Seventeen years of ozone sounding at L'Aquila, Italy: evidence of mid-latitude stratospheric ozone recovery and tropospheric profile changes - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Atmospheric Chemistry and Physics Discussions Year : 2020

Seventeen years of ozone sounding at L'Aquila, Italy: evidence of mid-latitude stratospheric ozone recovery and tropospheric profile changes

(1) , (2) , (2, 3) , (2, 3) , (4) , (2) , (5) , (6) , (7) , (8) , (9) , (8) , (10) , (11) , (10) , (10) , (6) , (12) , (13) , (5) , (7) , (14) , (15) , (16) , (12) , (17) , (15) , (16) , (17) , (18) , (9) , (10) , (11) , (5) , (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Slimane Bekki
Sandip S. Dhomse
  • Function : Author
  • PersonId : 981757
Marion Marchand

Abstract

Ozone profile measurements collected at L'Aquila (Italy, 42.4°N) during seventeen years of radio-sounding 30 (2000-2016) are presented here, with an analysis of derived trends. Model results from the SPARC-CCMI exercise are used in parallel to highlight the physical and chemical mechanisms regulating mid-latitude ozone trends. The statistically significant trends highlighted in time series at L'Aquila are those in the mid-upper stratosphere (+5.9±4.2), mid troposphere https://doi.org/10.5194/acp-2020-525 Preprint. Discussion started: 1 July 2020 c Author(s) 2020. CC BY 4.0 License. 2 (+5.9±2.4) and upper troposphere (+2.5±0.9), all in percent/decade. The upper stratospheric positive trend was already well documented in recent WMO assessments and attributed to the starting decline of stratospheric Cly and Bry and to the 35 stratospheric cooling induced by increasing well mixed greenhouse gases, thus slowing down gas-phase reactions that destroy ozone in the upper stratosphere. The ozone increase in the mid-upper troposphere is largely regulated by the increasing strength of the Brewer-Dobson circulation, which moves more ozone from the tropics to the extratropics and enhances the tropospheric influx from the lowermost stratosphere. This climate feedback mechanism on tropospheric ozone is only partially compensated by the increasing chemical ozone loss associated to higher H2O values in response to the 40 tropospheric warming. We also note that ozone trends obtained in the lower stratosphere are negative (-2.2 percent/decade), but do not result to be statistically significant in our analyses.
Fichier principal
Vignette du fichier
visioni-2020-acp-2020-525.pdf (1.13 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-02886950 , version 1 (07-12-2020)

Licence

Attribution - NonCommercial - CC BY 4.0

Identifiers

Cite

Daniele Visioni, Giovanni Pitari, Vincenzo Rizi, Marco Iarlori, Irene Cionni, et al.. Seventeen years of ozone sounding at L'Aquila, Italy: evidence of mid-latitude stratospheric ozone recovery and tropospheric profile changes. 2020. ⟨insu-02886950⟩
122 View
35 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More