Skip to Main content Skip to Navigation
Journal articles

A LOFAR observation of ionospheric scintillation from two simultaneous travelling ionospheric disturbances

Richard Fallows 1 Biagio Forte Ivan Astin 2 Tom Allbrook Alex Arnold Alan Wood Gareth Dorrian Maaijke Mevius Hanna Rothkaehl 3 Barbara Matyjasiak Andrzej Krankowski James Anderson 4 Ashish Asgekar 1 I. Max Avruch Mark Bentum 5 Mario Bisi 6 Harvey Butcher Benedetta Ciardi Bartosz Dabrowski Sieds Damstra Francesco de Gasperin Sven Duscha Jochen Eislöffel 7 Thomas M.O. Franzen Michael Garrett Jean-Matthias Grießmeier 8, 9 André Gunst Matthias Hoeft 7 Jörg Hörandel 10 Marco Iacobelli Huib Intema 11 Leon V.E. Koopmans Peter Maat Gottfried Mann Anna Nelles Harm Paas Vishambhar Pandey Wolfgang Reich Antonia Rowlinson 12 Mark Ruiter Dominik Schwarz Maciej Serylak Aleksander Shulevski Oleg Smirnov 13 Marian Soida Matthias Steinmetz Satyendra Thoudam M. Carmen Toribio Arnold van Ardenne Ilse van Bemmel Matthijs H.D. van der Wiel Michiel van Haarlem Rene Vermeulen 1 Christian Vocks Ralph A.M.J. Wijers Olaf Wucknitz Philippe Zarka 14, 9 Pietro Zucca 1
Abstract : This paper presents the results from one of the first observations of ionospheric scintillation taken using the Low-Frequency Array (LOFAR). The observation was of the strong natural radio source Cassiopeia A, taken overnight on 18-19 August 2013, and exhibited moderately strong scattering effects in dynamic spectra of intensity received across an observing bandwidth of 10-80 MHz. Delay-Doppler spectra (the 2-D FFT of the dynamic spectrum) from the first hour of observation showed two discrete parabolic arcs, one with a steep curvature and the other shallow, which can be used to provide estimates of the distance to, and velocity of, the scattering plasma. A cross-correlation analysis of data received by the dense array of stations in the LOFAR "core" reveals two different velocities in the scintillation pattern: a primary velocity of similar to 20-40 ms(-1) with a north-west to south-east direction, associated with the steep parabolic arc and a scattering altitude in the F-region or higher, and a secondary velocity of similar to 110 ms(-1) with a north-east to south-west direction, associated with the shallow arc and a scattering altitude in the D-region. Geomagnetic activity was low in the mid-latitudes at the time, but a weak sub-storm at high latitudes reached its peak at the start of the observation. An analysis of Global Navigation Satellite Systems (GNSS) and ionosonde data from the time reveals a larger-scale travelling ionospheric disturbance (TID), possibly the result of the high-latitude activity, travelling in the north-west to south-east direction, and, simultaneously, a smaller-scale TID travelling in a north-east to south-west direction, which could be associated with atmospheric gravity wave activity. The LOFAR observation shows scattering from both TIDs, at different altitudes and propagating in different directions. To the best of our knowledge this is the first time that such a phenomenon has been reported.
Document type :
Journal articles
Complete list of metadatas

Cited literature [19 references]  Display  Hide  Download

https://hal-insu.archives-ouvertes.fr/insu-02893065
Contributor : Nathalie Pothier <>
Submitted on : Wednesday, July 22, 2020 - 5:32:46 PM
Last modification on : Wednesday, October 14, 2020 - 4:07:16 AM

File

swsc190078.pdf
Publisher files allowed on an open archive

Identifiers

Collections

Citation

Richard Fallows, Biagio Forte, Ivan Astin, Tom Allbrook, Alex Arnold, et al.. A LOFAR observation of ionospheric scintillation from two simultaneous travelling ionospheric disturbances. Journal of Space Weather and Space Climate, EDP sciences, 2020, 10, pp.10. ⟨10.1051/swsc/2020010⟩. ⟨insu-02893065⟩

Share

Metrics

Record views

46

Files downloads

39