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Abstract The Tajik basin archives the orogenic evolution of the Pamir hinterland.
Stratigraphic‐sedimentologic observations from Cretaceous‐Pliocene strata along its eastern margin
describe the depositional environment and basin‐formation stages in reaction to hinterland exhumation and
basin inversion. During the Late Cretaceous‐Eocene (preorogenic stage: ~100–34 Ma), a shallow‐marine to
terrestrial basin extended throughout Central Asia. An alluvial plain with influx of conglomerate bodies
(Baljuvon Formation) indicates a first pulse of hinterland erosion and foreland‐basin formation in the late
Oligocene‐early Miocene (synorogenic stage Ia: ~34–23 Ma). Further hinterland exhumation deposited
massive alluvial conglomerates (Khingou Formation) in the early‐middle Miocene (synorogenic stage Ib:
~23–15 Ma). Westward thickening growth strata suggest transformation of the Tajik basin into the Tajik
fold‐thrust belt in the middle‐late Miocene (synorogenic stage IIa: ~15–5 Ma). Increased water supply led to
the formation of fluvial mega‐fans (Tavildara Formation). Latest Miocene‐Pliocene shortening
constructed basin morphology that blocked sediment bypass into the central basin from the east (Karanak
Formation), triggering drainage‐system reorganization from transverse to longitudinal sediment transport
(synorogenic stage IIb: < ~5 Ma). Accelerated shortening (~27–20 Ma) and foreland‐directed collapse
(~23–12 Ma) of Pamir‐plateau crust loaded the foreland and induced synorogenic stages Ia and Ib. Coupling
of Indian and Asian cratonic lithospheres and onset of northward and westward delamination/rollback
of Asian lithosphere (i.e., lithosphere of the Tajik basin) beneath the Pamir at ~12–11 Ma transformed the
Tajik basin into the Tajik fold‐thrust belt (synorogenic stage IIa). The timing of the sedimentologically derived
basin reconfiguration matches the thermochronologically derived onset of Tajik‐basin inversion at ~12 Ma.

1. Introduction: Retro‐foreland Tajik Basin and Possible
Foreland‐Hinterland Coupling

Sedimentologic processes along the margins of continental foreland basins record the progradation of short-
ening and exhumation in the orogenic hinterland (e.g., DeCelles & Giles, 1996). Accordingly, the foreland
basins fringing the Pamir‐Tibet orogen have served as archives for tracing the India‐Asia collision from its
onset at ~50 Ma to Present (e.g., Allen et al., 1991; Bande et al., 2015; DeCelles et al., 1998; Einsele, 1996;
Najman et al., 2009; Wang et al., 2013; Xiao et al., 2012; Zheng et al., 2006). One underexplored archive is
the Tajik basin in the Afghan‐Tajik depression west of the Pamir salient (Figures 1a to 1c). Its up to
10‐km‐thick deposits comprise Triassic‐Oligocene preorogenic strata of alternating shallow‐marine to con-
tinental facies, and Miocene‐Pliocene synorogenic clastic continental deposits, sourced from the rising
Pamir in the east, the Hindu Kush in the south, and the Tian Shan in the north (e.g., Burtman & Molnar,
1993; Carrapa et al., 2015; Chapman et al., 2019; Dzhalilov et al., 1982; Klocke et al., 2017). Most research
on the synorogenic deposits dates back to the 1960s–1980s (e.g., Bosov, 1961, 1972; Dzhalilov et al., 1982;
Leonov, 1977; Schwab et al., 1980). Modern facies analysis, in particular on the synorogenic
foreland‐basin strata, will―together with studies in the hinterland―enable an understanding of the cou-
pling between the evolution of this retro‐foreland basin and its orogenic hinterland—the Pamir.
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Figure 1. (a) The Afghan‐Tajik depression (green frame) in the India‐Asia collision zone. (b) The Afghan‐Tajik depression in the geography of Central Asia.
(c) Digital elevation model of the Afghan‐Tajik depression and its surrounding mountain belts with the major fault and fold traces modified from Abdulhameed
et al. (2020). The Tajik basin is the part of the Afghan‐Tajik depression north of the Amu‐Darya floodplain and west of the Darvaz fault zone. The orange
rectangles locate the study areas at the eastern margin of the Tajik basin. (d) Cross‐sectional sketch of the ~23‐ to 15‐Ma evolution of the Pamir and is foreland
modified from Abdulhameed et al. (2020). The ~37‐ to 20‐Ma crustal thickening is sketched by the thrust stacks and recumbent fold nappes of the Central
Pamir. The ~23‐ to 15‐Ma collapse of the Pamir‐plateau crust transferred the deformation front from the Central to the North Pamir inducing foreland subsidence.
The ductile crust (red) is dragging the middle and upper crust foreland‐ward. The model geometries and kinematics are akin to models proposed for
foreland‐directed plateau collapse (e.g., Rey et al., 2010). (e) Cross‐sectional sketch of the constraints imposed by the foreland shortening of the Tajik crust on the
geometry of the Tajik lithosphere beneath the Pamir (modified from Gągała et al., 2020, and Abdulhameed et al., 2020). The seismicity cluster and subducted
Tajik middle crust approximate the down‐dip extension of the detachments of the Tajik foreland. This geometry defines the curved upper interface of the rolling
back Tajik lithosphere. The shortening estimates in the western Tian Shan and the Tajik fold‐thrust belt and the yet unquantified amounts of accretion and deep
subduction of Tajik upper and middle crust in and beneath the North Pamir are considered a proxy for the amount of convergence since ~12 Ma. The
sinistral‐normal Karakul‐Sarez fault system and the red zone on the right side of the cross section highlight the upper to lower crustal flow of the Pamir‐plateau
crust toward the foreland. See text for references and discussion.
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The Afghan‐Tajik depression covers ~44,000 km2 and stretches from western Tajikistan and southeastern
Uzbekistan to northern Afghanistan (Figure 1b). Its boundaries in the north, east, and south are, respec-
tively, the broad dextral transpressive deformation zone in the southwestern Tian Shan (Babaev, 1988;
Käßner et al., 2016), the sinistral Darvaz fault zone (e.g., Trifonov, 1978), and the dextral‐reverse
Alburz‐Marmul fault zone (e.g., Wellman, 1966). The Amu Darya river drains the depression to the Aral
Sea. The inversion of the depression into the Tajik fold‐thrust belt since the Miocene (e.g., Abdulhameed
et al., 2020; Chapman et al., 2017, 2019; Gągała et al., 2020; Hamburger et al., 1992; Kufner et al., 2018;
Leith & Alvarez, 1985; Nikolaev, 2002) has produced arcuate, grossly N trending synform and antiforms,
subparallel to the western edge of the Pamir; the antiforms are defined by intrabasin mountain ranges
(Figure 1c). About E‐W shortening in the fold‐thrust belt was accompanied by anticlockwise rotation
(e.g., Pozzi & Feinberg, 1991; Thomas et al., 1994) that decreases from up to 50° to negligible from the
Pamir margin to the western foreland buttress. Excellent outcrop of the Mesozoic‐Cenozoic strata along
the depression's eastern margin (Figure 1c) allows the reconstruction of the basin evolution, in particular
the coupling between the hinterland tectonics and foreland response. In the following, we refer to the
Tajik part of the Afghan‐Tajik depression—our working area—as the Tajik basin.

Geologic, geophysical, structural, and geo‐thermochronologic studies in the Pamir outline a prolonged but
phased shortening history, accompanied by synorogenic, upper to locally lower crustal extension. These
events—with the bulk displacement directions parallel to the India‐Asia convergence—are accompanied
by lateral extrusion, that is, out‐of‐the‐orogen, mostly west directed material flow (e.g., Kufner et al., 2018;
Rutte, Ratschbacher, Schneider, et al., 2017; Rutte, Ratschbacher, Khan, et al., 2017; Schurr et al., 2014;
Worthington et al., 2020). This evolution appears to be driven by lithosphere‐scale processes that caused
first‐order changes in the orogen at ~23–19Ma and ~12–11Ma. Thickening of the Asian (“Gondwana”) crust
in the Central and South Pamir has been active since at least 37 Ma, accelerated after ~27 Ma, and switched
to crustal extension at ~23–19 Ma (Hacker et al., 2017; Rutte, Ratschbacher, Schneider, et al., 2017; Rutte,
Ratschbacher, Khan, et al., 2017; Stübner, Ratschbacher, Rutte, et al., 2013; Stübner, Ratschbacher, Weise,
et al., 2013; Stearns et al., 2013, 2015; Smit et al., 2014; Worthington et al., 2020). The change from crustal
shortening to extension at ~23–19 Ma was contemporaneous with the proposed slab breakoff of Greater
India from cratonic India, which likely triggered gravitational collapse of the Pamir‐plateau crust (e.g.,
DeCelles et al., 2011; Replumaz et al., 2010; Rutte, Ratschbacher, Schneider, et al., 2017; Rutte,
Ratschbacher, Khan, et al., 2017; Stearns et al., 2013, 2015). Accelerated thickening, overall foreland advance
of the orogen due to the India‐Asia convergence, and in particular the crustal collapse explain the relocation
of the deformation front from the Central Pamir to the North Pamir at this time (Rutte, Ratschbacher,
Schneider, et al., 2017; Rutte, Ratschbacher, Khan, et al., 2017).

Kufner et al. (2016) inferred that northward advancing cratonic Indian lithosphere underneath the Pamir is
currently forcing rollback of Asian (“Tajik”) lithosphere—the basement of the Tajik‐Tarim basins, including
that of the North Pamir. In the Pamir, the southern edge of this Tajik lithosphere must have been positioned
~380 km south of its present‐day position andwas roughly aligned with the southern, present‐daymargins of
the Tajik and Tarim basins west and east of the Pamir. They calculated that delamination/rollback of
~380 km of this lithosphere has taken ~12–11 Myr. The northward and westward rollback since ~12 Ma
may explain the neotectonic deformation along the Pamir front and its western foreland. Dominant ~N‐S
shortening is accompanied by westward flow (lateral extrusion) of Pamir‐plateau crust into the
Afghan‐Tajik depression where it is causing thin‐skinned shortening of the Tajik‐basin sediments above a
décollement in Jurassic evaporites, producing the Tajik fold‐thrust belt (Figure 1c; e.g., Gągała et al., 2020;
Kufner et al., 2018; Nikolaev, 2002; Rutte, Ratschbacher, Schneider, et al., 2017; Rutte, Ratschbacher,
Khan, et al., 2017; Stübner, Ratschbacher, Rutte, et al., 2013; Schurr et al., 2014). Using thermochronology,
Abdulhameed et al. (2020) showed that inversion of the Tajik basin indeed started at ~12 Ma.

In Figures 1d and 1e, we visualize diagrammatically the first‐order geometries and kinematics of the ~23‐ to
15‐Ma and ~12‐ to 0‐Ma tectonic events in hinterland (Pamir plateau) to foreland (North Pamir and Tajik
basin) cross sections. In Figure 1d, adopted from Abdulhameed et al. (2020), the ~37‐ to 19‐Ma crustal thick-
ening is schematically shown by the thrust stacks and recumbent fold nappes of the Central Pamir (Hacker
et al., 2017; Rutte, Ratschbacher, Schneider, et al., 2017; Rutte, Ratschbacher, Khan, et al., 2017). Thickening
was followed by gravitational collapse of the upper to (locally lower) crust of the Pamir plateau along the
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normal‐sense shear zones of the Central Pamir and South Pamir during the formation of the Pamir gneiss
domes (extensional metamorphic core complexes). The ~23‐ to 19‐Ma onset of collapse of the leading edge
of the Pamir plateau in the Central Pamir is interpreted to propel shortening north and northwest of it, trans-
ferring the deformation from the Central to the North Pamir (Rutte, Ratschbacher, Schneider, et al., 2017;
Rutte, Ratschbacher, Khan, et al., 2017; Stübner, Ratschbacher, Rutte, et al., 2013; Stübner, Ratschbacher,
Weise, et al., 2013; Worthington et al., 2020). The ductile crust (red in Figure 1d) likely contains a crustal
flow channel, dragging the middle and upper crust foreland‐ward. The geometries and kinematics are akin
to models of foreland‐directed plateau collapse (e.g., Rey et al., 2010; their Figures 2 and 3).

Figure 1e sketches the constraints imposed by the ~12‐ to 0‐Ma foreland shortening of the Tajik crust on the
geometry of the Tajik lithosphere beneath the Pamir (modified fromGągała et al., 2020). The seismicity clus-
ter in the Tajik lower crust and the subducted Tajik middle crust (Sippl, Schurr, Yuan, et al., 2013; Sippl,
Schurr, Tympel, et al., 2013) approximate the down‐dip extension of the detachments of the Tajik
foreland. This geometry defines the curved upper interface of the rolling back Tajik‐basin lithosphere; it is
mirrored by the Tajik Moho, traced down to ~90 km (Schneider et al., 2019). The ≥175‐km shortening esti-
mates in the Tian Shan foreland and the inverted Tajik basin—the Tajik fold‐thrust belt (Gągała et al., 2020)
—and the yet unquantified amounts of accretion and deep subduction (Sippl, Schurr, Tympel, et al., 2013) of
Tajik upper‐middle crust beneath the North Pamir are proxies for the amount of convergence since ~12 Ma.
The sinistral‐normal Karakul‐Sarez fault system and the red zone on the right side of the cross section sketch
the upper to lower crustal flow from the thick Pamir‐plateau crust to the foreland depression (Stübner,
Ratschbacher, Rutte, et al., 2013; Sass et al., 2014). The inset on the left in Figure 1e shows the
structural‐stratigraphic features at the current eastern erosional margin of the Tajik basin. The sinistral
strike‐slip geometry of the active Darvaz fault zone is at odds with the thin‐skinned shortening of the
Tajik fold‐thrust belt that cannot be conveyed across a vertical fault interface. Likely, this geometry and kine-
matics is a young feature, largely postdating the thin‐skinned thrusting in the Tajik fold‐thrust belt (cf.
Kufner et al., 2018).

Herein, we use stratigraphic and sedimentologic observations from Cretaceous‐Pliocene strata along the
eastern margin of the Tajik basin―the Shurobod area (Figure 2)―to describe the depositional environment,
drainage‐system evolution, and stages of basin formation in reaction to the progressive hinterland exhuma-
tion and inversion of the Tajik basin. These are combined with data from sediment petrography and geo-
chemistry to detect source‐area changes in the hinterland. In particular, we define distinct stages of the
evolution of the Tajik basin, that is, the change from the epi‐continental to the synorogenic foreland basin,
and the evolution of the synorogenic foreland basin into a foreland fold‐thrust belt. Furthermore, we aim to
link the phased evolutions of both the Tajik basin and the Pamir hinterland. We suggest that the crustal
thickening and ultimately the collapsing Pamir‐plateau crust loaded the foreland, causing the initial phase
and the major phase of subsidence at ~34–23 and ~23–15 Ma, respectively, when a foreland basin was estab-
lished. The coupling between the Indian and Asian lithospheres initiated the Tajik‐basin inversion, that is,
the switch from the foreland basin to the fold‐thrust belt and the major phase of Tian Shan mountain build-
ing at ~12 Ma.

2. Working Area and Methods

Our sedimentologic analysis integrates field‐based sedimentology, lithofacies analysis, petrography, and
inorganic geochemistry of an ~500‐km2 area in the Shurobod region of the eastern Tajik basin (Figures 1
and 2). There, the Lower Cretaceous‐Neogene, preorogenic to synorogenic basin fill is exposed in ~N trend-
ing ranges, stretching from the Panj‐River valley in the east to the city of Kulyab (Figure 2a) in the west.
Continuous exposure is accessible in W and SW trending gorges and along the road from Shurobod to the
Panj and Parapanj valleys (Figure 2a; sections Shurobod Pass, Chilishtak One, Chilishtak Two, Shurobod
South, and Shurobod North) and along the northern Panj valley (section Obi Khudkham). We studied
further exposures around Imam Askar (section Imam Askar), the highest range of the Shurobod area, along
the road from Shurobod to Kulyab (section Daraiob Pass), and at a military training site close to Kulyab (sec-
tions Karanak Crook and Cantaloupe).

We selected these sections to assemble a standard section of the Upper Cretaceous‐Neogene strata and to
investigate lateral variations within individual lithostratigraphic units using existing 1:200,000 geologic
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Figure 2. (a) Geologic map of the eastern margin of the Tajik basin abutting on the western spur of the Pamir. Studied sections are marked. (b) Simplified cross
sections A and B in (a) highlighting the major structures and the growth strata in stratigraphic units N1

2hn and N1
3td (Khingou and Tavildara Formations).

(c) View toward NW along the Panj and Parapanj valleys. The eastern Tajik basin exposes Cretaceous to lower Miocene layer‐cake strata followed by middle‐upper
Miocene growth strata and a Miocene angular unconformity exposed around Imam Askar. Planes illustrate declining dips from older to younger strata.
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maps (GRI, 1961–1965; see Text S1 in the supporting information) and our own mapping. We logged these
sections and studied their three‐dimensional sedimentary architecture. For the reconstruction of flow
directions, we recorded the dips of imbricated clasts and fore‐sets of cross‐bedded strata and the plunge of
scour lineations; measurements of at least 20 imbricated clasts per conglomerate bed and at least three
fore‐set dips were averaged. We corrected all flow directions for structural tilt and describe all spatial
relations with regard to their present orientation, since the precise timing of the paleomagnetically
determined rotations is unknown (Pozzi & Feinberg, 1991; Thomas et al., 1994). We sampled sandstones,
representing distinct lithofacies types (LFTs) of bed load, and analyzed their granulometry and modal
composition in thin sections and polished slabs. We used the Gazzi‐Dickinson method for the
quantification of the modal composition, counting at least 400 grains per thin section, to minimize the
dependence of rock composition on grain size (Dickinson, 1970; Gazzi, 1966; Ingersoll et al., 1984). We
analyzed mudstones and siltstones, representing the fine‐grained lithofacies of suspension load, for
variations in the major oxides and trace elements; these were measured at ALS Global (Loughrea,
Ireland) with X‐ray fluorescence and inductively coupled plasma mass spectroscopy. Table 1 summarizes
the studied stratigraphic units and their thicknesses, and Table 2 provides the descriptions and interpreta-
tions of the observed LFTs. Table S1 in the supporting information lists the geochemical data, and
Table S2 provides correlations between various geochemical data.

3. Late Cretaceous‐Neogene Stratigraphy

The strata of the Tajik basin are classically subdivided into preorogenic and synorogenic stages based on
their depositional character (Figures 3 and 4; e.g., Hamburger et al., 1992; Leith, 1982; Nikolaev, 2002).
The preorogenic stage encompasses <5‐km‐thick Upper Triassic‐Jurassic to Paleogene shallow marine to
fine‐grained clastic continental deposits; in the Shurobod area, the Upper Cretaceous‐Paleogene preorogenic
deposits—studied herein—are ~600 m thick (Table 1). The basal décollement of the Tajik fold‐thrust belt of
the Afghan‐Tajik depression lies within the Kimmeridgian‐Tithonian evaporites (e.g., Gubin, 1960; Leith
et al., 1981). Biostratigraphy and partly magnetostratigraphy provide a firm control on the age and lateral
correlation of the Jurassic, Cretaceous, and Paleogene basin‐wide marine strata (Bosboom et al., 2013,
2015; Chapman et al., 2019; Dzhalilov et al., 1982; Kaya et al., 2019). In contrast, the chronostratigraphic
classification of the Neogene synorogenic deposits is controversial. These continental, in general,
coarse‐grained clastic deposits vary laterally throughout the Tajik basin and were dated and correlated by
lithostratigraphic similarities and spore and pollen assemblages (Dzhalilov et al., 1982). Ostracods and rare
vertebrate remains provide accurate but isolated age control (e.g., Forsten & Sharapov, 2000). The Neogene
succession is 5.2–7.5 km thick in the eastern part of the basin (Table 1; Kondur et al., 1974; Dzhalilov
et al., 1982).

Table 1
Stratigraphic Units and Their Thickness

Stage Epoch Formation Member Thickness (m)

Synorogenic Pliocene Karanak 1,200
Miocene Tavildara 1,500–2,300

Khingou 1,100–1,600
Baljuvon (total) 800–1,100

Baljuvon Childara 250–600
Baljuvon Kamolin 120–300

Oligocene Baljuvon Shurisay 300–400
Preorogenic Eocene Sumsar 50

Isfara‐Hanabad 15
Rishtan —

Turkestan —

Alai 70
Suzak 12

Paleocene Bukhara 50
Akdjar 130

Late Cretaceous undifferentiated 275
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Assorting the sedimentary deposits into the established stratigraphic formations (subsequently abbre-
viated as Fm) is complicated by the existence of several classification schemes, especially for the
better‐dated preorogenic stages (Figure 3). The synorogenic stages have been described more consistently;
however, opinions diverge on the age of the Fm boundaries (Dzhalilov et al., 1982; Forsten & Sharapov,
2000; Nikolaev, 2002). Although a local stratigraphic scale (LSS; Figure 3) for the Tajik basin
exists (Davidzon et al., 1982; Dzhalilov et al., 1982), we utilized the regional stratigraphic scale to facil-
itate future research, as the regional stratigraphic scale appears in the geologic map of western Central
Asia (Vlasov et al., 1991). We use the Member subdivision of the LSS for the Baljuvon Fm, as it best
reflects the observed subdivision of genetically linked deposits in the Shurobod area (Table 1 and
Figure 3).

In the studied sections, the preorogenic strata comprise the Late Cretaceous to Paleogene epochs (Table 1),
with parts of the middle and late Eocene missing (Figure 4). The exposed synorogenic deposits span the
Oligocene‐early Pliocene. The first formation signaling tectonic activity―the Oligocene Baljuvon
Fm―comprises the Shurisay, Kamolin, and Childara Members (Figures 3 and 4), as the Rupelian
Hissarak Beds are documented only in the northern part of the Tajik Basin (Dzhalilov et al., 1982). The over-
lying Khingou and Tavildara Fms were classified as Miocene (Vlasov et al., 1991). The Karanak
Fm―assigned to the early Pliocene―constitutes the uppermost preserved synorogenic deposits in the
Shurobod area.

Figure 3. Cenozoic stratigraphic subdivisions. Global stratigraphic scale (GSS; Cohen et al., 2013; numerical ages in Ma
according to Gradstein et al., 2012); regional stratigraphic scale (RSS; Vjalov, 1940; Simakov, 1952; Kreydenkov &
Raspopin, 1972; Vlasov et al., 1991; Nikolaev, 2002); local stratigraphic scale (LSS; Davidzon et al., 1982; Dzhalilov et al.,
1982); alternative local stratigraphic scales: LSS*—Forsten and Sharapov (2000); LSS**—Kaya et al. (2019) with
timing of Paleogene incursions; LSS***—synthesis of Carrapa et al. (2015) with date of volcanic ash bed and Chapman
et al. (2019) with detrital zircon fission‐track ages, considered maximum depositional ages for the formations. The
right column shows the subdivision into preorogenic and synorogenic stages and timing of formations adopted in this
paper. The ≤ ~Ma notation in the LSS*** and “this study” columns highlight that the ages given for the Formation/
Member boundaries are maximum ages.
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Carrapa et al. (2015) calibrated intervals of marine Paleogene strata in the northern Tajik basin to the
Ypresian and the Bartonian‐early Priabonian, respectively; the changeover frommarine to nonmarine strata
yielded a volcanic ash layer, dated geochronologically at ~39 Ma (Figures 1c and 3). Unfortunately, they did
not provide an assignment to specific Formations, neither for the biostratigraphic data nor the geochrono-
logic age. Based on biostratigraphic and magnetostratigraphic data, Kaya et al. (2019) calibrated the three
Paleogene incursions of the Turan Sea into the Tarim and Tajik basins, corresponding to the transgressions
3–5 sensu Bosboom et al. (2013, 2015). During the first incursion (~59–52 Ma, late Thanetian‐early
Ypresian), the interval of the Tabakcha to lower Jukar Fms was deposited in the northern Tajik Basin;

Figure 4. Basin development and synthetic standard section of the eastern Tajik basin and correlation with tectonic evolution of the Pamir hinterland. The
≤ ~Ma notation highlights that the ages given for these Formation/Member boundaries are maximum ages.
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this interval corresponds that of the Bukhara to lower Alai Fms in the eastern Tajik basin (Figure 3). The
second incursion (~47–41 Ma, Lutetian‐early Bartonian) comprises the upper Jukar‐Tochar I Fms in the
northern Tajik basin, corresponding to the Turkestan Fm in the eastern Tajik basin. The third and final
incursion (~40–37 Ma, late Bartonian‐early Priabonian) comprises the Tochar II‐Hissarak Fms in the north-
ern Tajik basin, corresponding to the Isfara‐Hanabad Fm in the eastern Tajik basin. Thus, the lower interval
of marine strata of Carrapa et al. (2015) seems to correspond to the first incursion of Kaya et al. (2019), and
the marine interval including the ~39‐Ma age marker probably corresponds to the second incursion of Kaya
et al. (2019). As addressed by Bosboom et al. (2015), the ~39‐Ma age marker of Carrapa et al. (2015) does not
correspond to the final incursion.

Accepting these age constraints, we used the following ages to calibrate the Paleogene strata in the eastern
Tajik basin (Figure 3). The base of the Bukhara Fm corresponds to the onset of the first incursion (~59 Ma)
and the lower Alai Fm relates to the first regression (~52 Ma). The second transgression (~47 Ma) is corre-
lated with the upper Alai Fm, and the second regression—dated at ~39 Ma (Carrapa et al., 2015)—is corre-
lated with the top of the Turkestan Fm. As the onset of the third incursion—~40 Ma according to Kaya et al.
(2019)—predates the second regression, dated at ~39Ma (Carrapa et al., 2015), no reliable age is available for
the base of the Isfara‐Hanabad Fm so far. The top of this formation is correlated with the third
regression (~37 Ma).

Chapman et al. (2019) reported detrital zircon fission‐track age populations from samples of the synoro-
genic Formations in the Dashtjum section, located in the eastern Tajik basin a few kilometers to the
north of our study area (Figure 1c). They interpreted the ages from the Kamolin Member (~29–
27 Ma) of the Baljuvon Fm, Khingou Fm (~23–18 Ma), and basal Tavildara Fm (~15 Ma) to
represent hinterland exhumation/cooling ages, and thus as maximum depositional ages for the
Members/Formations, in which they were sampled; they argued for a short lag time between exhuma-
tion, erosion, and deposition. Abdulhameed et al. (2020) reported a comparable detrital apatite
fission‐track age (~25 Ma) for the basal Khingou Fm in the north central Tajik basin. Accordingly, we
used the detrital zircon fission‐track ages reported by Chapman et al. (2019) as maximum ages for the
synorogenic Fms (Figure 3).

Klocke et al. (2017) described the Oligocene‐Pliocene synorogenic deposits of the Tajik basin ~100 km north
of our working area (Figure 1c). They documented a first phase of synorogenic conglomerate deposition
derived from the south—the Pamir—in the Kamolin Member of the Baljuvon Fm, followed by a period of
reduced sediment supply in the Childara Member. Overlying sandstones and conglomerates of the likely
early‐middle Miocene to Pliocene Khingou, Sary Ob, Tavildara, and Karanak Complexes onlap the
Paleozoic basement of the North Pamir, indicating growing hinterland topography. Their likely
middle‐upper Miocene Sary Ob Complex, representing the top and base of the Khingou and Tavildara
Fms, respectively, is bounded by unconformities and growth strata. Within the middle Miocene‐lower
Pliocene Tavildara and Karanak Fms, sediment‐transport directions, deflected to the southwest, indicate
emerging basin topography, establishing the modern drainage pattern.

4. Results: Stages of Basin Evolution in the Shurobod Area

The strata in the Shurobod area record the preorogenic stage, the period prior to the onset of the effects of the
uplift of the Pamir, and the synorogenic stage, the formation of a foreland basin and its transformation into a
fold‐thrust belt (Figure 4). These stages show distinct sedimentation rates and depositional environments.
Discrete stratigraphic intervals exhibit large‐scale stratal pattern architecture and basin morphology. The
investigated preorogenic stage spans the succession from the Late Cretaceous to the top of the late Eocene
Sumsar Fm. An initial stage of synorogenic foreland‐basin formation commenced in the Oligocene
Baljuvon Fm; the foreland basin was fully established in the early Miocene Khingou Fm. The middle
Miocene‐Pliocene Tavildara, Karanak, and Polizak Fms represent the late synorogenic fold‐thrust belt
formation stage.

4.1. Preorogenic Stage: The Epicontinental Basin
4.1.1. Description
The investigated Upper Cretaceous‐upper Eocene preorogenic strata exposed in the Shurobod Pass and Obi
Khudkham sections (Figure 2) are ~600 m thick. At Shurobod Pass, the middle‐late Eocene Fms—the upper
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Figure 5. Field examples and lithofacies (LFT; Table 2) of the (a–d) preorogenic, Cretaceous‐Paleogene and (e–h) early synorogenic, Oligocene (Baljuvon
Formation) strata. (a) Cretaceous‐Eocene strata, Chilishtak One section; the red dashed line marks a minor fault between the Bukhara and Suzak Fms.
(b) Colonies of rudist bivalves (Hippuritoidae), uppermost Cretaceous strata, Shurobod Pass section. (c) Oxidized reddish siltstones with intercalated, ~20‐cm‐thick
gypsum crusts, Paleocene Akdjar Formation, Shurobod Pass section. (d) Pedogenic siltstones transitioning into calcrete incrustation, Eocene Alai Formation,
Chilishtak One section. (e) Massive to horizontal‐laminated siltstones of the Shurisay Beds, Baljuvon Formation, Chilishtak One section. (f) Upward fining pebbly
conglomerate‐sandstone successions followed by horizontal‐laminated siltstone, Shurisay Member, Baljuvon Formation, Obi Khudkham section. (g) Clayey to
sandy matrix in a poorly sorted, densely packed conglomerate of the Kamolin Member, Baljuvon Formation, Chilishtak One section. (h) Faintly stratified,
clast‐supported conglomerate of the Kamolin Member, Baljuvon Formation, Chilishtak One section.
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Alai, Turkestan, Rishtan, Isfara‐Hanabad, and lower Sumsar Fms—are tectonically buried by the Upper
Cretaceous and Paleogene rocks up to the lower Alai Fm (Figure 5a). At Obi Khudkham, ~65 m of upper
Eocene strata—the upper Isfara‐Hanabad and Sumsar Fms—are exposed. Correlations with the neighbor-
ing regions (GRI, 1961–1965) indicate that an ~350‐m‐thick section (middle Eocene; the upper Alai,
Turkestan, Rishtan, and lower Isfara‐Hanabad Fms) is missing; therefore, the Upper Cretaceous‐Eocene
strata may have been ~950 m thick. Above the Lower Cretaceous terrestrial siliciclastic rocks, marine carbo-
nates dominate the ~275‐m‐thick Upper Cretaceous succession. The Cenomanian has shallow marine lime-
stone and sandstone, the Turonian dark shale, the Coniacian‐Santonian cyclic limestone‐marl alternations,
and the Campanian‐Maastrichtian shallow marine limestones and rare evaporates. In the Shurobod Pass
section, the Coniacian‐Maastrichtian strata contain bivalves, ammonites, gastropods, brachiopods, corals,
and shark teeth. In their upper part, repeated pro‐gradations and retro‐gradations of marine clastic rocks
culminated in ≤10‐m‐thick, calciferous, fine‐ to medium‐grained, partly pebbly sandstones. These
graywackes contain pebbles composed of quartz, sedimentary, and igneous clasts. At the top, a prominent,
~15‐m‐thick, reddish brown limestone―characteristic for all studied sections―has colonies of
rudists (Figure 5b).

The ~130‐m‐thick Akdjar Fm comprises transitional marine to terrestrial deposits. At its lower part, bio-
turbated red‐brown mudstone and sandstone overlie rudist limestone. The middle and upper parts have
≤40‐m‐thick stratified gypsum and pedogenic reddish mudstones and siltstones with numerous
≤2‐m‐thick gypsisols (Figure 5c). The Shurobod Pass section has an ~55‐m‐thick oligomict, matrix‐ to
clast‐supported conglomerate in the middle Akdjar Fm. Red‐brown, shaly to sandy, calciferous matrix
supports ≤30‐cm‐long angular limestone, quartz, and quartzite clasts. This is overlain by up to 50 m
of Bukhara‐Fm limestone, which forms a ridge that outlines the west facing anticline of the Shurobod
Pass section (Figure 5a). The lower and upper parts comprise alternating gray to black marl and lime-
stone, partly rich in plant fragments, and ≤ 2‐m‐thick limestone beds, respectively. The top of the
Bukhara Fm has nodular limestone grading into ~12‐m‐thick, grayish‐green marl intercalated with
oyster‐bearing limestone and glauconitic sandstone of the lower Suzak Fm. Its upper part is tectonically
buried and exposure continues with ~7‐m‐thick gray marls and coquina beds of the lower Alai Fm. The
upper Alai Fm has ~65‐m glauconitic sandstone and reddish to red‐brown, partly mottled (pedogenic)
mudstones and siltstones (Figure 5d). At Shurobod Pass, the upper Alai to lower Sumsar Fms are tecto-
nically buried. At Obi Khudkham, the exposure continues with the ~15‐m‐thick, red‐brown, glauconitic
sandstones and siltstones of the upper Isfara‐Hanabad Fm. The overlying Sumsar Fm comprises ~50‐m‐-
thick, monotonous red‐to‐red‐brown, horizontal‐laminated and trough‐cross bedded siltstones and sand-
stones with a pedogenic overprint.
4.1.2. Depositional Environment
The change from terrestrial Lower Cretaceous to marine Upper Cretaceous deposits corresponds to a global
sea‐level rise (Haq et al., 1987; Vail &Mitchum, 1979). This transgression incorporated the Tajik basin into a
shallow‐marine carbonate shelf, stretching from the Turan Sea across Central Asia into the Tarim basin (e.g.,
Popov et al., 2004). Repeated progradation of coastal clastic rocks―≤ 10‐m‐thick, calciferous sandstones,
particularly well exposed in the Shurobod Pass section―indicates Late Cretaceous shallowing. The
Paleogene succession records repeated changes from red beds of coastal plains and sabkhas to shallow mar-
ine shelf and inland seas (Bosboom et al., 2015; Popov et al., 2004). The marine limestones, marls, and shales
of the Bukhara‐lower Alai Fms; themarine shales andmarls of the Turkestan Fm; and themarine shales and
marls of the Isfara‐Hanabad Fm correspond to the three incursions described by Bosboom et al. (2015) and
Kaya et al. (2019). Red beds record regressions in the Akdjar, themiddle Alai, and the Rishtan Fms. From the
latest Eocene onward, a coastal plain persisted.
4.1.3. Sedimentation Rate, Stratal Pattern Architecture, and Basin Type
The ~32‐Myr duration and ~675‐m thickness of the early Paleocene to late Eocene Fms approximate
an apparent sedimentation rate of ~20 m/Myr; this rate—as all sedimentation rates calculated herein—
do not include compaction and possible intervening erosion episodes. The Paleogene Fms have a
layer‐cake architecture with uniform lithofacies and thickness (Dzhalilov et al., 1982). The
hundreds‐of‐kilometer‐broad facies belts imply shallow facies gradients. The large areal fluctuations of
the Paleogene sea indicate inundated lowlands without significant morphology. The low sedimentation rate
and the layer‐cake architecture suggest an epi‐continental basin.
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4.2. Synorogenic Stage I: Foreland Basin

Increased strata thickness and onset of conglomerate deposition in individual sections of the
sandstone‐dominated Baljuvon Fm (~34–23 Ma) and the conglomerate‐dominated Khingou Fm (≤ ~23–
15 Ma) herald the synorogenic stage I (Figure 3). These Fms document two stages in the evolution of the
eastern Tajik basin (Figure 4).
4.2.1. Substage Ia: Early Foreland Basin—Formation of Local Alluvial Fans
4.2.1.1. Description
The Baljuvon Fm comprises brick‐red sediments: ~800 m thick at Shurobod Pass, ~1,100 m thick at Obi
Khudkham, and ~900 m thick at Chilishtak One. Thus, it is much thicker than the Paleogene section. The
Shurisay Member—assigned to the early Oligocene (Figure 3)—shows uniform lithology from south to
north (Figure 6a); is 300–400 m thick; and composed of shale, siltstone, and sandstone (Figure 5e) with occa-
sional centimeter‐ to decimeter‐thick conglomerate beds. These granule‐ to pebble‐sized, mainly
clast‐supported conglomerates (LFT 6; Table 2) have scoured bases and internal cross bedding. Incised con-
glomerate beds have sharp tops and taper out laterally within decimeters to meters. Nonincised conglomer-
ates are tabular and gradational with overlying sandstones (Figure 5f). At Shurobod Pass, matrix‐supported
conglomerates (LFT 5) occur. Horizontally laminated and cross‐bedded, mostly tabular and laterally persis-
tent lithofacies (LFTs 7, 10, and 12) characterize the finer‐grained lithologies. Pedogenesis, indicated by root-
lets and in situ brecciating (Figure 6a), has particularly affected the deposits of the Obi Khudkham and
Chilishtak One sections.

The 120‐ to 300‐m‐thick Kamolin Member—assigned to the early to late Oligocene (Figure 3)—shows litho-
facies differences from south to north (Figure 6a). In the Chilishtak One section, the Kamolin Member has
~280 m of conglomerates, composed of 2‐ to 20‐m‐thick amalgamated, matrix‐ to clast‐supported packages
(LFTs 2 and 3) with only faint bedding. A reddish clayey to sandy, poorly sorted matrix supports angular
to subrounded clasts (Figure 5g) with 3‐ to 10‐cm average and 10‐ to 60‐cm maximum particle size (MPS).
While fine‐clastic interbeds are missing at Chilishtak One, 2‐ to 20‐m‐thick conglomerates and 0.5‐ to 5.0‐-
m‐thick shales, siltstones, and sandstones occur at Shurobod Pass and Obi Khudkham. The pebble‐ to
cobble‐sized conglomerates are clast supported and show horizontal‐ to low‐angle cross‐bedding
(Figure 5h). Locally, conglomerates, sandstones, and siltstones (LFTs 4, 6, 7, 10, and 12) form 5‐ to
10‐m‐thick fining upward successions.

The 250‐ to 600‐m‐thick Childara Member—assigned to the late Oligocene (Figure 3)—resembles the
Shurisay Member. Up to 100‐m‐thick shales, siltstones, and sandstones (LFTs 10 and 12) are intercalated
with 2‐ to 15‐m‐thick conglomerates (LFTs 2, 3, 5, and 6); the fine‐grained lithofacies shows pedogenic fea-
tures, that is, rootlets and destruction of bedding structures. Thicker matrix‐ to clast‐supported conglomer-
ates, with 5–30 cm MPS, are composed of amalgamated 1‐ to 3‐m‐thick, occasionally low‐angle to planar
cross‐bedded sheets (Figure 6a). The lateral variations between the sections are minor. The lower part of
the Childara Member is fine grained and becomes coarser toward the top at Shurobod Pass and
Chilishtak One. There, the boundary to the Khingou Fm is transitional. Immature calcisols in the uppermost
Childara Member occur at Chilishtak One and Obi Khudkham.
4.2.1.2. Depositional Environment
During the early Oligocene, the coastal plain in the eastern Tajik Basin changed into a distal alluvial plain
environment traversed by few fluvial channels. Paleocurrent measurements indicate grossly west‐directed
(present coordinates) transport (Figure 6a). The fine‐clastic red beds of the Shurisay Member were deposited
on extensive floodplains with alternating sedimentation and subaerial exposure, promoting pedogenesis
(Jones et al., 2011; McPherson, 1979). Erosive and laterally restricted conglomerates are channel deposits
of confined flows incised into the floodplain fines. Nonerosive, laterally consistent conglomerates and sand-
stones are unconfined subaerial flow deposits, indicating flood stages with increased sediment supply
(Colombera et al., 2013; Gibling, 2006). In the early to late Oligocene, a basinward progradation of proximal
alluvial sediments caused a major change of the depositional environment. The stacked debris and
hyper‐concentrated flows of the Kamolin Member formed isolated conglomerate packages with sharp and
tabular bases and convex‐up tops. These bodies are up to a few kilometer across and transition laterally into
distal debris flows, mudflows, and sheetsands with floodplain fines. The red‐bed facies (LFTs 7, 10, and 12)
of the lower Childara Member indicate the return to a distal alluvial plain, characterized by alternating
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Figure 6. Sedimentary logs depicting the vertical succession and lateral facies variations, paleocurrent directions, and clast‐size data of conglomerates. (a) Baljuvon
Formation: Increased stacking density and thickness of conglomerates in the central part of the sections define the Kamolin Member. (b) Khingou Formation:
High variation within the size classes and the extreme cases of outsized clasts. (c) Tavildara Formation: Low variability within the size classes and the overall
decreased clast size in comparison with the Khingou Formation. See Figure 2 for section locations and Table 2 for lithofacies‐type codes.
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sedimentation and nonsedimentation. The gradual increase of coarse clastic sediments (LFTs 2, 5, and 8) in
the upper ChildaraMember indicates a transition into amedial to proximal alluvial plain of a prograding fan
system in the hinterland.
4.2.1.3. Sedimentation Rate, Stratal Pattern Architecture, and Basin Type
The ~11‐Myr duration (Oligocene) and the ~950‐m thickness of the Baljuvon Fm approximate an apparent
sedimentation rate of ~86 m/Myr. Variable sediment thickness and changing lithofacies imply locally differ-
ent sedimentation rates and thus the development of amoderate morphology. The advance of alluvial fans in
the Kamolin Member marks the onset of synorogenic deposition with thicker, more amalgamated, and coar-
ser conglomerates at section Chilishtak One in the south of the Shurobod region. The increased sedimenta-
tion rate and the developing basin morphology suggest a transformation of the epicontinental basin into a
foreland basin in the Oligocene.
4.2.2. Substage Ib: Developed Foreland Basin—Coalescence of Alluvial Fans
4.2.2.1. Description
The violet‐colored clastic rocks of the early Miocene (Figure 3) Khingou Fm are ~1,200 m thick at Shurobod
Pass and ~1,600 m thick at Obi Khudkham. At Chilishtak Two, the ~960‐m‐thick lower part, and at
Shurobod South, the topmost ~100 m are exposed (Figures 2 and 6b). The Khingou Fm has meter‐ to
decameter‐thick packages of conglomerate intercalated with decimeter‐ to meter‐thick violet or brick‐red
siltstone and sandstone. In the lower Khingou Fm at Chilishtak Two and Shurobod Pass, 1‐ to 3‐m‐thick,
unstratified beds of cobble‐ to boulder‐sized, matrix‐ to clast‐supported conglomerate (Figure 7a; LFTs 1,
2, and 3) have nonerosive to weakly erosive bases and form 4‐ to 40‐m‐thick, stacked tabular units. Clast size
varies within individual beds forming both coarsening‐upward as well as fining‐upward sets (Figures 7b and
7c). The angular to subrounded clasts have an average size of 5–20 cm and 20–80 cm MPS (Figure 7c); out-
sized 100‐ to 400‐cm clasts also occur (Figure 6b). At Obi Khudkham, the lower to middle Khingou Fm
shows monotonous, ≤50‐m‐thick, tabular packages of conglomerate intercalated with decimeter‐ to
meter‐thick, brick‐red siltstone (Figure 7d; LFT 12). The siltstones are stacks with 1‐ to 2‐m‐thick beds of
matrix‐ to clast‐supported conglomerate (LFTs 2 and 3), showing an average clast size of 3–12 cm and 60–
90 cm MPS (Figure 6b); the clasts are angular to subrounded. The conglomerate matrix is silt‐ to
pebble‐sized. Vertical variations in clast size, matrix sorting, and matrix composition of the conglomerates
are minor (Figure 7e).

In the middle part of the Khingou Fm at Shurobod Pass and Chilishtak Two, stacked conglomeratic
packages are decimeter‐ to meter‐thick, faintly stratified, and clast‐supported (LFT 3) with an average clast
size of 1–8 cm and a poorly sorted, clayey to sandy matrix. Clasts are subangular to subrounded, partially
elongate, and occasionally form imbricated nests. The particle size decreases gradually toward the tops of
individual beds. At the top of the middle Khingou Fm, the conglomerates are decimeter‐thick, red‐violet,
and matrix‐supported (LFT 5). The angular to subrounded clasts range from pebble‐size to granule‐size
and float in a clayey‐silty matrix. The fine‐grained conglomerates grade occasionally into massive
red‐violet sandstones (LFT 8) and are overlain by decimeter‐thick, red‐brown siltstones (LFT 12). The base
of the fine‐ and coarse‐clastic lithofacies is dominantly nonerosive, but occasional basal scours occur. At Obi
Khudkham, the lithofacies of the middle Khingou Fm is comparable to its lower part. Generally, the sedi-
ment packages become increasingly wedge‐shaped over lateral distances of hundreds of meters and less uni-
form compared to the lower Khingou Fm. As a result, the near‐vertical dip angles of the strata decrease
steadily upsection (Figure 2b).

The lithofacies of the upper Khingou Fm at Shurobod Pass and Shurobod South consists of 10‐ to 60‐m‐thick,
amalgamated conglomerates (LFTs 2, 3, 4, and 5), intercalated with decimeter‐ to meter‐thick, brick‐red
to violet siltstones and sandstones (Figure 7f; LFTs 7, 10, and 12). The conglomerates are matrix‐ to
clast‐supported with an average clast size of 1–8 cm and 10–20 cm MPS (Figure 6b). Overlying 1‐ to
5‐m‐thick, brick‐red to violet, granule, matrix‐supported conglomerates (LFT 5) alternate sharply with 1‐
to 15‐m‐thick violet, pebbly, clast‐supported conglomerates (LFTs 3, 4). The matrixes of both conglomerate
types are sandy and moderately to well sorted. Basal contacts of the clast‐supported conglomerates are
increasingly erosive toward the top, and the conglomeratic units show higher lateral variability than in
the lower and middle Khingou Fm. The finer‐grained lithologies are mainly represented by
horizontal‐laminated and cross‐bedded, brick‐red to violet siltstones and sandstones (LFTs 7, 10, and 12),
which alternate with the matrix‐supported conglomerates. Modifications of the siltstones and sandstones
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Figure 7. Field examples and lithofacies (LFT; Table 2) of the Khingou Formation. (a) Sheet‐like conglomerate beds with sharp base and convex‐up tops with cyclic
upward fining boulders to cobbles occur within 10‐ to 20‐m‐thick units. Maximum particle size (MPS) is ~29 cm; outsized clasts are ~1.5 m; Chilishtak Two
section. (b) Tabular, ~1.6‐m‐thick, inversely graded and matrix‐supported conglomerate, MPS is ~26 cm, outsized clasts are up to 75 cm; Chilishtak Two section.
(c) Tabular, ~2‐m‐thick, normally graded conglomerate, which is clast‐supported in the lower part and disorganized andmatrix‐supported in the upper part (insert).
MPS is ~36‐cm, outsized clasts are up to 1 m; Chilishtak Two section. (d) Lower Khingou Formation, Obi Khudkham section. Up to decameter‐thick, tabular,
cobble‐sized conglomerates are intercalated with m‐thick, brick‐red siltstones. Note smaller clast size compared to (a)–(c). (e) Clast‐supported conglomerate
with rounded to well‐rounded cobbles, lower Khingou Formation, Obi Khudkham section. (F) Stacked conglomerate sheets form monotonous tabular successions
with growth strata; middle Khingou Formation, Shurobod Pass section.
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by pedogenic processes and bioturbation are common. At Obi Khudkham, the lithofacies of the upper
Khingou Fm is comparable to the lower and middle parts of the formation. The stacked sediment packages
are wedge‐shaped and taper out laterally toward the east. Dip angles of the strata continue to
decline upsection.
4.2.2.2. Depositional Environment
A distal alluvial plain environment in the Oligocene was replaced by a proximal mass flow depositional set-
ting in the early Miocene. In the lower andmiddle Khingou Fm, stacked tabular packages of debris‐flow and
hyper‐concentrated‐flow deposits form extensive alluvial fans. Individual conglomerate beds are laterally
continuous for hundreds of meters, suggesting unconstricted, sheet‐like deposition on the fan surface
(Bull, 1977). Repeated occurrences of fining‐upward successions and transitions from debris to
hyper‐concentrated flows imply deposition under waning flow conditions in a proximal alluvial fan
(Nemec & Steel, 1984). Coherent mudflows occur in medial alluvial fan settings. Pedogenically overprinted
mudflow deposits indicate temporarily abandoned fan lobes. The Chilishtak Two and Shurobod Pass sec-
tions represent proximal to midfan positions; the Obi Khudkham section represents a midfan position.
The near‐absence of fine‐grained lithofacies between individual alluvial fans in the lower to middle
Khingou Fm indicates the coalescence of alluvial fans, forming a bajada‐like, ~N‐S oriented belt (present
coordinates), fringing the emerging Pamir front. The continuous occurrence of subrounded clasts indicates
primary rounding, suggesting storage elsewhere in the drainage basin prior to the deposition in mass‐flow
deposits. Broad channelized fluviatile systems evolved on top of the alluvial fans in the upper Khingou Fm.
4.2.2.3. Sedimentation Rate, Stratal Pattern Architecture, and Basin Type
The ~8‐Myr duration (early Miocene) and the ~1,350‐m thickness of the Khingou Fm approximate an appar-
ent sedimentation rate of ~169 m/Myr. Variable sediment thicknesses and changing lithofacies imply locally
different sedimentation rates. While the strata in the lower Khingou Fm are laterally continuous, the west-
ward thickening, eastward thinning (present coordinates), and tapering‐out units indicate growth strata
(Figure 7f) in the middle and upper Khingou Fm. The area‐wide occurrence of coalescing alluvial fans indi-
cates sharp facies gradients. The growth strata imply the transformation of the Tajik Basin from a foreland
basin into an incipient fold‐thrust belt in the early Miocene.

4.3. Synorogenic Stage II: Fold‐Thrust Belt

The foreland basin was transformed into the Tajik fold‐thrust belt in the middle Miocene to early Pliocene,
characterized by the growth of ~N trending (present coordinates) anticlines and synclines. Based on the evo-
lution of the depositional environment, stratal pattern architecture, sediment thickness, and transport direc-
tions of the Tavildara Fm (≤ ~15–5 Ma) and Karanak Fm (~5–4 Ma), this stage is subdivided into two
sub‐stages (Figures 3 and 4).
4.3.1. Substage IIa: Early Fold‐Thrust Belt—Rising Morphology
4.3.1.1. Description
The middle to late Miocene Tavildara Fm (Figure 3) is ~2,300 m thick at Obi Khudkham; at Shurobod Pass,
Shurobod South, Shurobod North, Daraiob Pass, and Imam Askar, only parts of the Fm are exposed
(Figure 6c). The section—constructed from these exposures—is ~1,500 m thick with lithofacies variations
from north to south. In the south, at Shurobod South, Shurobod Pass, Shurobod North, Daraiob Pass, and
Imam Askar, clast‐supported conglomerates (LFTs 4 and 6) dominate the Tavildara Fm (Figure 8a). At
Shurobod Pass, the base has alternating, 5‐ to 10‐m‐thick, light‐gray, clast‐supported, and cobble‐sized con-
glomerates (LFT 4) and beige‐gray, horizontal‐laminated to cross‐bedded sandstones (LFTs 7 and 10). The
average clast size is 1–8 cm (Figure 6c); clast imbrication is common. The sandy matrix is well sorted.
Overlying this unit are up to 100‐m‐thick packages of strongly amalgamated, pebble‐ to cobble‐sized,
clast‐supported conglomerates (LFTs 4 and 6). The sandy matrix of these conglomerates is well sorted,
and the subrounded to well‐rounded clasts are imbricated. Faint horizontal‐lamination and trough cross
bedding is common. Here downstream‐accretionmacroforms occur (Figure 9). At Shurobod South, the basal
Tavildara Fm is composed of 20‐ to 50‐m‐thick, tabular packages of light‐gray, clast‐supported, cobble‐sized
conglomerate beds (LFT 4) that fine upward and occasionally grade into coarse‐grained massive sandstone
at the top (LFT 8). At Shurobod North, Daraiob Pass, and ImamAskar, the middle and upper Tavildara Fm is
composed of 10‐ to 50‐m‐thick, amalgamated and clast‐supported conglomerates (LFTs 4 and 6), comparable
to the exposures at Shurobod Pass. Subrounded to well‐rounded and well‐sorted clasts of 3‐ to 10‐cm average
size, 10–30 cm MPS (Figure 6c), and a well‐sorted sandy matrix are the characteristic features of the
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Tavildara Fm at Shurobod Pass, Shurobod South, Shurobod North, Daraiob Pass, and Imam Askar. Clasts
are densely packed, mostly elongated, and regularly imbricated. Occasionally, 20‐ to 50‐cm‐thick and 1‐ to
4‐m‐wide lenses of beige‐gray, horizontal‐laminated to trough cross‐bedded sandstone (LFTs 7 and 10;
Figures 6c and 9) are intercalated at Shurobod Pass and Daraiob Pass. Paleocurrent measurements
derived from imbricated clasts at Shurobod South, Shurobod North, Daraiob Pass, and Imam Askar imply
W to SW directed flow (Figure 10).

Figure 8. Field examples and lithofacies (LFT; Table 2) of the Tavildara Formation. (a) Densely stacked, laterally consistent clast‐supported conglomerates,
Shurobod North section. (b) Clast‐supported conglomerate composed of well‐rounded, elongated, weakly imbricated particles, Imam Askar section. (c) Trough
cross‐bedded sandstone lens tapering out laterally in clast‐supported conglomerate, Daraiob Pass section. (d) Upward‐coarsening, debris‐flow deposit containing
outsized clasts of up to 2‐m, Obi Khudkham section. (e) Angular unconformity at the transition from the middle to the upper Tavildara Formation.
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In the north, at Obi Khudkham, the Tavildara Fm resembles the underlying Khingou Fm. Stacked beds of 1‐
to 3‐m‐thick, matrix‐ to clast‐supported conglomerates (LFTs 2 and 3) form 30‐ to 150‐m‐thick, amalgamated
tabular packages. Internal stratification is typically absent. Subangular to rounded, partially elongate clasts
show an average size of 6–12 cm and 20–60 cm MPS; they are supported in a reddish to red‐brown, sandy to
granule, moderately sorted matrix. Normal gradation is frequent and clasts occasionally form imbricated
nests. Sporadically, 1‐ to 3‐m‐thick, matrix‐supported, coarsening upward conglomerate beds (LFTs 1 and
2) occur with angular to subrounded, up to 200‐cm‐sized clasts at their top (Figure 6c). Conglomerate deposi-
tion terminated in the uppermost Tavildara Fm at Karanak Crook, where the overlying Karanak Fm consists
of red‐brown and gray‐beige sandstones and siltstones.
4.3.1.2. Depositional Environment
In the middle Miocene, sediment gravity flows, such as debris and hyper‐concentrated flows, dominated the
deposition in the proximal to medial zones of large fans. In the down‐fan direction, these≤1‐km‐wide, prox-
imal zones transitioned into several kilometer‐wide distal zones, where gravity flows and fluvial processes
dominated deposition. In the distal zones, the relocation of broad and shallow, laterally unconfined chan-
nels formed the tabular conglomerate packages and prevented the construction of the thicker beds of over-
bank deposits (Nichols & Fisher, 2007). The sequences at Obi Khudkham indicate a proximal to medial fan
position; the fluvial deposits at Shurobod South, Shurobod Pass, Shurobod North, Daraiob Pass, and Imam

Figure 9. Downstream accretion macroform (DA) in the lower Tavildara Formation, Shurobod Pass section.

Figure 10. Paleocurrent directions derived from clast imbrication, Tavildara Formation. All orientations were corrected for structural tilt but not for vertical‐axis
rotations.

10.1029/2019TC005874Tectonics

DEDOW ET AL. 19 of 35



Askar suggest a distal fan position. Compared to the Khingou Fm, the Tavildara‐Fm clasts are better
rounded. The enhanced matrix sorting implies increased and more continuous discharge, resulting in
enlarged fan areas. The coarse fluvial deposits occur in a > 15‐km‐wide belt, forming a braidplain (gravelly
braided zone of Shukla et al., 2001). Mostly W to SW oriented paleocurrents imply a variable and distributed
drainage network with frequent avulsion events throughout the late Miocene (Figure 10), constituting a reg-
ularly fed, laterally shifting river system that formed a fluvial mega‐fan (Horton & DeCelles, 2001; Shukla
et al., 2001) emanating from the Pamir. Characteristic for the fluvial mega‐fan is the > 10‐km lateral extent
of almost indistinguishable fluvial conglomerates perpendicular to the orogenic front.
4.3.1.3. Sedimentation Rate, Stratal Pattern Architecture, and Basin Type
The ~10‐Myr duration (middle to late Miocene) and the ~1,500‐ to 2,300‐m thickness of the Tavildara Fm
approximate an apparent sedimentation rate of ≥ ~190 m/Myr. Sediment thickness decreases from north
(Obi Khudkham) to south (Shurobod sections). Lithofacies in the north consists of matrix‐ to
clast‐supported, sediment gravity flow‐dominated conglomerates, which transition to clast‐supported fluid
gravity flow‐dominated conglomerates in the south. Growth strata occur in the north—at Obi Khudkham
—throughout the Tavildara Fm; in the south—in the Shurobod area—growth strata are confined to the
lower‐middle Tavildara Fm. At Imam Askar, a shallow angular unconformity separates the middle from
the upper Tavildara‐Fm. deposits (Figure 8e). In the southeast of the study area, near the village of Porvor
(37°44′N, 70°13′E; Figure 11), strata of the Tavildara Fm discordantly overlie Permian basement rocks
and extend into the Pamir interior. The stratal onlap suggests the filling of an ~E trending paleo‐valley.
Compared to the early Miocene, the proximal parts of the fan system shifted in the middle to late
Miocene from the Shurobod area in the south to Obi Khudkham in the north and toward the southeast,

Figure 11. (a) Mountains east of the Parapanj valley near Porvor (Figure 1 for location). (b) Overlay highlights the stratigraphic assessment of the deposits.
(c) Onlap of synorogenic, Miocene strata (mostly Tavildara Formation) onto Paleozoic basement rocks, suggesting the successive fill of an ~E trending paleovalley.
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into the Pamir hinterland. This indicates the formation of a basin‐internal morphology in the eastern Tajik
basin during initial fold‐thrust belt formation.
4.3.2. Substage IIb: Fold‐Thrust Belt—Reorganization of the Drainage System
4.3.2.1. Description
The red‐brown to pale‐brown and gray‐beige sediments of the early Pliocene Karanak Fm (Figure 3) are
~1,050‐m thick in the Karanak Crook section. A sharp boundary, likely a disconformity, separates the
Tavildara and Karanak Fms on a regional scale; at Karanak Crook, we mapped a shallow angular unconfor-
mity. The Karanak Fm comprises meter‐ to decameter‐thick siltstones and sandstones (LFTs 7, 10, and 12),
occasionally intercalated with 1‐ to 4‐m‐thick conglomerates (LFT 6). The lower Karanak Fm has
≤60‐m‐thick packages of red‐brown, horizontal‐laminated, and pedogenic modified siltstones (LFT 12).
Rootlets, subvertical bioturbation, color mottling, and carbonate nodules occur. These are intercalated with
1‐ to 5‐m‐thick pale brown to gray, trough cross‐bedded, fine‐ to coarse‐grained sandstones (LFT 7) and 1‐ to
4‐m‐thick, trough cross‐bedded and clast‐supported, pebble‐sized conglomerates (LFT 6). The sandstones
and conglomerates taper out laterally and have an erosive and scoured base, punctuated by layers of
rip‐up clasts. The middle Karanak Fm consists of 3‐ to 50‐m‐thick gray sandstones (LFTs 7 and 10) and 2‐
to 30‐m‐thick gray‐beige siltstones (Figure 12a; LFT 12). The large‐ to medium‐scale trough cross‐bedded
sandstones have an erosive and scoured base; internal cross‐stratification grades upward into horizontal
bedding. The sandstones form broad belts, extending laterally for several hundred meters (Figure 12b).
Stacked sandstone beds form up to 100‐m‐thick successions. Pedogenesis has occurred in intercalated
horizontal‐laminated siltstones. In the Cantaloupe section, ~200‐m of 0.5‐ to 5.0‐m‐thick, stacked,
gray‐beige, fine‐ to coarse‐grained sandstones (LFTs 7 and 10) crop out. The bases of these beds are erosive
and have cross‐bedded, clast‐supported, pebble‐sized conglomerates (LFT 6), and trough cross‐bedded peb-
bly sandstones. Internal cross stratification transitions upward into horizontal lamination. The sandstones
contain nodules, impregnated layers of petrocalcic horizons (LFT 15), and interspersed ≤0.3‐m‐thick,
greenish‐gray silt‐ to mudstones (LFT 12; Figure 12c). At Karanak Crook, the upper Karanak Fm has 1‐ to
5‐m‐thick intercalations of red‐brown siltstones and sandstones (LFTs 7, 10, and 12). The siltstones show
mottling, calciferous cementation, and pedogenesis. Horizontal‐laminated sandstones and trough
cross‐bedded sandstones (Figure 12d) have erosive bases and laterally variable thickness. The thickness
and the abundance of sandstones decrease upsection.
4.3.2.2. Depositional Environment
The change from the upper Miocene, coarse‐grained, proximal fan deposits to the lower Pliocene,
fine‐grained floodplain environments likely resulted from formation of a basin‐internal morphology, for
example, the homocline along the western Pamir front (Figure 2b). Broad and shifting fluvial channels tra-
versed the eastern Tajik Basin, forming shallow and sandy braided river systems (Figure 12e). The change
from large‐ to medium‐scale trough cross to horizontal bedding from the base to the top of the channel
deposits reflects episodes of high sediment discharge followed by waning flow conditions. The main chan-
nels trend ~N (present coordinates). Calcisols in the floodplain fines imply periods of nonsedimentation
in a warm and semiarid environment. Toward the middle Pliocene, sediment load decreased and
floodplains predominated.
4.3.2.3. Stratal Pattern Architecture and Basin Type
The axes of the main channels trend ~N (present coordinates) in the Karanak Fm; they roughly reflect the
flow directions of the rivers due to their braided, low sinuosity character (Cain & Mountney, 2009). The
change of the sediment‐transport directions from broadly west directed (present coordinates) in the
Tavildara Fm to broadly south directed in the Karanak Fm implies basin internal morphology able to reroute
major rivers. The deposits of the Karanak Fm at Karanak Crook and Cantaloupe form an ~12‐km‐wide, ~N
trending syncline (Figure 13). This indicates active ~E‐W shortening (present coordinates) during the
early Pliocene.

5. Results: Petrography and Geochemistry of the Synorogenic Strata
5.1. Sandstone Granulometry and Petrography

We analyzed thin sections from sandstones, representing the reddish and gray end‐members of
the Chilishtak One, Shurobod Pass, Daraiob Pass, Karanak Crook, and Cantaloupe sections (Figure 14);
the red color is due to iron‐oxide grain coating. The sandstones are medium‐ to well‐sorted, immature to
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submature, coarse‐ to medium‐grained with angular to rounded grains; the grain size drops in
the Karanak Fm.

Quartz constitutes on average 35% of the sandstones (Figure 14, QFL diagram) with monocrystalline (90% of
total quartz) dominating over polycrystalline grains (10%). The majority of the former is elongate and shows
undulatory extinction. Grain boundaries are straight. Polycrystalline quartz grains with less than three crys-
tals per grain are equally abundant in the Baljuvon, Khingou, and Tavildara Fms, whereas polycrystalline
quartz grains with more than three crystals dominate in the Karanak Fm. Generally, all polycrystalline
grains display straight intragranular boundaries, exhibit straight extinction, and are of subequant shape.

Figure 12. Field examples and lithofacies (LFT; Table 2) of the Karanak Formation. (a) Erosive, 2‐ to 5‐m‐thick, fluviatile sandstone channels incised into
fine‐grained floodplain deposits, Karanak Crook section. (b) Thick floodplain siltstones dominating over ~1‐m‐thick fluviatile sandstone units in the upper part
of the Karanak Formation, Karanak Crook section. (c) Destratified, pedogenic siltstones with color mottling, Cantaloupe section. (d) Trough cross‐bedded to
horizontal‐laminated fluviatile sandstones, Cantaloupe section. (e) Bedforms of broad and shallow channels, Karanak Crook section.
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Feldspars constitute 10–34% of the sandstones. K‐feldspars, mainly untwinned orthoclase, twinned sanidine,
and subordinate microcline dominate over saussuritisized plagioclase (~12% of the feldspars; Figure 14, QPK
diagram). White mica occurs in the lowermost Baljuvon Fm and upper Karanak Fm. Sedimentary (Ls),
meta‐sedimentary (Lm), and volcanic lithics (Lv) occur in variable proportions throughout the Fms

Figure 13. Cross‐section, depicting the angular unconformity between the conglomeratic Tavildara and the sandy Karanak Formations and syndepositional, ~E‐W
shortening of the Karanak Formation along the Karanak Crook and Cantaloupe sections. See Figure 2 for location.

Figure 14. Sandstone composition from point counting. QFL: Arenite classification according to Folk (1974). Note the low maturity of the samples. Provenance
classification after Dickinson et al. (1983). QPK: Classification displays moderate amounts of quartz and the predominance of K‐feldspar over plagioclase.
LmLvLs: LmLvLs‐diagram with provenance fields after Ingersoll and Suczek (1979) and rock fragment classification according to Folk (1974) to further subdivide
the lithic components. CB = continental block, MA = magmatic arc, MMA = mixed magmatic arc, RO = recycled orogen, SB = suture belt, SC = subduction
complex.
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(Figure 14, LmLvLs diagram) with sedimentary lithics being more abundant than volcanic rock fragments;
meta‐sedimentary lithics constitute the least abundant lithic type. Some Baljuvon‐Fm sandstones show 10–
15% pseudo‐matrix derived from weathered lithic clasts; generally, however, such pseudo‐matrix is rare.
Calcite (~20%) and iron oxides are the dominant cements of the sandstones; anhydrite occurs subordinately.
Themodal composition of the sandstones varies from arkosic to litharenitic (Figure 14, QFL‐diagram). Their
low compositional maturity reflects short transport distances. The increased sorting of the conglomeratic
matrix in the Tavildara Fm compared to the Khingou Fm (see section 4.2.2.1.) is not accompanied by an
increase in the sandstone maturity.

5.2. Bulk‐Rock Geochemistry

We analyzed 235 siltstones (LFT 12) for major oxides and 48 for trace elements. The samples are from the
Baljuvon to Karanak Fms of the southern sections (Shurobod Pass, Chilishtak One, Shurobod South,
Shurobod North, Daraiob Pass, Karanak Crook, and Cantaloupe) and from the Baljuvon and Khingou
Fms in the north (Obi Khudkham); there are no suitable siltstones in the Tavildara Fm. Tables S1 and S2
provide the analytical data and correlations between the geochemical data.
5.2.1. Major Elements
SiO2 contents span 36.1–69.8 wt‐% with a mean of 56.1 wt‐%. Al2O3 and CaO have means of 11.4 and 10.6
wt‐%, respectively. We used Al2O3 to investigate the relationship between the major elements; Al2O3 is con-
sidered immobile during transportation, deposition, diagenesis, and weathering (e.g., Descourvieres et al.,
2011; Rudnick & Gao, 2003; Taylor &McLennan, 1985). Al2O3 correlates positively with the major elements.
Positive correlation of Al2O3 with Fe2O3, MgO, K2O, and TiO2 suggests a common source, likely the
detrital sediment fraction, that is, feldspars and clay minerals (Das et al., 2006). In contrast, CaO and
MnO do not correlate with Al2O3, indicating their derivation from secondary mineral phases, likely
pedogenic precipitates.

We compared the ratios of several major elements for chemical classification and discrimination between
mature and immature rocks: Al2O3/SiO2 compares the abundance of quartz with that of clay minerals
and feldspars (Potter, 1978), and Fe2O3/K2O distinguishes lithic fragments from arkoses (Herron, 1988).
The Baljuvon‐Fm samples comprise litharenites, wackes, and shales. The Khingou‐, Tavildara‐, and
Karanak‐Fm samples comprise wackes and shales (Figure 15a). The low maturity of the fine‐grained,
suspension‐load lithofacies, obtained from bulk rock geochemistry, corresponds to that of the bed‐load sand-
stone lithofacies, obtained from optical microscopy (see section 5.1.). There is no significant compositional
trend from older to younger strata.
5.2.2. Trace Elements
5.2.2.1. Large Ion Lithophile Elements: Rb, Cs, Ba, and Sr
Rb abundances are slightly depleted but similar to the upper continental crust (UCC; Rudnick & Gao, 2003;
Hu & Gao, 2008). Sr and Ba are significantly depleted (0.66 × UCC and 0.69 × UCC, respectively), and Cs is
enriched (1.34 × UCC; Figure 15b). Except for Sr and Ba, the large ion lithophile elements and the trace ele-
ments Rb and Cs correlate positively (r = 0.72 and r = 0.65) with Al2O3. Therefore, phyllosilicates control
their abundances (e.g., McLennan et al., 1993). Rb and Th are strongly correlated (r= 0.90), implying similar
geochemical behavior, and both are strongly correlated with K2O (r = 0.95 and r = 0.88), suggesting deriva-
tion fromK‐bearing clay minerals. This indicates that Rb and Cs originate from the detrital fraction, whereas
Ba and Sr likely are from the pedogenic precipitates.
5.2.2.2. High Field Strength Elements (HFSE): Th, U, Zr, Hf, Y, and Nb
The high field strength elements reflect the chemical composition of the source‐area rocks due to their
immobility (Taylor &McLennan, 1985). Additionally, they are enriched in felsic rocks due to their preferred
partitioning into melts during crystallization (Feng & Kerrich, 1990). In comparison with the UCC
(Figure 15b), Zr, Hf, and Nb are slightly depleted (0.92 × UCC, 0.88 × UCC, and 0.91 × UCC), while Y is
slightly enriched (1.07 × UCC). Due to their similar chemical properties, Zr and Hf behave geochemically
coherent (r = 0.96), as do Th and U (r = 0.64). The Zr/Hf ratios of 32.77–42.75 are almost identical to that
of zircon (Murali et al., 1983), suggesting that zircon controls the Zr and Hf content of the detrital fraction.
In contrast, Zr does not correlate with the heavy rare earth elements. Th strongly correlates with a number of
other elements (Table S2), especially the rare earth element (REE), such as Yb andHo (r= 0.91 and r= 0.89),
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Figure 15. Geochemistry of the synorogenic strata. (a) Log (Fe2O3/K2O) vs. log (Al2O3/SiO2) plot for geochemical classification of terrigenous sands and shales
(Herron, 1988) of the siltstone samples. Note the overall low maturity of the siltstones. (b) Spider diagram of trace elements (formation means) normalized
against the upper continental crust (UCC; values of Rudnick & Gao, 2003; Hu & Gao, 2008). Trace elements are depleted in the Tavildara Formation in comparison
to those of the Baljuvon, Khingou, and Karanak Formations. (c) Spider diagram of rare‐earth elements (Formation means) normalized against the C1
chondrites (normalizing factors according to Taylor &McLennan, 1985). Post‐Archean average Australian Shale (PAAS; values according to Nance & Taylor, 1976)
plotted for reference. Depletion of rare‐earth elements in the Tavildara Formation compared to those in the Baljuvon, Khingou, and Karanak Formations;
positive Eu anomaly in the Baljuvon Formation. (d) Scatterplots of selected trace elements and trace‐element ratios, displaying variable depletion or enrichment
within the different stratigraphic units in relation to upper continental crust concentrations. Samples of the southern study area are from the Baljuvon
(Chilishtak One and Shurobod Pass sections), Khingou (Shurobod Pass section), Tavildara (Shurobod South and Shurobod North sections), and Karanak
Formations (Karanak Crook section); samples of the northern study area are from the Baljuvon and Khingou Formations (Obi Khudkham section). All sample
mean = the average of all synorogenic Formations; formation mean = the average for individual Formations; Intra Fm. Mean South = average of Baljuvon and
Khingou Formations at Chilishtak One and Shurobod sections; Intra Fm. Mean North = average of Baljuvon and Khingou Formations at Obi Khudkham
section. FB (foreland basin) and FTB (fold‐thrust belt) denote the stages of synorogenic basin evolution.
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which implies control by clay minerals and/or associated phases (e.g., oxides, hydroxides, and silicates;
Mukherjee, 2013).
5.2.2.3. Transition Trace Elements: Cr, Co, Ni, V, Sc, and Cu
Most transition trace elements abundances correspond to those of the UCC, for example, Ni and Cu
(0.99 × UCC and 1.03 × UCC; Figure 15b). Co, V, and Sc are depleted (0.84 × UCC, 0.72 × UCC, and
0.68 × UCC), and Cr is enriched (4.17 × UCC). All transition trace elements except Cr are correlated with
Al2O3: Sc and V most significantly (r = 0.92; r = 0.90). Thus, these elements are associated with the detrital
fraction (Feng & Kerrich, 1990).
5.2.2.4. Rare Earth Elements (REE)
The REE abundances correspond to those of the UCC. Although the REE are considered to be incorporated
into detrital minerals like zircon and monazite (McLennan, 1989), positive correlations between ΣREE and
Al2O3, MgO, TiO2, K2O, and Fe2O3 (r = 0.70, 0.60, 0.84, 0.82, and 0.71) suggest that phyllosilicates and prob-
ably Fe‐ and Ti‐bearing oxides are also important in hosting the REE. In contrast, the REE exhibit a low cor-
relation with Zr (r = 0.30; Table S2), implying that the heavy rare earth element fractionation is not
controlled by the occurrence of zircon.
5.2.2.5. Interformation and Intraformational Variations
UCC‐ or chondrite‐normalized spider diagrams (Figures 15b and 15c) show similar element concentrations
for the Baljuvon, Khingou, and Karanak Fms. In the Tavildara Fm, the concentrations for most of the ele-
ments are depleted. Only a few trace elements are enriched in comparison with the UCC. A positive Eu
anomaly occurs in some samples. To highlight the compositional differences between the formations and
the northern and southern sections, Figure 15d shows single trace element and element‐ratio plots. The con-
centrations of some elements (Cr, Zr, La, and Ce) and the ratios of La/Sc, Th/Sc, Zr/Sc, and La/Co are indi-
cators of sediment‐source composition (e.g., Taylor &McLennan, 1985). These show shifts within individual
Formations and over time. The Baljuvon and Khingou Fms at Obi Khudkham have mean Cr values of 415
and 408 ppm, whereas at Shurobod Pass, they are 250 and 231 ppm, and thus are slightly depleted compared
to the Formations in the northern study area. The same applies for La, Ce, Rb, Li, Zn, Ta, Ni, and La/Co,
Cr/V, and Cr/Th (Figure 15d). As the Tavildara and Karanak Fms do not crop out at Obi Khudkham, it
remains open if the intraformational variations of those elements and element ratios are a general feature.
At Shurobod Pass, the Cr, Zr, La, Ce, Hf, and Li concentrations and the La/Sc, Th/Sc, Zr/Sc, La/Co, Cr/V,
and Cr/Th ratios show lower values in the Tavildara and Karanak Fms than in the underlying Baljuvon
and Khingou Fms. The Eu/Eu* ratio attains lower values already at the boundary between the Baljuvon
and Khingou Fms. The majority of elements and element ratios signal a change in source composition in
the Tavildara Fm, coinciding with the transformation of the Tajik basin from a foreland basin into a
fold‐thrust belt. The Ba/Sr and Rb/Sr ratios are robust weathering indicators, except for intense weathering,
where significant loss of the large ion lithophile elements can occur (e.g., Gallet et al., 1996; Muhs et al.,
2001). Ba/Sr shows the highest mean values in the samples from the Baljuvon and Karanak Fms, while
the ratio is significantly lower in the Khingou and Tavildara Fms. This suggests stronger chemical weather-
ing in the Baljuvon and Karanak Fms, probably due to longer surface exposure of the sediments compared to
the Khingou and Tavildara Fms.

6. Discussion

Here, we return to the goals of this study. First, we aimed to use stratigraphic and sedimentologic observa-
tions from the Cretaceous‐Pliocene strata along the eastern margin of the Tajik basin to describe the
depositional environment, drainage evolution, and stages of basin formation. Then, we intended to utilize
sediment petrography and geochemistry to detect vertical, that is, time‐dependent changes in the strati-
graphic column, and relate those to source‐area changes in the hinterland. Having defined the stages of
the evolution of the eastern Tajik basin in the Shurobod area, we next aimed to integrate our results with
those ~100 km farther north, in the Tavildara‐Sary Ob region at the northeastern margin of the Tajik basin
(Figure 1c; Klocke et al., 2017). Finally, we aimed to link the phased evolution of the Tajik basin with the
major stages of the tectonic evolution of the Pamir hinterland, reviewed in section 1. Establishing such inter-
pretative links, we are faced with the major problem that has hampered all studies of the synorogenic depos-
its of the Tajik basin: the imprecise age assignment of its Formations, in particular the Baljuvon to Karanak
Fms. Recent progress in age calibration of the preorogenic (Bosboom et al., 2015; Kaya et al., 2019) and
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synorogenic deposits (Abdulhameed et al., 2020; Chapman et al., 2019) contributed to a more reliable timing
of the Formation boundaries (Figures 3 and 4). However, as precise depositional ages are still lacking for the
synorogenic Formations―the detrital ages presented by Chapman et al. (2019) and Abdulhameed et al.
(2020) are maximum depositional ages―our correlations remain preliminary. In the future, better time reso-
lution may lead to a vertical age shift of the Formation boundaries by a few Myr, and/or, these boundaries
will turn out to be regionally asynchronous. Currently, our solution is to correlate only the most notable
changes in the sedimentary and tectonic evolutions.

6.1. Basin Evolution
6.1.1. Preorogenic Stage
Our study of the Shurobod area at the eastern margin of the Tajik basin corroborates earlier work through-
out Central Asia (see section 3.), which showed that an alternating shallow marine to coastal environment
prevailed during the Cretaceous and Paleogene, predating the rise of the hinterland. During this time, an
epi‐continental sag basin, characterized by low sedimentation rates of ~20 m/Myr (see section 4.1.) and shal-
low facies gradients, resulting in a layer‐cake architecture, prevailed in the present‐day eastern Tajik basin.
The Tajik basin had marine incursions in the Late Cretaceous, late Paleocene to early Eocene, middle
Eocene, and late Eocene, caused by the eastward transgressions of the Turan Sea into the Tarim basin
(Bosboom et al., 2011, 2013, 2015; Carrapa et al., 2015; Kaya et al., 2019; Sun & Jiang, 2013). In the
Shurobod area, the final retreat of the Turan Sea resulted in the formation of a coastal environment and
an extended alluvial plain. This is expressed by widespread red beds and the absence of marine deposits in
strata younger than the late Eocene Isfara‐Hanabad Fm (~37 Ma; Kaya et al., 2019). Carrapa et al. (2015)
inferred that the main phase of regression occurred at ~39 Ma, but as noted by Bosboom et al. (2015), this
age corresponds to the regression at the top Turkestan Fm. Furthermore, Dzhalilov et al. (1982) documented
the occurrence of marine bivalves and snails in the Tajik basin well into the late Eocene (Kushan and
Sanglak horizons, which correlate with the Isfara‐Hanabad and Sumsar Fms; Figure 3). In fact, they docu-
mented oysters and stromatolites in the Hissarak member of the basal Baljuvon Fm (early Oligocene, base at
~34 Ma), which occurs west of the Vakhsh river (at about the position of the Vakhsh syncline in Figure 1c)
and in the northern Tajik basin. The ultimate change to fully continental sedimentation thus likely occurred
—in accordance with Bosboom et al. (2015)—as late as≤ 34 Ma in the northwestern Tajik basin, coeval with
the global sea level drop (Eocene‐Oligocene transition).
6.1.2. Synorogenic Stage I
Beginning with the Baljuvon Fm—during the early to late Oligocene (~34–23 Ma)—a continental foreland
basin formed in what is today the eastern Tajik basin. Apparent sedimentation rates increased to ~86 m/Myr
(see section 4.2.1.). After a prolonged phase of floodplain sedimentation with only distal fluvial conglomer-
ates (Shurisay Member, early Oligocene), the sudden basinward progradation of proximal alluvial sediments
marked a major change of the depositional environment, represented by the Kamolin Member of the
Baljuvon Fm; the base of the member is now dated at ≤ ~29 Ma (Chapman et al., 2019). The occurrence
of isolated, fan‐like alluvial bodies dominated by conglomerates, representing stacked debris and
hyper‐concentrated flows, records the first major pulse of erosion of an elevated topography in the hinter-
land. Based on our paleocurrent data, these sediments were derived from sources in the east (present coor-
dinates), that is, the Pamir. Variations in sediment thickness and laterally changing lithofacies resulted in
the development of a moderate basin morphology (Figure 16a). In the early Miocene, the foreland basin
was fully developed; apparent sedimentation rates sharply increased to ~169 m/Myr with the deposition
of proximal alluvial fan deposits of the Khingou Fm, beginning at ≤ ~23 Ma (see section 4.2.2.). This indi-
cates high exhumation rates in the hinterland at that time. Coalescing alluvial fans, containing
boulder‐sized clasts, formed an extended bajada that fringed the western Pamir (present coordinates;
Figure 16b).
6.1.3. Synorogenic Stage II
The first growth strata in the middle Khingou Fm provide sedimentologic evidence for the onset of the tran-
sition of the foreland basin into a fold‐thrust belt. In the Tavildara Fm. (≤ ~15–5 Ma), high apparent sedi-
mentation rates of ≥ 190 m/Myr (see section 4.3.1.) and continued development of westward thickening
growth strata indicate the development of distinct and proximal hinterland topography, probably a precur-
sor of today's frontal homocline in the eastern Tajik basin. The increased roundness of the conglomerate
clasts and the better sorting of the matrix in the Tavildara Fm compared to the Khingou Fm indicate an
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Figure 16. Reconstruction of the depositional environment and synorogenic basin evolution of the eastern Tajik basin fromOligocene to Pliocene. (a) Development
and advance of isolated alluvial fans on a stable alluvial plain, evacuating sediment from the initial exhumation of the distant Pamir hinterland, transform the
Tajik basin into a foreland basin. The alluvial plains are traversed by minor fluvial channels and dominated by floodplain fines. The preorogenic sediments are
characterized by shallow facies gradients resulting in a layer‐cake architecture, whereas locally different sedimentation rates of the early synorogenic strata indicate
the development of a moderate morphology. (b) Growing alluvial fans evacuate progressively increasing sediment volumes from local hinterland drainage
basins into the Tajik basin, resulting in sharply increasing facies gradients and development of morphology. High exhumation rates and evenly spaced drainage
outlets along the Pamir front led to the coalescence of individual alluvial fans into a vast interconnected bajada. In the middle‐late Miocene, westward thickening
growth strata indicate the onset of basin inversion and the transformation of the Tajik basin from a foreland basin into the Tajik fold‐thrust belt. (c) Upstream
migrating incision and river capture resulted in the enlargement of the hinterland drainage basins, which along with increased water supply led to the formation of
a fluvial mega‐fan. High sedimentation rates and emerging intra‐basin morphology filled the available accommodation space and led to back‐stepping of
sedimentation onto the hinterland. (d) Continuous growth of the fold‐thrust belt with ridges parallel to the mountain front resulted in a major reorganization
of the drainage system from transverse to longitudinal sediment transport. Main sediment evacuation was relocated to the northeastern Tajik basin, leading to the
formation of extended floodplains traversed by broad and shallow braided channels of low sinuosity.
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increase in water supply and perennial discharge in the former. This change from a sediment‐gravity flow
dominated to a fluid‐gravity flow‐dominated depositional environment resulted in the formation of a fluvial
mega‐fan in the study area (Figure 16c). Continued shortening resulted in angular unconformities (i.e.,
middle/upper Tavildara Fm, Imam Askar section), erosion of synorogenic strata, and increased basin mor-
phology. The continued growth of ~N trending folds (present coordinates) in the Tajik basin blocked trans-
versal sediment transport. The accommodation space at the eastern Tajik basin margin became overfilled,
triggering the back‐stepping of the basin into the hinterland in themiddleMiocene. This is proven by growth
strata that discordantly overlap the eroded basement of the Pamir (Figure 11). The waning and vanishing of
the growth strata in the upper Tavildara Fm (~7 Ma) and the deposition of the fine‐grained floodplain sedi-
ments of the Karanak Fm (~5–4 Ma) may mark the temporary cessation of shortening at the eastern margin
of the Tajik basin or its relocation, causing a shift to more distal basin facies in the Shurobod area. Major
sediment evacuation from the exhuming Pamir may have shifted northward (present coordinates) along
the western Pamir flank in the Pliocene (Klocke et al., 2017). Our paleocurrent data mark this reorganization
of the drainage system from lateral (E‐W) to longitudinal (N‐S) sediment transport in the eastern Tajik basin
(see section 4.3.2., Figure 16d). The progressively declining dip angles of the strata in the Karanak Fm toward
the center of the Kulyab syncline (Figure 11) indicate the resumption/intensification of shortening along the
eastern asin margin in the Pliocene.

6.2. Drainage‐Network Evolution and Provenance

The size, spacing, and character of the drainage network along a mountain front reflect the amount of sedi-
ment evacuated from the hinterland, the amount of water discharge depends—given a relatively stable cli-
mate—on the size of catchments, and the extent of orogenic exhumation through variations in the local base
level of the fluvial systems (e.g., Beaumont et al., 1992; Castelltort & Simpson, 2006; Frostick & Jones, 2002).
Our sections along the eastern Tajik basin record the transformation of the drainage systems from an early
continental foreland basin into a fold‐thrust belt adjacent to the western front of the Pamir.

The extensive Oligocene (~34–23 Ma) alluvial plains mark the change from a marine‐influenced deposi-
tional environment to an exclusively continental depositional environment with a rising hinterland. In
the absence of large antecedent drainages, incipient uplift results in the development of small drainage net-
works with outlets spaced several kilometers apart along the emerging orogenic front (e.g., Beaumont et al.,
1992). As numerous small streams transfer eroded material away from the emerging hinterland, isolated
small‐scale alluvial fans flank the mountain front (Figure 16a). These drainage areas are mostly restricted
to the leading structures of the orogen (Horton & DeCelles, 2001). The growth of individual catchments
results in the incorporation of additional watersheds by river capture (Koons, 1995). This creates fewer
but better developed and more widely spaced drainage networks competing for catchment area. The evol-
ving drainage networks succeed in the evacuation of the increased sediment supply from the rising
frontal ranges.

The outward growth of the Pamir salient likely produced considerable shortening along the deformation
front, the eastern Tajik basin (Chapman et al., 2017; see Figure 1e and details about the structural geometries
and amount of shortening in Gągała et al., 2020). This promoted the incisions of small streams, headwater
migration, and thus capture of upstream drainage networks; consequently, a row of closely spaced outlets
replaced the established gorges along the basin margin, feeding an extending bajada (Khingou Fm,
≤ ~23–15 Ma; Figure 16b) at the mountain front (cf. Clevis et al., 2003). Catchment cannibalism ultimately
favored the formation of large drainage systems; fewer outlets channelized the sediment flow along the oro-
gen front with larger drainages that reach farther into the hinterland. Large fluvial distributary systems
developed at the outlets along the orogenic front during this stage (Tavildara Fm, ≤ ~15–5 Ma; Figure 16
c). High sediment flux filled the available accommodation space. Activation of the Tajik fold‐thrust belt
led to the distribution of shortening across the rising thrust‐cored folds of the Afghan‐Tajik depression dur-
ing the middle‐late Miocene (~12 Ma; Abdulhameed et al., 2020; Gągała et al., 2020). At this stage, shorten-
ing had established an intrabasinal morphology parallel to the Pamir front. This likely restricted the
accommodation space and blocked further transversal sediment transport. Thus, sediment accumulation
was forced to step back eastward onto the frontal homocline, establishing a floodplain environment tra-
versed by axial rivers (Karanak Fm, ~5–4 Ma; Figure 16d) in the eastern Tajik basin. As the main sediment
locus from the hinterland into the basin shifted northward (present coordinates; cf. Klocke et al., 2017), the
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drainage network in the eastern Tajik basin reorganized from transverse to longitudinal to the
orogenic front.

The petrography of the sandstones and siltstones reveals strong similarities between the different synoro-
genic Formations. Lithic arkoses and litharenites dominate the sandstones; litharenites, wackes, and shales
compose the siltstones. This implies little fractionation across the grain‐size spectra, pointing to a dominance
of physical weathering. The immaturity of the sandstones implies little diagenetic overprint; diagenesis in
sandstones intensifies the breakdown of labile grains into pseudomatrix (Dickinson, 1970) and thus
increases the mineralogical maturity (Helmold, 1985).

The trace‐element composition of the siltstones reflects changing sediment sources. Strong intraforma-
tional differences in the abundance of Cr, Mo, Pb, and Eu, in particular in the Baljuvon Fm but also in
the Khingou Fm, occur between the northern section (Obi Khudkham) and the southern sections
(Shurobod, Chilishtak One, and Chilishtak Two). This implies the presence of small and localized drainage
basins, at least in the Baljuvon Fm. Intraformational differences between Cr, Mo, Pb, and Eu decrease
upsection into the Tavildara Fm, reflecting better mixing and averaging of locally enriched elements in
increasingly larger drainage basins. In addition, mobile elements such as Sr, Sc, V, and Cr approach values
of the UCC with decreasing stratigraphic age, that is, the Oligocene Baljuvon Fm, diverge most from the
average UCC composition, the Khingou Fm less, and the Tavildara Fm has UCC composition. This indi-
cates increased mixing during transport and less dispersal due to depositional fractionation over time, thus
larger drainage systems.

Hydraulic fractionation enriches the REEs in the fine‐grained clastic sediments. Thus, the decrease in REE
abundance from the Baljuvon Fm to the Tavildara Fm and their increase in the Karanak Fm mirrors the
changes in the sedimentary environment: increasingly proximal from the Baljuvon Fm to the Tavildara
Fm, and more distal in the Karanak Fm. Protracted fractionation processes in a distal alluvial plain—the
Baljuvon Fm—changed to depletion in an increasingly proximal clastic environment with less weathering
—the Tavildara Fm. REEs in the Tavildara Fm are preferentially tied to the coarser grain sizes, whereas
in the Karanak Fm, the REE content indicates enhanced grain fragmentation and incorporation of the
REE into the finer grain‐size classes.

6.3. Tectonic Framework

How is the Tajik‐basin evolution and its provenance record tied to Pamir tectonics? Petrochronology
recorded the synchronous onset of crustal thickening across the entire South and Central Pamir—and
likely the Karakorum and Hindu Kush south of it—at ≥ ~37 Ma (section 1; Smit et al., 2014; Hacker
et al., 2017). The onset of crustal thickening was contemporaneous with a localized pulse of magmatism
in the Central Pamir at 42–36 Ma (Chapman et al., 2018; Hacker et al., 2017). In the Shurobod area, the
final retreat of the Turan Sea is marked by the formation of an extended alluvial plain, indicated by the
widespread red beds that are younger than the late Eocene Isfara‐Hanabad Fm (top of formation at
~37 Ma). The onset of foreland‐basin formation, in particular at its eastern margin, may be a few Myr
earlier than the ultimate basin‐wide establishment of fully continental sedimentation at ≤34 Ma
(Hissarak Member) in the entire Tajik basin, coeval with the global sea level drop (section 6.1.1). We
therefore speculate that the formation of the extended alluvial plain in the eastern Tajik basin is consis-
tent with the establishment of a foreland‐basin as a result of the onset of crustal thickening in the distant
Pamir hinterland.

We interpreted the occurrence of isolated channelized conglomerates in the Shurisay Member followed
by fan‐like alluvial bodies dominated by conglomerates in the Kamolin Member to mark a major
change of the depositional environment. The deposition of conglomerates and increasing apparent sedi-
mentation rates from ~20 m/Myr (Paleogene) to ~86 m/Myr (Oligocene) indicate that the foreland basin
was established. We suggest that the alluvial fans constituting the Baljuvon Fm (~34–23 Ma) represent
the foreland response to crustal thickening across the entire South and Central Pamir since ≥ ~37 Ma,
in particular the most rapid phase of shortening and thickening at ~27–20 Ma (Figure 4; Hacker
et al., 2017).

Carrapa et al. (2015) suggested that the overall stratigraphic record of the Tajik basin and the southwestern
Tian Shan—together with the northwestward younging trend of the Turan‐Sea regression—point to the
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establishment of a foreland‐basin setting at ~40 Ma. As shown by Bosboom et al. (2015) and Kaya et al.
(2019), the ultimate incursion (top at ~39 Ma) of Carrapa et al. (2015) does in fact correspond to the penul-
timate incursion (Turkestan Fm) of the Turan Sea into the eastern Tajik basin (Figure 3). Fixing the begin-
ning of the foreland basin stage at ~40Mawould thus include the Rishtan to Sumsar Fms into this stage. This
appears unlikely considering the fine‐grained terrestrial deposits of the Rishtan and Sumsar Fms and the
apparent sedimentation rate of ~20 m/Myr for the whole succession. Chapman et al. (2019) dated the
foreland‐basin stage back to the Early Cretaceous based on the eastward thickening of the Lower
Cretaceous succession from ~600 m in the western Tian Shan to ~1.5 km along the Pamir front. Based on
the ~45 Ma duration of the Early Cretaceous subsystem, the resulting maximum sedimentations rates would
range from ~13 m/Myr in the western Tian Shan to ~33 m/Myr along the Pamir front. These rates compare
well to the herein approximated rate of ~20 m/Myr for the Paleogene preorogenic stage but are far below the
rates estimated for the synorogenic stages Ia and Ib (~86–190 m/Myr). As we focus herein on the Cenozoic
evolution of the Pamir‐Tian Shan orogenic system, we classify the Lower Cretaceous succession as the
preorogenic stage.

The main episode of proximal, synorogenic sediment accumulation in the Tajik basin is recorded by the coa-
lescence of proximal alluvial fans in the Khingou Fm (≤ ~23–15 Ma). These fans formed an extended bajada,
indicative of the proximity to the hinterland. We interpret this major change from distal to proximal deposi-
tion as the response to the relocation of the deformation front from the Central Pamir to the North Pamir
during the extensional collapse of the Central Pamir (~23–15 Ma, with decreasing rates until cessation at
~12 Ma; section 1; Rutte, Ratschbacher, Schneider, et al., 2017; Rutte, Ratschbacher, Khan, et al., 2017).
This new deformation front in the North Pamir may have induced the change from the floodplain/distal
alluvial fan stage in the upper part of the Baljuvon Fm to the proximal deposits in the Khingou Fm.
Moreover, the largest outsized clasts, recorded in the lower Khingou Fm (~23–20 Ma), coincide with peak
erosion at ~23–20 Ma in the Central and South Pamir as reported by Hacker et al. (2017) and Rutte,
Ratschbacher, Khan, et al. (2017; Figure 4).

The appearance of growth strata in the middle Khingou Fm provides sedimentologic evidence for the onset
of the transition of the foreland basin into a fold‐thrust belt in the Shurobod area. The Tavildara Fm (≤ ~15–
5 Ma) contains the most spectacular growth strata of the Tajik basin, thus signaling the major phase of
fold‐thrust belt formation (Figure 4). The progressive approach and ultimate onset of indentation of the
Indian cratonic lithosphere into the Tajik‐Tarim lithosphere underneath the Pamir and the onset of the roll-
back of the Tajik‐basin lithosphere at ~12–11 Ma likely initiated the Tajik fold‐thrust belt formation
(section 1, Kufner et al., 2016, 2018; Schurr et al., 2014). The age of the sedimentologically derived major
phase of fold‐thrust belt formation in the eastern Tajik basin roughly corresponds to the thermochronologi-
cally determined onset of shortening in the entire fold‐thrust belt at ~12 Ma (Abdulhameed et al., 2020). It
also is contemporaneous with the transfer of the southwestern Tian Shan into a dextral transpressive defor-
mation belt (section 1; Käßner et al., 2016). The northward and westward migration of rollback of the Tajik
lithosphere should have increased the subsidence rate in the Tajik basin as its substratum subsided. This
may have contributed to the transgression (back‐stepping) of the Tavildara and Karanak Fm deposits onto
the previously eroded Pamir hinterland. The waning and ultimately vanishing of growth strata in the upper
Tavildara Fm (~7Ma) and deposition of the fine‐grained floodplain strata of the Karanak Fm (~5–4Ma) may
reflect this lithospheric process in the Shurobod area. The change to fine‐grained deposits correlates with a
major decrease in shortening rates in the distal (northwestern) Tajik fold‐thrust belt and its western and
northern forelands, and the concentration of shortening in the proximal (eastern) Tajik basin
(Abdulhameed et al., 2020). This effect of a rolling back lithosphere on the Tajik basin may be similar to
the model proposed by Schlunegger and Kissling (2015) for the northern Alps. Since it is contested that
the large‐scale subsidence pattern of a basin and accumulation of kilometer‐thick sedimentary fan succes-
sions can be explained through build‐up of topographic loads alone (Pfiffner et al., 2002), they suggested that
rollback of the subducting plate in a continent‐continent collision regime is likely to account for a good part
of the formation of accommodation space in the foreland basin. The evolution of the Tajik basin with its dis-
tinct stages of synorogenic deposition thus offers insights into the strongly coupled relationship of the devel-
opment of the Pamir, plate processes at depth, and their effects on the sedimentary system at the surface. The
ultimate verification of these correlations, however, awaits better dating of the synorogenic strata in the
Tajik basin.
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7. Conclusions

Following the final retreat of the Paratethys during the late Eocene, the eastern Tajik basin evolved from an
epi‐continental sag basin into an exclusively terrestrial foreland basin with a distal alluvial plain. The distal
to proximal and coarse fan deposits of the Baljuvon Formation (~34–23 Ma) in the Shurobod area were con-
temporaneous with crustal thickening in the South and Central Pamir at ≥ 37 Ma, in particular with accel-
erated thickening at ~27–20 Ma. The main phase of proximal synorogenic sediment accumulation in the
Tajik basin in the Khingou Formation (≤ ~23–15Ma) led to the development and coalescence of alluvial fans
into an extended bajada in close proximity to the hinterland. This was likely triggered by the relocation of the
deformation front from the Central Pamir to the North Pamir during the main phase of extensional collapse
(foreland advance) of the Central Pamir (~23–12 Ma). The largest outsized clasts in the lower Khingou
Formation are contemporaneous with peak erosion in the South and Central Pamir (~23–20 Ma). The onset
of the basin reconfiguration from a foreland basin into a fold‐thrust belt is indicated by the appearance of
growth strata in the middle Khingou Formation of the Shurobod area. Prominent growth strata in the
Tavildara Formation (≤ ~15–5 Ma) signal the main phase of fold‐thrust belt formation. Headward erosion
and growth of transverse streams through drainage‐divide migration and cannibalization of drainage basins
led to the development of fluvial megafans. This coincided with the onset of the rollback of the Tajik litho-
sphere at ~12–11 Ma, which initiated the advance of the Pamir‐plateau crust into the Afghan‐Tajik depres-
sion. The absence of growth strata in the upper Tavildara Formation (~7 Ma) and the presence of
fine‐grained floodplain deposits in the Karanak Formation (~5–4 Ma) likely reflects a deepening of the east-
ern Tajik basin caused by northward and westward migration of the rollback of the Tajik‐basin lithosphere.
This was accompanied by a decrease in shortening rates in the Tajik basin and a back‐stepping (transgres-
sion) of deposition onto the previously eroded western Pamir flank. To better constrain the development
of the Tajik basin, and the information it provides about the development of the Pamir, it is imperative to
establish a more precise timeframe for the synorogenic strata.
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