colloid Interfac, vol.120, pp.47-56, 2006.

P. Lu, H. Lin, W. Yu, and J. Chern, Chemical regeneration of activated carbon used for dye adsorption, J Taiwan Inst Chem E, vol.42, pp.305-311, 2011.

N. T. Thanh, N. Maclean, and S. Mahiddine, Mechanisms of Nucleation and Growth of Nanoparticles in Solution, Chem Rev, vol.114, pp.7610-7630, 2014.

C. C. Ding, W. C. Cheng, Z. X. Jin, and Y. B. Sun, Plasma synthesis of beta-cyclodextrin/Al(OH)(3) composites as adsorbents for removal of UO22+ from aqueous solutions, J Mol Liq, vol.207, pp.224-230, 2015.

J. Shao, X. Yu, M. Zhou, X. Cai, and C. Yu,

. Bentonite/graphene, Oxide for Removal of Copper Ions from Aqueous Solution, Materials, vol.11, p.945, 2018.

A. Liu and W. Zhang, Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), Analyst, pp.4512-4518, 2014.

A. Hamdy, M. K. Mostafa, and M. Nasr, Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation, Water Sci Technol, vol.78, pp.367-378, 2018.

S. Hu, Y. Wu, H. Yao, J. Wei, and S. Zhang, Efficient Removal of Methylene Blue by Fenton-like Reaction using nZVI/GAC Composite as Catalyst, 2015.

B. Yang, Z. Tian, L. Zhang, Y. Guo, and S. Yan, Enhanced heterogeneous Fenton degradation of Methylene Blue by nanoscale zero valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide, J Water Process Eng, vol.5, pp.101-111, 2015.

B. G. Briton, L. Duclaux, Y. Richardson, K. B. Yao, L. Reinert et al., Effectiveness of the dispersion of iron nanoparticles within micropores and mesopores of activated carbon for Rhodamine B removal in wastewater by the heterogeneous Fenton process, Applied Water Science, vol.9, p.166, 2019.

R. L. Frost, Y. Xi, and H. He, Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption, J Colloid Interf Sci, vol.341, pp.153-161, 2010.

P. Yu, H. Yu, Q. Sun, and B. Ma, Filter paper supported nZVI for continuous treatment of simulated dyeing wastewater, vol.9, p.11322, 2019.

R. Dukali, I. Radovi?, D. Stojanovi?, D. Sevic, V. Radojevic et al., Electrospinning of laser dye Rhodamine B-doped poly(methyl methacrylate) nanofibers, J Serb Chem Soc, vol.79, p.867, 2014.

Y. F. Fang, A. Zhou, W. Yang, T. Araya, Y. P. Huang et al., Complex Formation via Hydrogen bonding between Rhodamine B and Montmorillonite in Aqueous Solution, Sci Rep-Uk, vol.8, 2018.

A. Liu, J. Liu, B. Pan, and W. Zhang, Formation of lepidocrocite (?-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water, Rsc Adv, vol.4, pp.57377-57382, 2014.

K. V. Kumar, S. Gadipelli, B. Wood, K. A. Ramisetty, A. A. Stewart et al., Characterization of the adsorption site energies and heterogeneous surfaces of porous materials, J Mater Chem A, vol.7, pp.10104-10137, 2019.

Y. Hua, W. Wang, X. Huang, T. Gu, D. Ding et al., Effect of bicarbonate on aging and reactivity of nanoscale zerovalent iron (nZVI) toward uranium removal, Chemosphere, vol.201, pp.603-611, 2018.

E. Gilpavas, S. Correa-sanchez, and D. A. Acosta, Using scrap zero valent iron to replace dissolved iron in the Fenton process for textile wastewater treatment: Optimization and assessment of toxicity and biodegradability, Environ Pollut, vol.252, pp.1709-1718, 2019.