W. Bach, C. J. Garrido, H. Paulick, J. Harvey, and M. Rosner, Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N, Geochemistry, Geophys. Geosystems, vol.5, 2004.

J. A. Barrat, B. Zanda, F. Moynier, C. Bollinger, C. Liorzou et al., Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes, Geochim. Cosmochim. Acta, vol.83, pp.79-92, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00670053

M. G. Barth, P. R. Mason, G. R. Davies, and M. R. Drury, The Othris Ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge, Lithos, vol.100, pp.234-254, 2008.

,

L. Beccaluva, M. Coltorti, G. Giunta, and F. Siena, Tethyan vs. Cordilleran ophiolites: a reappraisal of distinctive tectono-magmatic features of supra-subduction complexes in relation to the subduction mode, Tectonophysics, vol.393, pp.163-174, 2004.

A. Bézos, S. Escrig, C. H. Langmuir, P. J. Michael, and P. D. Asimow, Origins of chemical diversity of back-arc basin basalts: A segment-scale study of the Eastern Lau Spreading Center, J. Geophys. Res, vol.114, 2009.

M. Bizimis, V. J. Salters, and E. Bonatti, Trace and REE content of clinopyroxenes from suprasubduction zone peridotites. Implications for melting and enrichment processes in island arcs, 2000.

. Geol, , vol.165, pp.164-167

O. Blein, T. Baudin, P. Chevremont, A. Soulaimani, H. Admou et al., , 2014.

J. L. Bodinier, C. Dupuy, and J. Dostal, Geochemistry of Precambrian ophiolites from Bou Azzer, vol.87, pp.43-50, 1984.

C. Boschi, E. Bonatti, M. Ligi, D. Brunelli, A. Cipriani et al.,

G. L. Tonarini, S. Barnes, J. D. Bedini, and R. M. , Serpentinization of mantle peridotites along an uplifted lithospheric section, Mid Atlantic Ridge at 11° N, Lithos, vol.178, pp.3-23, 2013.

,

R. Bousquet, R. El-mamoun, O. Saddiqi, B. Goffé, A. Möller et al., Mélanges and ophiolites during the Pan-African orogeny: the case of the Bou-Azzer ophiolite suite (Morocco), 2008.

. Soc and . London, Spec. Publ, vol.297, pp.233-247

J. F. Casey, Comparison of major and trace element geochemistry of abyssal peridotites and mafic plutonic rocks with basalts from the mark region of the Mid-Atlantic Ridge, Proc. Ocean Drill. Program, Sci. Results 153, 1997.

A. Chabane, Les roches vertes du Protérozoïque Supérieur de Khzama (Siroua, AntiAtlas, Maroc), 1991.

K. R. Chamberlain and S. A. Bowring, Apatite-feldspar U-Pb thermochronometer: a reliable, midrange (?450°C), diffusion-controlled system, Chem. Geol, vol.172, pp.173-200, 2001.

, , pp.242-246

L. Chen, F. Chu, J. Zhu, Y. Dong, X. Yu et al., Major and trace elements of abyssal peridotites: evidence for melt refertilization beneath the ultraslow-spreading, 2015.

N. Clauer, Géochimie isotopique du Strontium des milieux sédimentaires. Application à la géochronologie de la couverture du Craton Ouest-Africain, 1976.

R. Cochrane, R. A. Spikings, D. Chew, J. Wotzlaw, M. Chiaradia et al., High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite, Geochim. Cosmochim. Acta, vol.127, pp.39-56, 2014.

R. G. Coleman and T. E. Keith, A Chemical Study of Serpentinization, 1971.

, J. Petrol, vol.12, pp.311-328

F. Corfu, J. M. Hanchar, P. W. Hoskin, and P. Kinny, Atlas of Zircon Textures, Rev. Mineral. Geochemistry, vol.53, pp.469-500, 2003.

P. R. Craddock, W. Bach, J. S. Seewald, O. J. Rouxel, E. Reeves et al., Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins, Geochim. Cosmochim. Acta, vol.74, pp.5494-5513, 2010.

,

R. S. D-'lemos, J. D. Inglis, and S. D. Samson, A newly discovered orogenic event in Morocco: Neoproterozic ages for supposed Eburnean basement of the Bou Azzer inlier, 2006.

, Precambrian Res, vol.147, pp.65-78

F. Deschamps, M. Godard, S. Guillot, and K. Hattori, Geochemistry of subduction zone serpentinites: A review, Lithos, vol.178, pp.96-127, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903601

H. J. Dick and T. Bullen, Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas, Contrib. to Mineral. Petrol, vol.86, pp.54-76, 1984.

,

Y. Dilek and H. Furnes, Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere, pp.387-411, 2011.

V. Dubois-cote, R. Hebert, C. Dupuis, C. Wang, Y. Li et al., Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet, Chem. Geol, vol.214, pp.265-286, 2005.

J. M. Eiler, A. Crawford, T. Elliott, K. A. Farley, J. W. Valley et al., Oxygen Isotope Geochemistry of Oceanic-Arc Lavas, J. Petrol, vol.41, pp.229-256, 2000.

J. M. Eiler, P. Schiano, J. W. Valley, N. T. Kita, and E. M. Stolper, Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle, Geochemistry, Geophys. Geosystems, vol.8, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00328972

A. El-boukhari, A. Chabane, G. Rocci, and J. L. Tnae, Upper Proterozoic ophiolites of the Siroua Massif, J. African Earth Sci, vol.14, pp.67-80, 1992.

H. El-hadi, J. F. Simancas, D. Martínez-poyatos, A. Azor, A. Tahiri et al.,

F. Bea and F. González-lodeiro, Structural and geochronological constraints on the evolution of the Bou Azzer Neoproterozoic ophiolite, Precambrian Res, vol.182, pp.1-14, 2010.

,

H. Furnes, Y. Dilek, and M. De-wit, Precambrian greenstone sequences represent different ophiolite types, Gondwana Res, vol.27, pp.649-685, 2015.

H. A. Gahlan, S. Arai, A. H. Ahmed, Y. Ishida, Y. M. Abdel-aziz et al., Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian-Cambrian transition, Precambrian Res, vol.140, pp.157-182, 2005.

M. Godard, J. Bodinier, and G. Vasseur, Effects of mineralogical reactions on trace element redistributions in mantle rocks during percolation processes: A chromatographic approach, Earth Planet. Sci. Lett, vol.133, pp.449-461, 1995.

M. Godard, D. Jousselin, and J. Bodinier, Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite, 2000.

, Sci. Lett, vol.180, pp.133-148

M. Godard, Y. Lagabrielle, O. Alard, and J. Harvey, Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle dynamics beneath a slow spreading ridge, Earth and Planetary Science Letters, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00412001

G. Gruau, J. Bernard-griffiths, and C. Lécuyer, The origin of U-shaped rare earth patterns in ophiolite peridotites: assessing the role of secondary alteration and melt/rock reaction, Geochim. Cosmochim. Acta, vol.62, pp.3545-3560, 1998.

Y. Hao, Q. Xia, Z. Tian, J. Liu, Y. Hao et al., Mantle metasomatism did not modify the initial H2O content in peridotite xenoliths from the Tianchang basalts of eastern China, Lithos, vol.260, pp.315-327, 2016.

K. Hefferan, A. Soulaimani, S. D. Samson, H. Admou, J. Inglis et al., A reconsideration of Pan African orogenic cycle in the Anti-Atlas Mountains, Morocco. J. African Earth Sci, vol.98, pp.34-46, 2014.

A. Heuret and S. Lallemand, Plate motions, slab dynamics and back-arc deformation, Phys. Earth Planet. Inter, vol.149, pp.31-51, 2005.

R. Hickey-vargas, G. M. Yogodzinski, O. Ishizuka, A. Mccarthy, M. Bizimis et al., Origin of depleted basalts during subduction initiation and early development of the Izu-Bonin-Mariana island arc: Evidence from IODP expedition 351 site U1438, Amami-Sankaku basin, Geochim. Cosmochim. Acta, vol.229, pp.85-111, 2018.

A. Hochstaedter, J. Gill, R. Peters, P. Broughton, P. Holden et al., Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, Geochemistry, Geophys. Geosystems, vol.2, 2001.

F. Hodel, M. Macouin, A. Triantafyllou, J. Carlut, J. Berger et al., Unusual massive magnetite veins and highly altered Cr-spinels as relics of a Cl-rich acidic hydrothermal event in Neoproterozoic serpentinites (Bou Azzer ophiolite, Precambrian Res, vol.300, pp.151-167, 2017.

F. Hodel, M. Macouin, R. I. Trindade, A. Triantafyllou, J. Ganne et al., Fossil black smoker yields oxygen isotopic composition of Neoproterozoic seawater, Nat. Commun, 2018.
URL : https://hal.archives-ouvertes.fr/insu-02178803

,

P. W. Hoskin and U. Schaltegger, The Composition of Zircon and Igneous and Metamorphic Petrogenesis, Rev. Mineral. Geochemistry, vol.53, pp.27-62, 2003.

J. D. Inglis, J. S. Maclean, S. D. Samson, R. S. D'lemos, H. Admou et al., implications for the timing of deformation and terrane assembly in the eastern Anti-Atlas, J. African Earth Sci, vol.39, pp.277-283, 2004.

,

T. Ishii, P. T. Robinson, H. Maekawa, and R. Fiske, Petrological Studies of Peridotites from, 1992.

, Diapiric Serpentinite Seamounts in the Izu-Ogasawara-Mariana Forearc, vol.125, pp.445-486

,

K. Iyer, H. Austrheim, T. John, and B. Jamtveit, Serpentinization of the oceanic lithosphere and some geochemical consequences: Constraints from the Leka Ophiolite Complex, 2008.

. Geol, , vol.249, pp.66-90

E. Jagoutz, H. Palme, H. Baddenhausen, K. Blum, M. Cendales et al., The abundance of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules, Proc. Lunar Planet. Sci. Conf, vol.10, pp.2031-2050, 1979.

D. R. Janecky and W. E. Seyfried, Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry, Geochim. Cosmochim. Acta, vol.50, pp.1357-1378, 1986.

P. B. Kelemen, K. Koga, and N. Shimizu, Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust, Earth Planet. Sci. Lett, vol.146, pp.475-488, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01691105

J. Kodolányi, T. Pettke, C. Spandler, B. S. Kamber, and K. Gméling, Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones, J. Petrol, vol.53, pp.235-270, 2012.

T. Kogiso, Y. Tatsumi, and S. Nakano, Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts, 1997.

M. Leblanc, Chapter 17 The Late Proterozoic Ophiolites of Bou Azzer (Morocco): Evidence for Pan-African Plate Tectonics, Dev. Precambrian Geol, vol.4, pp.435-451, 1981.

M. Leblanc, Ophiolites précambriennes et gites arséniés de Cobalt (Bou Azzer -Maroc), 1975.

B. E. Leake, A. R. Woolley, W. D. Birch, E. A. Burke, G. Ferraris et al., Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association's amphibole nomenclature, Am. Mineral, vol.89, pp.883-887, 2004.

Z. X. Li, S. V. Bogdanov, A. S. Collins, A. Davidson, B. De-waele et al.,

S. A. Pisarevsky, K. Thrane, and V. Vernikovsky, Assembly, configuration, and break-up history of Rodinia: a synthesis, Precambrian Research, vol.160, pp.179-210, 2008.

C. J. Macleod, J. Lissenberg, C. Bibby, and L. E. , Moist MORB" axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin, Geology, vol.41, pp.459-462, 2013.

,

B. Malvoisin, Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical, Earth Planet. Sci. Lett, vol.430, pp.75-85, 2015.

C. Marchesi, C. J. Garrido, M. Godard, F. Belley, and E. Ferré, Migration and accumulation of ultra-depleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia), Chem. Geol, vol.266, pp.171-186, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00429333

W. F. Mcdonough and S. Sun, The composition of the Earth, Chem. Geol, vol.120, pp.223-253, 1995.

, , pp.140-144

A. Miyashiro, F. Shido, and M. Ewing, Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24° and 30° North Latitude, Contrib. to Mineral. Petrol, vol.23, pp.117-127, 1969.

,

R. D. Müller, M. Sdrolias, C. Gaina, and W. R. Roest, Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochemistry, Geophys. Geosystems, vol.9, 2008.

D. D. Naidoo, S. H. Bloomer, A. Saquaque, and K. Hefferan, Geochemistry and significance of metavolcanic rocks from the Bou Azzer-El Graara ophiolite (Morocco), Precambrian Res, vol.53, pp.79-97, 1991.

O. Navon and E. Stolper, Geochemical Consequences of Melt Percolation: The Upper Mantle as a Chromatographic Column, J. Geol, vol.95, pp.285-307, 1987.

Y. Niu, Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-melting Processes Beneath Mid-Ocean Ridges, J. Petrol, vol.45, 2004.

J. L. Palandri and M. H. Reed, Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation, 2004.

, Cosmochim. Acta, vol.68, pp.1115-1133

J. S. Pallister and R. J. Knight, Rare-earth element geochemistry of the Samail Ophiolite near Ibra, Oman. J. Geophys. Res. Solid Earth, vol.86, pp.2673-2697, 1981.

I. J. Parkinson and J. A. Pearce, Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting, J. Petrol, vol.39, pp.1577-1618, 1998.

H. Paulick, W. Bach, M. Godard, J. C. De-hoog, G. Suhr et al., Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, Implications for fluid/rock Journal Pre-proof, vol.15, 2006.

,

J. A. Pearce, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust, Lithos, vol.100, pp.14-48, 2008.

,

J. A. Pearce, P. F. Barker, S. J. Edwards, I. J. Parkinson, and P. T. Leat, Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib. to Mineral. Petrol, vol.139, pp.36-53, 2000.

J. A. Pearce, S. J. Lippard, and S. Roberts, Characteristics and tectonic significance of suprasubduction zone ophiolites, p.16, 1984.

J. A. Pearce and R. J. Stern, Origin of back-arc basin magmas: Trace element and isotope perspectives, pp.63-86, 2006.

J. A. Pearce, R. J. Stern, S. H. Bloomer, and P. Fryer, Geochemical mapping of the Mariana arcbasin system: Implications for the nature and distribution of subduction components, Geochemistry, Geophys. Geosystems, vol.6, 2005.

A. Prinzhofer and C. J. Allègre, Residual peridotites and the mechanisms of partial melting, Earth Planet. Sci. Lett, vol.74, pp.251-265, 1985.

M. K. Reagan, O. Ishizuka, R. J. Stern, K. A. Kelley, Y. Ohara et al., Fore-arc basalts and subduction, 2010.

G. Geochemistry, , vol.11

M. K. Reagan, J. A. Pearce, K. Petronotis, R. R. Almeev, A. J. Avery et al., Subduction initiation and ophiolite crust: new insights from IODP drilling, Int. Geol. Rev, vol.59, pp.1439-1450, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01685628

S. Saka, I. Uysal, R. M. Akmaz, M. Kaliwoda, R. Hochleitner et al., The effects of partial melting, melt-mantle interaction and fractionation on ophiolite generation: Constraints from the late Cretaceous Pozant?-Karsant? ophiolite, southern Turkey, Lithos, vol.202, issue.203, pp.300-316, 2014.

S. D. Samson, J. D. Inglis, R. S. D'lemos, H. Admou, J. Blichert-toft et al., , 2004.

G. Geochronological and N. , Hf isotopic constraints on the origin of Neoproterozoic plagiogranites in the Tasriwine ophiolite, vol.135, pp.133-147

A. Saquaque, H. Admou, J. Karson, K. Hefferan, and I. Reuber, Precambrian accretionary tectonics in the Bou Azzer-El Graara region, Geology, vol.17, p.1107, 1989.

I. P. Savov, J. G. Ryan, M. Antonio, and P. Fryer, Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc, J. Geophys. Res, vol.112, 2007.

I. P. Savov, J. G. Ryan, M. Antonio, K. Kelley, and P. Mattie, Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones, Geochemistry, Geophys. Geosystems, vol.6, 2005.

B. Schoene and S. A. Bowring, Determining accurate temperature-time paths from U-Pb thermochronology: An example from the Kaapvaal craton, southern Africa, Geochim. Cosmochim. Acta, vol.71, pp.165-185, 2007.

R. Shinjo, S. Chung, Y. Kato, and M. Kimura, Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin, J. Geophys. Res. Solid Earth, vol.104, pp.10591-10608, 1999.

,

J. E. Snow and H. J. Dick, Pervasive magnesium loss by marine weathering of peridotite, 1995.

, Geochim. Cosmochim. Acta, vol.59, pp.4219-4235

A. Soulaimani, M. Jaffal, L. Maacha, A. Kchikach, A. Najine et al., Modélisation magnétique de la suture ophiolitique de Bou Azzer-El Graara, 2006.

, Implications sur la reconstitution géodynamique panafricaine, Comptes Rendus Geosci, vol.338, pp.153-160

A. Soulaimani, H. Ouanaimi, and L. Baidder, The Anti-Atlas Pan-African Belt (Morocco): Overview and pending questions, Comptes Rendus Geosci, vol.350, pp.279-288, 2018.

,

R. J. Stern, Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time, Geology, vol.33, 2005.

R. J. Stern, M. Reagan, O. Ishizuka, Y. Ohara, and S. Whattam, To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites, Lithosphere, vol.4, pp.469-483, 2012.

S. Sun and W. F. Mcdonough, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, p.42, 1989.

B. Taylor and F. Martinez, Back-arc basin basalt systematics, Earth Planet. Sci. Lett, vol.210, pp.481-497, 2003.

R. J. Thomas, L. P. Chevallier, P. G. Gresse, R. E. Harmer, B. M. Eglington et al.,

C. H. Beer, J. E. Martini, G. S. De-kock, P. H. Macey, and B. A. Ingram, Precambrian evolution of the Sirwa Window, Precambrian Res, vol.118, pp.1-57, 2002.

,

L. Tian, P. R. Castillo, J. W. Hawkins, D. R. Hilton, B. B. Hanan et al., Major and trace element and Sr-Nd isotope signatures of lavas from the Central Lau Basin: Implications for the nature and influence of subduction components in the back-arc mantle, J. Volcanol. Geotherm. Res, vol.178, pp.657-670, 2008.

D. Tollstrup, J. Gill, A. Kent, D. Prinkey, R. Williams et al., Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, 2010.

,

A. Triantafyllou, J. Berger, H. Diot, N. Ennih, and G. Plissart, Panafrican obduction, crushing & shearing of the Neoproterozoic Khzama ophiolite, 4th International Geologica Belgica Meeting, pp.11-14, 2012.

A. Triantafyllou, J. Berger, J. Baele, O. Bruguier, H. Diot et al.,

S. Vandycke and A. Watlet, Intra-oceanic arc growth driven by magmatic and tectonic processes recorded in the Neoproterozoic Bougmane arc complex, Precambrian Res, vol.304, pp.39-63, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01737911

A. Triantafyllou, J. Berger, J. Baele, H. Diot, N. Ennih et al.,

O. Bruguier, P. Spagna, and S. Vandycke, The Tachakoucht-Iriri-Tourtit arc complex (Moroccan Anti-Atlas): Neoproterozoic records of polyphased subduction-accretion dynamics during the Pan-African orogeny, J. Geodyn, vol.96, pp.81-103, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01825275

A. Triantafyllou, A. Watlet, and C. Bastin, Geolokit: An interactive tool for visualising and exploring geoscientific data in Google Earth, Int. J. Appl. Earth Obs. Geoinf, vol.62, pp.39-46, 2017.

,

A. Triantafyllou, J. Berger, J. M. Baele, N. Mattielli, M. N. Ducea et al., , 2020.

, Episodic magmatism during the growth of a Neoproterozoic oceanic arc

, Precambrian Research, vol.339, p.105610

M. Ulrich, C. Picard, S. Guillot, C. Chauvel, D. Cluzel et al., Multiple melting stages and refertilization as indicators for ridge to subduction formation: The New Caledonia ophiolite, Lithos, vol.115, pp.223-236, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02044673

I. Uysal, E. Y. Ersoy, Y. Dilek, A. Kapsiotis, and E. Sar?fak?o?lu, Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey. Lithos, vol.246, pp.228-245, 2016.

,

I. Uysal, E. Y. Ersoy, Y. Dilek, M. Escayola, E. Sar?fak?o?lu et al., Depletion and refertilization of the Tethyan oceanic upper mantle as revealed by the early Jurassic Refahiye ophiolite, NE Anatolia-Turkey. Gondwana Res, vol.27, pp.594-611, 2015.

,

?. Uysal, E. Y. Ersoy, O. Karsl?, Y. Dilek, M. B. Sad?klar et al., Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, 2012.

, PGE), and Re-Os isotope systematics, Lithos, vol.132, pp.50-69

P. Vermeesch, IsoplotR: A free and open toolbox for geochronology, Geosci. Front, vol.9, pp.1479-1493, 2018.

J. Vernières, M. Godard, and J. Bodinier, A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth's upper mantle, J. Geophys. Res. Solid Earth, vol.102, pp.24771-24784, 1997.

G. J. Walsh, F. Benziane, J. N. Aleinikoff, R. W. Harrison, A. Yazidi et al., Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer-El Graara inliers, Precambrian Res, vol.216, pp.23-62, 2012.

,

J. M. Warren, Global variations in abyssal peridotite compositions, Lithos, vol.248, issue.251, pp.193-219, 2016.

,

J. M. Warren and N. Shimizu, Cryptic Variations in Abyssal Peridotite Compositions: Evidence for Shallow-level Melt Infiltration in the Oceanic Lithosphere, J. Petrol, vol.51, pp.395-423, 2010.

,

J. A. Winchester and P. A. Floyd, Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chem. Geol, vol.20, pp.325-343, 1977.

, , pp.90057-90059

D. Woelki, M. Regelous, K. M. Haase, R. H. Romer, and C. Beier, Petrogenesis of boninitic lavas from the Troodos Ophiolite, and comparison with Izu-Bonin-Mariana fore-arc crust, Earth Planet. Sci. Lett, vol.498, pp.203-214, 2018.

R. K. Workman and S. R. Hart, Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sci. Lett, vol.231, pp.53-72, 2005.

C. You, P. Castillo, J. Gieskes, and L. Chan, Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones, 1996.

H. Zou, Quantitative geochemistry, 2007.