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ABSTRACT

Aims. The ExoMars Trace Gas Orbiter was sent to Mars in March 2016 to search for trace gases diagnostic of active geological or
biogenic processes.
Methods. We report the first observation of the spectral features of Martian ozone (O3) in the mid-infrared range using the Atmo-
spheric Chemistry Suite Mid-InfaRed (MIR) channel, a cross-dispersion spectrometer operating in solar occultation mode with the
finest spectral resolution of any remote sensing mission to Mars.
Results. Observations of ozone were made at high northern latitudes (>65◦N) prior to the onset of the 2018 global dust storm
(Ls = 163–193◦). During this fast transition phase between summer and winter ozone distribution, the O3 volume mixing ratio observed
is 100–200 ppbv near 20 km. These amounts are consistent with past observations made at the edge of the southern polar vortex in the
ultraviolet range. The observed spectral signature of ozone at 3000–3060 cm−1 directly overlaps with the spectral range of the methane
(CH4) ν3 vibration-rotation band, and it, along with a newly discovered CO2 band in the same region, may interfere with measurements
of methane abundance.

Key words. planets and satellites: atmospheres – planets and satellites: composition – planets and satellites: detection –
planets and satellites: terrestrial planets – radiative transfer

1. Introduction

Ozone (O3) on Mars was first observed by the Ultraviolet Spec-
trometers on Mariner 7 and 9 (Barth et al. 1973; Barth & Hord
1971), which showed large variability and established seasonal
trends. Since then, O3 has been observed by ground-based cam-
paigns and spacecraft missions, but largely using absorption and
emission features in the ultraviolet spectral range (e.g. Clancy
et al. 2016; Perrier et al. 2006) or the thermal spectral range using
the 9.7 µm band (Espenak et al. 1991; Fast et al. 2006). Here,
we report the first observations of ozone absorption in the mid-
infrared spectral region, between 3015 and 3050 cm−1, using the
mid-infrared channel of the Atmospheric Chemistry Suite (ACS)
Mid-InfaRed (MIR) onboard the ExoMars Trace Gas Orbiter
(TGO). This spectral region is shared by the ν3 vibration-rotation
band of methane (CH4), as well as a newly discovered transition
of CO2 (Trokhimovskiy et al. 2020). The ability to simultane-
ously resolve these species has an impact on current and past
attempts to measure the abundance of methane in the atmosphere
of Mars.

ACS MIR is a novel cross-dispersion spectrometer making
solar occultation observations of the limb of the Martian
atmosphere. It has the finest spectral resolution of any Martian
remote-sensing instrument to date, and the solar occultation
technique provides a high signal-to-noise ratio (S/N), and strong
sensitivity to the vertical structure of the atmosphere. These
characteristics were instrumental in observing, for the first time,
the mid-infrared 003←000 transitions of O3 in the atmosphere
of Mars.

Here we present solar occultation observations made in
Mars year (MY) 34 by ACS MIR between solar longitude
(Ls) 163–193◦ and north of 60◦N (May–June 2018). In this
region and time period, corresponding to the northern autumn
equinox, we were able to observe significant amounts of ozone
in the mid-infrared at altitudes below 30 km. In the following
section, we describe the TGO mission, ACS instrument, and
spectral fitting method. In Sect. 3 we present our observations,
analysis, and comparison to model results and the literature.
Section 4 discusses the implications that this observation has
for CH4, which is sought in the same wavenumber range of the
infrared.

Ozone chemistry. The stability of the CO2 atmosphere on
Mars depends on the abundances of odd hydrogen (H, OH, HO2),
which is a product of H2O photolysis. The primary source of O3
is a three-body reaction between O2 and O, while the primary
loss mechanism is the inverse reaction via photolysis. Such a
cycle is neutral in terms of the quantity of odd oxygen remaining
because O is converted to O3 and vice versa. The main net-loss
pathway of the odd oxygen family Ox =O + O3 is the reaction
with HO2 (HO2 + O → OH + O2), which reduces Ox. Ozone is
therefore a valuable tracer of the odd hydrogen chemistry that
stabilises the chemical composition of Mars’ atmosphere, as H,
OH, or HO2 have never been directly measured. Since odd hydro-
gen is primarily produced by H2O photolysis, ozone is expected
to be anti-correlated with water vapour (e.g. Clancy et al. 1996;
Lefèvre & Krasnopolsky 2017; Perrier et al. 2006, and references
therein).
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The ozone profiles described here were all obtained at high
northern latitudes around autumn equinox (Ls = 160–190◦). At
these latitudes and during this period, ultraviolet measurements
performed in nadir geometry show ozone columns that rapidly
increase with time (Clancy et al. 2016; Perrier et al. 2006). This
dramatic rise in ozone occurs in conjunction with the buildup
of the winter polar vortex and the quick decline in water vapour
and O3-destroying odd hydrogen. Observations of the ozone pro-
file are sparse in the literature and do not cover the latitudes and
local times sampled here. Indeed, almost all published profiles
of ozone at high latitudes were measured later in the season, in
the polar night (Gröller et al. 2018; Montmessin & Lefèvre 2013;
Perrier et al. 2006). The only exceptions are the four polar ozone
profiles measured by solar occultation in the ultraviolet range
by Piccialli et al. (2019), but those were obtained in the south-
ern hemisphere and at the edge of a fully developed polar vortex
(Ls56–68◦). Our knowledge of the vertical distribution of ozone
is therefore still very limited, in particular in twilight conditions.
However, all previous studies show that the largest ozone den-
sities on Mars are always found in the polar vortices and that
the polar ozone layer is usually located low in the atmosphere,
typically between the surface and 20–25 km altitude.

2. Methods

The TGO was launched in 2016, began its nominal science phase
in April 2018, and has completed 2 yr of observations at the time
of publication. The primary scientific objectives of TGO are to
detect any trace gases diagnostic of active geologic or biogenic
activity, characterise and attempt to locate the possible sources of
such trace gases, and characterise the water cycle on Mars (Vago
et al. 2015). To achieve these goals, the TGO carries two suites of
multi-channel spectrometers: ACS (Korablev et al. 2018), and the
Nadir and Occultation for Mars Discovery (NOMAD; Vandaele
et al. 2018). Both spectrometer suites have three channels and
are capable of making observations in nadir, limb, and solar
occultation viewing geometries.

The MIR channel of ACS is a cross-dispersion spectrometer
consisting of a primary echelle grating, and a secondary grating
used to separate diffraction orders (Korablev et al. 2018). The
secondary grating rotates through several positions to access dif-
ferent simultaneous spectral ranges. This work uses position 12,
which covers the spectral range 2850–3250 cm−1 that contains
the main CH4 absorption band. This channel has the finest spec-
tral resolution (0.043–0.047 cm−1) of any atmospheric remote
sensing Mars mission and operates solely in solar occultation
mode, benefiting from high signal strength, long optical path
length, and the ability to directly probe vertical structure.

Calibration for these observations was performed at Russia’s
Space Research Institute (IKI) and involves performing several
corrections to the data before subtracting a dark signal from
observations taken over a series of tangent altitudes and a solar
reference measured above the top of the atmosphere. Transmis-
sion spectra are obtained by dividing the corrected absorption
spectra by the solar reference. Prior to transmission calculation,
corrections applied to the data include removing dead or sat-
urated pixels, accounting for subpixel drifts over time, and an
ortho-rectification procedure needed to extract one-dimensional
spectra from the two-dimensional detector array. See Fedorova
et al. (2020), Olsen et al. (2020), Trokhimovskiy et al. (2020) for
more details.

The instantaneous field of view (IFOV) of the instrument
optics observing the edge of the solar disc is on the order of
1–4 km when projected at the Martian limb. The Sun edge is

imaged onto the detector array over approximately 15 rows, and
from each row, a spectrum can be extracted. We use the intensity
curve, which is a column of the detector array image and covers
the vertical fields of view of each diffraction order (see Olsen
et al. 2020), to identify a spectrum near the slit edge, which is
closest to the centre of the solar disc.

Wavenumber calibration of each diffraction order is per-
formed in two steps. An initial guess of wavenumber posi-
tions for the solar reference spectrum is compared to the solar
spectrum measured by the Atmospheric Chemistry Experiment
Fourier Transform Spectrometer (ACE-FTS; Hase et al. 2010)
in order to obtain a calibrated wavenumber vector. This is then
refined using an appropriately clear transmission observation
(avoiding signal attenuation due to aerosols) using transmis-
sion lines from CO2, CO, or H2O, if they are available and of
sufficient strength.

Spectral fitting is performed by the Gas Fitting software suite
(GFIT or GGG) maintained by NASA’s Jet Propulsion Labora-
tory (e.g. Irion et al. 2002; Wunch et al. 2011). Over a given
fitting window, volume absorption coefficients are computed for
each gas and a spectrum is computed line-by-line. Non-linear
Levenberg-Marquardt minimisation is done to determine a best-
fit spectrum by modifying volume mixing ratio (VMR) scaling
factors for a set of target gases. A set of estimated slant column
abundances for all observed tangent altitudes is inverted with
calculated slant column paths traced through the atmosphere
using a linear equation solver to obtain a retrieved VMR vertical
profile. Volume absorption coefficients are computed using the
HITRAN 2016 line list (Gordon et al. 2017; Olsen et al. 2019),
supplemented by H2O broadening parameters for a CO2-rich
atmosphere (Devi et al. 2017; Gamache et al. 2016).

The width of an instrument line shape is wavenumber depen-
dent. Therefore, to obtain more accurate fits we use narrow fitting
windows. The S/N of each spectrum, corresponding to a diffrac-
tion order, is also highest in its centre due to the blaze function
of the echelle grating. To avoid errors in spectral calibration,
we avoid working toward the edges of the spectra and cover
the centre of each order with two or three windows that are 5–
6 cm−1 in width (a diffraction order in position 12 has a width
of 19–21 cm−1). There remains a curvature in the baseline of
the spectra. We use normalised spectra here and use an alpha
shape, which finds the geometric area containing a spectrum, to
estimate the baseline shape (Xu et al. 2019).

Accurate knowledge of temperature and pressure are critical
for computing the number density of the atmosphere and per-
forming accurate trace gas retrievals. In this work, temperature
and pressure have been retrieved from observations of CO2 lines
using coincident measurement made with the ACS near-infrared
channel (Fedorova et al. 2020).

3. Observations and results

We first discovered the transmission signature of O3 in ACS MIR
data during orbit 2476 (occultation N1), which was recorded on
June 13 2018, or Ls = 192.7◦. The local time was 17:16, and the
latitude and longitude of the tangent point were 66.5◦N, 13.5◦E.
This was shortly after the onset of the global dust storm of MY
34, which began around Ls = 190◦ (Montabone et al. 2020), but
at such a high latitude that its impact was not yet felt and obser-
vations with suitable transmittance were made down to 2.3 km
above the aeroid. The signature was initially identified in order
182, covering the spectral range 3047.5–3067.5 cm−1, shown
in Fig. 1, with a computed best-fit spectrum. Once identified,
the signature was also clearly identified in orders 180 and 181,
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Fig. 1. Spectra recorded by ACS MIR at 5.5 km using secondary grating position 12 during occultation 2476 N1 on Ls = 192.7◦: (a) contributions
from O3, H2O, and CO2 to the best-fit for orders 180–182; (b) data and best-fits for orders 180–182.
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Fig. 2. Same as Fig. 1b, except at a range of altitudes.

shown in Fig. 1b. The signature is very small relative to nearby
H2O absorption lines and is only apparent in a small number
of observations, and at the lowest altitude levels. It is consis-
tently visible over a range of observed tangent altitudes, and its
evolution over altitude is also clearly distinguishable. Spectra
from five consecutive tangent altitudes from the same occulta-
tion are shown in Fig. 2, from the lowest observable tangent
altitude of 2.3 km (which had a transmission level of 30%), up
to 18 km, above which the signature vanishes in the instrument
noise (we note there was a corrupt observation near 15 km). The
CO2 lines towards the left side of order 180 in Figs. 1a, b are
not included in any current line lists and have been identified
as a magnetic dipole absorption band of the 628 isotopologue
of CO2; they are reported in a separate paper (Trokhimovskiy

et al. 2020) and the fit shown in Fig. 1b uses line positions cal-
culated in Trokhimovskiy et al. (2020), and line strengths and
widths estimated from the nearby ν2 + ν3 band of the 16O12C18O
isotopologue of CO2. The spectral window covering this area
was not used to estimate the O3 abundance since the O3 transi-
tions here are relatively weak and the CO2 spectroscopy is still
imprecise.

After the initial discovery, a careful search of all processed
position 12 observations was undertaken. The signature was
found in several other occultations, and often at higher altitudes.
Figure 3 shows best fits in order 182 for four other occultations
at altitudes near 15 km where the signature is strong and clear.

Figure 4 indicates where O3 was identified over the evolution
of the ACS MIR occultation latitudes with time (Ls). All of these
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Fig. 3. Measured spectra and best-fits for order 182 for four occultations recorded between Ls = 160–200◦ and north of 65◦N.
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Fig. 4. Latitudes of ACS MIR occultation tangent points as a function of
Ls. Dots in grey are ACS MIR occultations using grating positions other
than 12. Filled blue circles are full-frame observations, and empty blue
circles are partial-frame observations. Occultations exhibiting strong O3
absorption features are indicated with arrows.

observations occurred early in the mission, and at high north-
ern latitudes, greater than 60◦N and in the range Ls = 160–200◦.
This is consistent with previous studies of the climatology of
Martian O3 that have reported accumulation over the poles dur-
ing fall/winter (Clancy et al. 2016; Perrier et al. 2006), resulting
from reduced destruction pathways caused by low water vapour
content and solar insolation. However, according to these stud-
ies, the area of enhanced O3 should extend southward to 40◦N
and cover the time period Ls = 180–360◦. We do not find con-
vincing signatures of O3 over the northern extent of ACS MIR
coverage in the range Ls = 200–280◦ because of the onset of
the global dust storm. Indeed, the dust storm generally sets an

altitude limit on the vertical extent of solar occultation obser-
vations of 25–35 km, below which meaningful signal is lost. In
the range Ls = 280–380◦, data volume constraints required us to
download only partial detector frames (open circles in Fig. 4),
which have not been fully processed.

Vertical profiles of retrieved number densities and mixing
ratios are shown in Figs. 5a, b. The lower bound of the profiles
indicates where the transmission signal dropped off to less than
0.05. The upper altitude limit, denoted by the transition from a
solid to dotted line, indicates where the O3 absorption features
begin to be hidden in background noise, causing the retrieval
uncertainty to grow larger than the VMR. The uncertainties
shown in Fig. 5b are the sum of the partial derivatives computed
for the inversion of the matrices containing the number densities
and slant paths (Jacobian matrix). In the right panel, Fig. 5c, we
also show vertical profiles generated by running the LMD gen-
eral circulation model (GCM; Forget et al. 1999; Lefèvre et al.
2004) using a dust scenario for MY 34 (Montabone et al. 2020).

Except for the earliest profile measured at Ls = 163◦, all pro-
files indicate that the O3 density strongly increases at lower
altitudes. This suggests a gradual transition towards the sur-
face O3 layer typically observed in the winter polar vortex. The
largest O3 densities reach 1010 molec cm−3 at 10 km and below, in
agreement with the polar profiles measured by the MEx SPectro-
scopie pour l’Investigation des Caractéristiques Atmosphériques
de Mars (SPICAM) in the southern hemisphere (Lebonnois et al.
2006; Montmessin & Lefèvre 2013).

SPICAM has also been used to measure the O3 mixing ratio
near the south polar enhancement (Montmessin & Lefèvre 2013;
Piccialli et al. 2019). These latter authors observed strongly
increasing O3 abundance below 30 km toward 100–300 ppbv,
which was distinct from mid-latitude observations. These mix-
ing ratios are comparable to those presented in Fig. 5b, which
are between 100 and 300 ppbv.

In Fig. 5c, the LMD GCM ozone profiles co-located with
the ACS measurements also show a large variability in the short
period of Ls sampled here. In general, the O3 mixing ratios
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Fig. 5. Panel a: retrieved number density or O3. Panel b: retrieved VMR vertical profiles of O3. Panel c: VMR vertical profiles of O3 extracted
from the LMD GCM at corresponding Ls, locations, and local times. Colours indicating occultation number are shared between panels.

calculated by the model are underestimated by almost of fac-
tor of two relative to ACS MIR. This may reflect an imperfect
timing in the model of the rapid decline in H2O that accompa-
nies the buildup of the northern polar vortex at this time of the
year. Below 20 km, where ACS MIR observations are most sen-
sitive, the model simulation shows a pronounced O3 minimum
for the earlier profiles (Ls = 163–189◦) that is not seen in the
measurements. The model outputs suggest that this problem is
due to an overly strong poleward transport of H2O-rich air origi-
nating from mid-latitudes. The observation presented in Fig. 5 in
brown, 2476 N1, is an outlier in that ozone decreases with alti-
tude above 10 km. The other occultations from this period feature
an increasing or roughly constant mixing ratio up to 30 km. In
the LMD GCM, the shape of the O3 profile for this latest obser-
vation (Ls = 192.7◦) is also characterised by a strong decrease
above 20 km that contrasts with the earlier profiles. Examination
of the model results shows that the change in the shape of this
last O3 profile is related to a large increase in H2O above 20 km,
which is also observed at the same time and location by the ACS
NIR instrument (Fedorova et al. 2020).

4. Implications for CH4 observation

Ozone absorption below 30 km in the mid-infrared range has
important implications for searches for atmospheric methane.
Past observations of methane in the atmosphere of Mars
(Formisano et al. 2004; Krasnopolsky et al. 2004; Mumma et al.
2009; Webster et al. 2015) were a driving cause of the develop-
ment of the ExoMars TGO mission. CH4 should have a relatively
short lifetime in the atmosphere of Mars (several hundred years),
meaning current observations require an active source (Lefèvre
& Forget 2009). A key objective of the TGO mission is to
determine with certainty whether or not CH4 is present in the
atmosphere of Mars and what its spatial and temporal variabil-
ity is, and to localise any possible sources. This story continues
to be intriguing as the first results from TGO reported an upper
limit on the order of 50 pptv (Korablev et al. 2019), and ACS

MIR observations continue to reveal no methane after one MY.
In its place, we have instead found the rare and previously unde-
tected signatures of O3 and a new CO2 magnetic dipole band
(Trokhimovskiy et al. 2020).

The strongest observed O3 features directly overlap impor-
tant methane features used by the Planetary Fourier Spectrom-
eter (PFS) on Mars Express, the Tunable Laser Spectrometer
(TLS) on Curiosity, and ground-based observatories. Figure 6a
compares the contributions to a transmission spectrum for
150 ppbv of O3 and 1 ppbv of methane. Figure 6b shows a
zoomed region surrounding the CH4 Q-branch, and Fig. 6c
shows a zoomed region surrounding the strongest line of the CH4
R-branch. Panels a and b also show 50–150 pptv of methane,
approaching the upper limits reported by ACS (Korablev et al.
2019). In both cases, there is direct overlap between absorption
lines of CH4 and O3, with absorption lines produced by 150 ppbv
O3 being deeper than those from 150 pptv of CH4. Reported
values of methane abundance range from the background mea-
sured by TLS of 0.4 ppbv (Webster et al. 2018) to enhancements
measured by TLS and PFS of 6–16 ppbv (Giuranna et al. 2019;
Webster et al. 2015). We computed model spectra at the reso-
lutions of both instruments and are confident that errors can be
made when CO2 and O3 spectroscopy is not accounted for.

The Q-branch is especially important for spectrometers with
coarser spectral resolution than ACS MIR, as the integrated CH4
lines that make up the Q-branch would have a higher magnitude
than the individual lines in the P- and R-branches. It would be
observed in order 180 of ACS MIR, shown in Figs. 1 and 2, and is
located in the same spectral range in which we report previously
unknown CO2 lines (Trokhimovskiy et al. 2020), identified in
Fig. 1a. The Q-branch is used by the PFS team in their CH4
analysis (Formisano et al. 2004; Giuranna et al. 2019), but with
their spectral resolution, 1.3 cm−1, the entire Q-branch region is
integrated into only two or three spectral points.

The R-branch consists of a series of broadly spaced lines,
the strongest of which lies at 3057.7 cm−1. This line has been
used exclusively by TLS, which has sufficiently fine spectral
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Fig. 6. Panel a: modelled transmission spectrum contributions from 150 ppbv of O3 and 1 ppbv of CH4. Panel b: close look at the modelled
contributions around the CH4 Q-branch, but using 50 and 150 pptv of CH4. Panel c: close look at the modelled contributions around the strongest
line in the CH4 R-branch.

resolution to observe the line as a triplet (Webster et al. 2015,
2018). The TLS instrument also has the capability to resolve the
overlapping O3 line as a triplet. At this resolution, one pair of O3
and CH4 triplet lines directly overlap (3057.685 cm−1), and the
other two pairs partially overlap. Despite this, the TLS team has
not yet reported the abundance of ozone in Gale crater.

CO2 and O3 alone cannot account for the detections made
by both teams. In the case of PFS, the previously unknown CO2
features would impact all observations equally, as CO2 is always
present and well-mixed. The PFS team has instead identified
CH4 in only a small number of observations (Formisano et al.
2004; Giuranna et al. 2019). Furthermore, we computed spectra
with O3 at two and three times the quantities in our observations,
and the sheer magnitude of CH4 observed by these latter authors
(15 ppbv) is far too large to be easily mistaken for O3.

In the case of TLS, which takes measurements of CH4 at the
surface and mostly at night where and when the O3 abundance
is greatest, again, it is unlikely that the large quantity of CH4
observed (up to 9 ppbv) resulted from O3, yet the latter may inter-
fere in the measurement of the background level of methane in
the so-called enriched mode as both ozone and methane should
sustain the same enrichment.

For ground-based observations, strong O3 absorption fea-
tures from Earth’s atmosphere must first be removed before
retrieving mixing ratios for Mars (Krasnopolsky 2012; Mumma
et al. 2009); O3 must be accounted for, although this step
makes the retrieval more difficult (Zahnle et al. 2011). Finally,
in the case of all previous observations, the rapid evolution and
disappearance of CH4 are still not explained, although ozone
chemistry is very rapid, with a lifetime on the order of days.

5. Conclusion

The faint spectral signature of ozone, an established trace gas in
the Martian atmosphere, has been observed for the first time in
the MIR spectral region by the ACS MIR instrument on ExoMars
TGO. These observations are limited to high northern latitudes
(>65◦N) and prior to the onset of the 2018 Mars global dust
storm. During this time period, ACS MIR measurements pro-
vide new insight into the vertical structure of ozone around the
northern fall equinox and show the variability its VMR can have
shortly before the polar vortex is established. We observe the dis-
tinct presence of ozone with 100–200 ppbv at 20 km and below,
which is close to the amounts measured in comparable condi-
tions at the edge of the (southern) polar vortex. In general, the O3
mixing ratios retrieved by ACS MIR are higher than those calcu-
lated by the LMD GCM. This seems to result from an overly wet
atmosphere in the model at the time (equinox) and location (high
northern latitudes) sampled here; these parameters will need to
be confirmed in the future by simultaneous measurements of
water vapour by ACS NIR.

We look forward to the processing of observations made in
MY 35 and southern winter. Dust obscured the northern ACS
observations after Ls190◦, but observations made after Ls ∼ 30◦
in the next MY are very clear, and we expect to be able to detect
low-altitude ozone near the southern hemisphere.

The observation of this trace gas at higher-than-predicted
VMRs below 30 km has important implications for the detec-
tion of methane in the atmosphere of Mars. This band, as well
as the previously unidentified CO2 band, overlap and interfere
with the CH4 ν3 band used by TGO, MEx, and MSL to search
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for methane. Accounting for these absorption features improves
our own spectral fitting and will lead to more accurate lower lim-
its in the future. In conclusion, our study shows that the O3 lines
we report here interfere with measurements of Martian methane,
but a detailed reanalysis of these measurements is required to
precisely assess their impact.
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