R. A. Berner, Models for carbon and sulfur cycles and atmospheric oxygen; application to Paleozoic geologic history, American Journal of Science, vol.287, pp.177-196, 1987.

D. E. Canfield, The Archean Sulfur Cycle and the Early History of Atmospheric Oxygen, Science, vol.288, pp.658-661, 2000.

I. Halevy, S. E. Peters, and W. W. Fischer, Sulfate Burial Constraints on the Phanerozoic Sulfur Cycle. Science, vol.337, pp.331-334, 2012.

R. E. Sweeney and I. R. Kaplan, PYrite framboid formation: laboratory synthesis and marine sediments, Economic Geology, pp.618-634, 1973.

V. Busigny, The Iron Wheel in Lac Pavin: Interaction with Phosphorus Cycle, pp.205-220, 2016.

D. Rickard, M. Mussmann, J. A. Steadman, . Sedimentary, and . Sulfides, Elements, vol.13, pp.117-122, 2017.

C. März, N. Riedinger, C. Sena, and S. Kasten, Phosphorus dynamics around the sulphate-methane transition in continental margin sediments: Authigenic apatite and Fe(II) phosphates, Marine Geology, vol.404, pp.84-96, 2018.

D. T. Rickard, Kinetics and mechanism of pyrite formation at low temperatures, Am J Sci, vol.275, pp.636-652, 1975.

G. W. Luther, Pyrite synthesis via polysulfide compounds, Geochimica et Cosmochimica Acta, vol.55, pp.2839-2849, 1991.

D. Rickard and G. W. Luther, Chemistry of Iron Sulfides, Chemical Reviews, vol.107, pp.514-562, 2007.

D. Rickard, Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 °C: The rate equation, Geochimica et Cosmochimica Acta, vol.61, pp.115-134, 1997.

C. Archer and D. Vance, Coupled Fe and S isotope evidence for Archean microbial Fe(III) and sulfate reduction, Geology, vol.34, pp.153-156, 2006.

R. Guilbaud, I. B. Butler, and R. M. Ellam, Abiotic Pyrite Formation Produces a Large Fe Isotope Fractionation, Science, vol.332, pp.1548-1551, 2011.

R. Donald and G. Southam, Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite, Geochimica et Cosmochimica Acta, pp.2019-2023, 1999.

J. Thiel, J. M. Byrne, A. Kappler, B. Schink, and M. Pester, Pyrite formation from FeS and H 2 S is mediated through microbial redox activity, Proceedings of the National Academy of Sciences, vol.116, pp.6897-6902, 2019.

D. Rickard, The microbiological formation of iron sulphides. Acta Universitatis Stockholmiensis -Stockholm Contributions in, Geology, 1969.

A. L. Neal, Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria11Associate editor, Geochimica et Cosmochimica Acta, vol.65, pp.223-235, 2001.

W. Stanley and G. Southam, The effect of gram-positive (Desulfosporosinus orientis) and gram-negative (Desulfovibrio desulfuricans) sulfate-reducing bacteria on iron sulfide mineral precipitation, Can. J. Microbiol, vol.64, pp.629-637, 2018.

A. Picard, A. Gartman, D. R. Clarke, and P. R. Girguis, Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite, Geochimica et Cosmochimica Acta, vol.220, pp.367-384, 2018.

A. Picard, A. Gartman, and P. R. Girguis, What Do We Really Know about the Role of Microorganisms in Iron Sulfide Mineral Formation? Front, Earth Sci, vol.4, 2016.

K. Hellige, K. Pollok, P. Larese-casanova, T. Behrends, and S. Peiffer, Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces, Geochimica et Cosmochimica Acta, vol.81, pp.69-81, 2012.

S. Peiffer, Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration, Chemical Geology, vol.400, pp.44-55, 2015.

D. E. Canfield, B. Thamdrup, and S. Fleischer, Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria, Limnology and Oceanography, vol.43, pp.253-264, 1998.

K. Finster, W. Liesack, and B. Thamdrup, Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoxigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment, Applied and Environmental Microbiology, vol.119, p.125, 1998.

P. Kraal, C. P. Slomp, D. C. Reed, G. Reichart, and S. W. Poulton, Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea, Biogeosciences; Katlenburg-Lindau, vol.9, p.2603, 2012.

P. Kraal, N. Dijkstra, T. Behrends, and C. P. Slomp, Phosphorus burial in sediments of the sulfidic deep Black Sea: Key roles for adsorption by calcium carbonate and apatite authigenesis, Geochimica et Cosmochimica Acta, vol.204, pp.140-158, 2017.

Y. Xiong, Phosphorus cycling in Lake Cadagno, Switzerland: A low sulfate euxinic ocean analogue, Geochimica et Cosmochimica Acta, vol.251, pp.116-135, 2019.

M. Egger, T. Jilbert, T. Behrends, C. Rivard, and C. P. Slomp, Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments, Geochimica et Cosmochimica Acta, vol.169, pp.217-235, 2015.

M. Rothe, Sedimentary Sulphur:Iron Ratio Indicates Vivianite Occurrence: A Study from Two Contrasting Freshwater Systems, PLOS ONE, vol.10, p.143737, 2015.

D. C. Reed, B. G. Gustafsson, and C. P. Slomp, Shelf-to-basin iron shuttling enhances vivianite formation in deep Baltic Sea sediments, Earth and Planetary Science Letters, vol.434, pp.241-251, 2016.

J. Cosmidis, Biomineralization of iron-phosphates in the water column of Lake Pavin, Geochimica et Cosmochimica Acta, vol.126, pp.78-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00981391

J. Miot, Mineralogical Diversity in Lake Pavin: Connections with Water Column Chemistry and Biomineralization Processes. Minerals, vol.6, p.24, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01305500

S. Rivas-lamelo, Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin, Geochemical Perspectives Letters, pp.35-41, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01741645

J. S. Berg, Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin, PLOS ONE, vol.14, p.212787, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02066354

P. D. Franzmann and S. J. Dobson, Cell wall-less, free-living spirochetes in Antarctica, FEMS Microbiology Letters, pp.289-292, 1992.

G. F. Steward, J. P. Zehr, R. Jellison, J. P. Montoya, and J. T. Hollibaugh, Vertical Distribution of Nitrogen-Fixing Phylotypes in a Meromictic, Hypersaline Lake. Microbial Ecology, vol.47, pp.30-40, 2004.

R. E. Tiodjio, Vertical distribution of bacteria and archaea in a CO2-rich meromictic lake: A case study of Lake Monoun, Limnologica, vol.60, pp.6-19, 2016.

J. Miot, Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria, Geochimica et Cosmochimica Acta, vol.73, pp.696-711, 2009.

J. Cosmidis, K. Benzerara, and K. Benzerara, Soft x-ray scanning transmission spectromicroscopy, 2014.

X. Qian, Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens, Biochimica et Biophysica Acta (BBA) -Bioenergetics, vol.1807, pp.404-412, 2011.

L. Shi, Extracellular electron transfer mechanisms between microorganisms and minerals, Nature Reviews Microbiology, vol.14, pp.651-662, 2016.

A. T. Vu, N. C. Nguyen, and J. R. Leadbetter, Iron reduction in the metal-rich guts of wood-feeding termites, Geobiology, vol.2, pp.239-247, 2004.

K. L. Straub and B. Schink, Ferrihydrite-Dependent Growth of Sulfurospirillum deleyianum through Electron Transfer via Sulfur Cycling, Appl. Environ. Microbiol, vol.70, pp.5744-5749, 2004.

J. W. Morse and Q. Wang, Pyrite formation under conditions approximating those in anoxic sediments: II. Influence of precursor iron minerals and organic matter, Marine Chemistry, vol.57, pp.187-193, 1997.

M. A. Schoonen and H. L. Barnes, Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100 °C, Geochimica et Cosmochimica Acta, vol.55, pp.1505-1514, 1991.

L. G. Benning, R. T. Wilkin, and H. L. Barnes, Reaction pathways in the Fe-S system below 100 °C, Chemical Geology, vol.167, pp.25-51, 2000.

D. Rickard, I. B. Butler, and A. Oldroyd, A novel iron sulphide mineral switch and its implications for Earth and planetary science, Earth and Planetary Science Letters, pp.85-91, 2001.

R. B. Herbert, S. G. Benner, A. R. Pratt, and D. W. Blowes, Surface chemistry and morphology of poorly crystalline iron sulfides precipitated in media containing sulfate-reducing bacteria, Chemical Geology, vol.87, p.97, 1998.

J. H. Watson, Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphatereducing bacteria, Journal of magnetism and magnetic materials, vol.13, p.30, 2000.

J. P. Gramp, J. M. Bigham, F. S. Jones, and O. H. Tuovinen, Formation of Fe-sulfides in cultures of sulfate-reducing bacteria, Journal of Hazardous Materials, vol.175, pp.1062-1067, 2010.

C. Zhou, R. Vannela, K. F. Hayes, and B. E. Rittmann, Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris, Journal of Hazardous Materials, vol.272, pp.28-35, 2014.

M. Mansor, D. Berti, M. F. Hochella, M. Murayama, and J. Xu, Phase, morphology, elemental composition, and formation mechanisms of biogenic and abiogenic Fe-Cu-sulfide nanoparticles: A comparative study on their occurrences under anoxic conditions, American Mineralogist, vol.104, pp.703-717, 2019.

M. Wan, C. Schröder, S. Peiffer, and . Fe, III):S(-II) concentration ratio controls the pathway and the kinetics of pyrite formation during sulfidation of ferric hydroxides, Geochimica et Cosmochimica Acta, vol.217, pp.334-348, 2017.

B. Mirvaux, Iron Phosphate/Bacteria Composites as Precursors for Textured Electrode Materials with Enhanced Electrochemical Properties, J. Electrochem. Soc, vol.163, pp.2139-2148, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01389110

M. V. Biber, M. Dos-santos-afonso, and W. Stumm, The coordination chemistry of weathering: IV. Inhibition of the dissolution of oxide minerals, Geochimica et Cosmochimica Acta, 1994.

H. Ohfuji and J. Akai, Icosahedral domain structure of framboidal pyrite, American Mineralogist, vol.87, pp.176-180, 2002.

K. Benzerara, S. Bernard, and J. Miot, Mineralogical Identification of Traces of Life, Biosignatures for Astrobiology, pp.123-144, 2019.

R. T. Wilkin and H. L. Barnes, Formation process of framboidal pyrite, Geochimica et Cosmochimica Acta, pp.323-339, 1997.

H. Ohfuji, Structure of framboidal pyrite: An electron backscatter diffraction study, American Mineralogist, vol.90, pp.1693-1704, 2005.

L. G. Love, Micro-organisms and the Presence of Syngenetic Pyrite, The Quarterly Journal of the Geological Society of London, vol.429, p.440, 1957.

M. J. Kohn, L. R. Riciputi, D. Stakes, and D. L. Orange, Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonization?, American Mineralogist, pp.1454-1468, 1998.

R. L. Folk, Nannobacteria and the formation of framboidal pyrite: textural evidence, Journal of the Earth System Science, vol.369, 2005.

D. Wacey, Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping, Geology, vol.43, pp.27-30, 2015.

H. Ohfuji and D. Rickard, Experimental syntheses of framboids-a review, Earth-Science Reviews, vol.71, pp.147-170, 2005.

S. T. Grimes, Understanding fossilization: Experimental pyritization of plants, Geology, vol.29, p.123, 2001.

R. Popa, B. K. Kinkle, and A. Badescu, Pyrite Framboids as Biomarkers for Iron-Sulfur Systems, Geomicrobiology Journal, vol.21, pp.193-206, 2004.

M. Rothe, T. Frederichs, M. Eder, A. Kleeberg, and M. Hupfer, Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: a novel analytical approach, Biogeosciences, vol.11, pp.5169-5180, 2014.

N. Dijkstra, C. P. Slomp, and T. Behrends, Vivianite is a key sink for phosphorus in sediments of the Landsort Deep, an intermittently anoxic deep basin in the Baltic Sea, Chemical Geology, vol.438, pp.58-72, 2016.

M. Egger, T. Jilbert, T. Behrends, C. Rivard, and C. P. Slomp, Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments, Geochimica et Cosmochimica Acta, vol.169, pp.217-235, 2015.

T. Hsu, W. Jiang, and Y. Wang, Authigenesis of vivianite as influenced by methane-induced sulfidization in cold-seep sediments off southwestern Taiwan, Journal of Asian Earth Sciences, vol.89, pp.88-97, 2014.

J. Van-der-lee, L. D. Windt, and . Chess, , 2002.

F. Widdel and N. Pfennig, Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids, Arch. Microbiol, vol.129, pp.395-400, 1981.

A. Tschech and N. Pfennig, Growth yield increase linked to caffeate reduction in Acetobacterium woodii, Archives of Microbiology, vol.137, pp.163-167, 1984.

F. Widdel and . Anaerober, Abbau von Fettsäuren und Benzoesâure durch neu isolierte Arten sulfat-reduzierender Bakterien, Georg-August-Universität zu, 1980.

J. D. Cline, Spectrophotometric determination of hydrogen sulfide in natural waters1, Limnology and Oceanography, vol.14, pp.454-458, 1969.

L. L. Stookey, Ferrozine-a new spectrophotometric reagent for iron, Analytical Chemistry, vol.42, pp.779-781, 1970.

N. D. Bassim, Minimizing damage during FIB sample preparation of soft materials: FIB sample preparation of soft materials, Journal of Microscopy, vol.245, pp.288-301, 2012.

S. Bernard, Ultrastructural and chemical study of modern and fossil sporoderms by Scanning Transmission X-ray Microscopy (STXM), Review of Palaeobotany and Palynology, vol.156, pp.248-261, 2009.

J. Miot, S. Bernard, M. Bourreau, F. Guyot, and A. Kish, Experimental maturation of Archaea encrusted by Fe-phosphates, Scientific Reports, vol.7, 2017.
URL : https://hal.archives-ouvertes.fr/mnhn-02862972

J. Miot, Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation, Geochimica et Cosmochimica Acta, vol.139, pp.327-343, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01016121

X. Wang, H. C. Schröder, U. Schloßmacher, and W. E. Müller, Organized bacterial assemblies in manganese nodules: evidence for a role of S-layers in metal deposition, Geo-Marine Letters, vol.29, pp.85-91, 2009.

F. Bourdelle, Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray microscopy at the Fe L2,3 edges, Contributions to Mineralogy and Petrology, vol.166, pp.423-434, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01053333

A. P. Hitchcock, aXis 2000 -analysis of X-ray images and spectra, 2017.

C. Camacho, BLAST+: architecture and applications, BMC Bioinformatics, vol.10, p.421, 2009.