M. Gautam and M. Agrawal, Phytoremediation of metals using vetiver (Chrysopogon 567 zizanioides (L.) Roberty) grown under different levels of red mud in sludge amended soil, Journal of 568 Geochemical Exploration, vol.182, pp.218-227, 2017.

C. W. Gray, S. J. Dunham, P. G. Dennis, F. J. Zhao, and S. P. Mcgrath, Field evaluation of in 571 situ remediation of a heavy metal contaminated soil using lime and red-mud, vol.142, pp.530-539, 2006.

A. Gunes, D. J. Pilbeam, and A. Inal, Effect of arsenic-phosphorus interaction on arsenic-575 induced oxidative stress in chickpea plants, Plant and Soil, vol.314, issue.1-2, pp.211-220, 2009.

N. Hattab-hambli, M. Motelica-heino, and M. Mench, Aided phytoextraction of Cu, Pb, Zn, 578 and As in copper-contaminated soils with tobacco and sunflower in crop rotation: Mobility and 579 phytoavailability assessment, Chemosphere, vol.145, pp.543-550, 2016.

L. M. Huang, G. W. Yu, F. Z. Zou, X. X. Long, and Q. T. Wu, Shift of soil bacterial community 582 and decrease of metals bioavailability after immobilization of a multi-metal contaminated acidic soil 583 by inorganic-organic mixed amendments: A field study, Applied Soil Ecology, vol.130, pp.104-119, 2018.

L. Jarup, Hazards of heavy metal contamination, British Medical Bulletin, vol.68, issue.1, pp.167-182, 2003.

W. Jiang, Q. Hou, Z. Yang, C. Zhong, G. Zheng et al., Evaluation of potential 588 effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic 589 content, Environmental pollution, vol.188, pp.159-165, 2014.

S. Khalid, M. Shahid, N. Niazi, B. Murtaza, I. Bibi et al., A comparison of 592 technologies for remediation of heavy metal contaminated soils, Journal of Geochemical Exploration, vol.593, pp.247-268, 2016.

P. Kidd, J. Barceló, M. Bernal, F. Navari-izzo, C. Poschenrieder et al., , p.596

C. Monterroso, Trace element behaviour at the root-soil interface: Implications in 597 phytoremediation, Environmental and Experimental Botany, vol.67, issue.1, pp.243-259, 2009.

Y. K. Kiran, A. Barkat, X. Q. Cui, Y. Feng, F. S. Pan et al., Cow manure and 600 cow manure-derived biochar application as a soil amendment for reducing cadmium availability and 601 accumulation by Brassica chinensis L. in acidic red soil, Journal of Integrative Agriculture, vol.16, issue.3, pp.725-602, 2017.

M. Lebrun, C. Macri, F. Miard, N. Hattab-hambli, M. Motelica-heino et al., , p.605

S. , Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated 606 mine technosols phytoremediated by Salix, Journal of Geochemical Exploration, vol.182, pp.149-156, 2017.

M. Lebrun, F. Miard, R. Nandillon, N. Hattab-hambli, G. S. Scippa et al., Eco-restoration of a mine technosol according to biochar particle size and dose application: 610 study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis, Journal 611 of Soils and Sediments, vol.18, issue.6, pp.2188-2202, 2018.

M. Lebrun, F. Miard, R. Nandillon, J. C. Léger, N. Hattab-hambli et al., , p.614

D. Morabito, Assisted phytostabilization of a multicontaminated mine technosol using 615 biochar amendment: Early stage evaluation of biochar feedstock and particle size effects on As, p.616, 2018.

, Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana). Chemosphere, 617 194, pp.316-326

M. Lebrun, F. Miard, S. Renouard, R. Nandillon, G. S. Scippa et al., Effect of Fe-functionalized biochar on toxicity of a technosol contaminated by Pb and As: 621 sorption and phytotoxicity tests, Environmental Science and Pollution Research, vol.25, issue.33, p.33690, 2018.

M. Lebrun, F. Miard, R. Nandillon, G. S. Scippa, S. Bourgerie et al., Biochar effect 625 associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L, p.626, 2019.

, Chemosphere, vol.222, pp.810-822

S. H. Lee, J. S. Lee, Y. J. Choi, and J. G. Kim, In situ stabilization of cadmium-, lead-, and zinc-629 contaminated soil using various amendments, Chemosphere, vol.77, issue.8, pp.1069-1075, 2009.

J. Liang, Z. Yang, L. Tang, G. Zeng, M. Yu et al., Changes 632 in heavy metal mobility and availability from contaminated wetland soil remediated with combined 633 biochar-compost, Chemosphere, vol.181, pp.281-288, 2017.

T. Lomaglio, N. Hattab-hambli, A. Bret, F. Miard, D. Trupiano et al., , p.636

S. Bourgerie and D. Morabito, Effect of biochar amendments on the mobility and (bio) 637 availability of As, Sb and Pb in a contaminated mine technosol, Journal of Geochemical Exploration, vol.638, pp.138-148, 2017.

B. K. Mandal and K. T. Suzuki, Arsenic round the world: a review, Talanta, vol.58, issue.1, pp.201-235, 2002.

A. P. Marques, R. S. Oliveira, A. O. Rangel, and P. M. Castro, Application of manure and 643 compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated 644 with arbuscular mycorrhizal fungi, Environmental Pollution, vol.151, issue.3, pp.608-620, 2008.

F. Marseille, C. Tiffreau, A. Laboudigue, and P. Lecomte, Impact of vegetation on the mobility 647 and bioavailability of trace elements in a dredged sediment deposit: a greenhouse study, Agronomie, vol.648, issue.20, pp.547-556, 2000.

S. A. Materechera and T. S. Mkhabela, The effectiveness of lime, chicken manure and leaf 651 litter ash in ameliorating acidity in a soil previously under black wattle (Acacia mearnsii) plantation. 652 Bioresource technology, vol.85, pp.9-16, 2002.

M. Mokolobate and R. Haynes, Comparative liming effect of four organic residues applied to 655 an acid soil, Biology and Fertility of Soils, vol.35, issue.2, pp.79-85, 2002.

M. R. Mosaddeghi, A. A. Mahboubi, and A. Safadoust, Short-term effects of tillage and manure 658 on some soil physical properties and maize root growth in a sandy loam soil in western Iran. Soil and 659 tillage research, vol.104, pp.173-179, 2009.

E. Moreno-jiménez, J. M. Fernández, M. Puschenreiter, P. N. Williams, and C. Plaza, , 2016.

. Availability, . As, . Cd, and N. Cu, Pb and Zn in a barley agri-system: Impact of biochar, 663 organic and mineral fertilizers, Ecosystems & Environment, vol.219, pp.171-178

T. Namgay, B. Singh, and B. Singh, Influence of biochar application to soil on the availability 666 of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.), Aust. J. Soil Res, vol.48, issue.7, pp.638-647, 2010.

M. P. Norini, H. Thouin, F. Miard, F. Battaglia-brunet, P. Gautret et al., , p.669

D. Morabito, S. Bourgerie, and M. Motelica-heino, Mobility of Pb, Zn, Ba, As and Cd toward soil, vol.670, p.14, 2019.
URL : https://hal.archives-ouvertes.fr/insu-01930703

, pore water and plants (willow and ryegrass) from a mine soil amended with biochar, J. Env. Manage, vol.671, pp.117-130

J. A. Olimah, L. J. Shaw, and M. E. Hodson, Does ochre have the potential to be a remedial 674 treatment for As-contaminated soils, Environmental pollution, vol.206, pp.150-158, 2015.

N. Oustriere, L. Marchand, W. Galland, L. Gabbon, N. Lottier et al., , 2016.

, Influence of biochars, compost and iron grit, alone and in combination, on copper solubility and 678 phytotoxicity in a Cu-contaminated soil from a wood preservation site. Science of The Total 679 Environment, pp.816-825

M. Pueyo, J. López-sánchez, and G. Rauret, Assessment of CaCl2, NaNO3 and NH4NO3 682 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils, 2004.

, Analytica Chimica Acta, vol.504, issue.2, pp.217-226

, R: a language and environment for statistical computing. R 686 foundation for statistical Computing, vol.687, p.688, 2009.

J. Rinklebe, S. M. Shaheen, and T. Frohne, Amendment of biochar reduces the release of toxic 689 elements under dynamic redox conditions in a contaminated floodplain soil, Chemosphere, vol.142, pp.41-690, 2016.

A. Rodríguez-seijo, M. Lago-vila, M. L. Andrade, and F. A. Vega, Pb pollution in soils from a 693 trap shooting range and the phytoremediation ability of Agrostis capillaris L. Environmental Science 694 and Pollution Research, vol.23, pp.1312-1323, 2016.

A. Rodríguez-vila, R. Forján, R. S. Guedes, and E. F. Covelo, Nutrient phytoavailability in a 697 mine soil amended with technosol and biochar and vegetated with Brassica juncea, Journal of Soils 698 and Sediments, vol.17, issue.6, pp.1653-1661, 2017.

R. K. Sharma and M. Agrawal, Biological effects of heavy metals: an overview, Journal of 701 Environmental Biology, vol.26, issue.2, pp.301-313, 2005.

C. Su, L. Jiang, and W. Zhang, A review on heavy metal contamination in the soil worldwide: 704 situation, impact and remediation techniques, Environmental Skeptics and Critics, vol.3, issue.2, pp.24-38, 2014.

R. Sudová, P. Doubková, and M. Vosátka, Mycorrhizal association of Agrostis capillaris and, p.707, 2008.

, Glomus intraradices under heavy metal stress: combination of plant clones and fungal isolates from 708 contaminated and uncontaminated substrates, Applied Soil Ecology, vol.40, issue.1, pp.19-29

X. Tang, X. Li, X. Liu, M. Hashmi, J. Xu et al., Effects of inorganic and organic 711 amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red 712 soil, Chemosphere, vol.119, pp.177-183, 2015.

H. Thouin, M. P. Norini, L. Le-forestier, P. Gautret, M. Motelica-heino et al., , p.715

F. Battaglia-brunet, Microcosm-scale biogeochemical stabilization of Pb, As, Ba and Zn in mine 716 tailings amended with manure and ochre, Applied Geochemistry, vol.111, 2019.

R. Van-poucke, J. Ainsworth, M. Maeseele, Y. S. Ok, E. Meers et al., Chemical 719 stabilization of Cd-contaminated soil using biochar, Applied Geochemistry, vol.88, pp.122-130, 2018.

D. J. Walker, R. Clemente, and M. P. Bernal, Contrasting effects of manure and compost on 722 soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by 723 pyritic mine waste, Chemosphere, vol.57, issue.3, pp.215-224, 2004.

J. K. Whalen, C. Chang, G. W. Clayton, and J. P. Carefoot, Cattle manure amendments can 726 increase the pH of acid soils, Soil Science Society of America Journal, vol.64, issue.3, pp.962-966, 2000.

M. H. Wong, Ecological restoration of mine degraded soils, with emphasis on metal 729 contaminated soils, Chemosphere, vol.50, issue.6, pp.775-780, 2003.