S. Bernard, B. Horsfield, H. Schulz, R. Wirth, A. Schreiber et al., Geochemical Evolution of Organic-Rich Shales with Increasing Maturity: A STXM and TEM Study of the Posidonia Shale (Lower Toarcian, Mar. Pet. Geol, vol.31, pp.70-89, 2012.

S. Bernard, R. Wirth, A. Schreiber, H. Schulz, and B. Horsfield, Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin), Int. J. Coal Geol, vol.103, pp.3-11, 2012.

G. R. Chalmers and R. M. Bustin, Lower Cretaceous Gas Shales in Northeastern British Columbia, Part I: Geological Controls on Methane Sorption Capacity, Bull. Can. Pet. Geol, vol.56, pp.1-21, 2008.

J. Chen and X. Xiao, Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation, Fuel, vol.129, pp.173-181, 2014.

M. E. Curtis, B. J. Cardott, C. H. Sondergeld, and C. S. Rai, Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity, Int. J. Coal Geol, vol.103, pp.26-31, 2012.

R. G. Loucks, R. M. Reed, S. C. Ruppel, D. M. Jarvie, and . Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale, J. Sediment. Res, vol.79, pp.848-861, 2009.

S. Yang, G. Chen, C. Lv, C. Li, N. Yin et al., Evolution of Nanopore Structure in Lacustrine Organic-Rich Shales during Thermal Maturation from Hydrous Pyrolysis, Energy Explor. Exploit, vol.36, pp.265-281, 2018.

C. J. Modica and S. G. Lapierre, Estimation of Kerogen Porosity in Source Rocks as a Function of Thermal Transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming, vol.96, pp.87-108, 2012.

Y. Han, B. Horsfield, R. Wirth, N. Mahlstedt, and S. Bernard, Oil Retention and Porosity Evolution in Organic-Rich Shales, vol.101, pp.807-827, 2017.

L. T. Ko, S. C. Ruppel, R. G. Loucks, P. C. Hackley, T. Zhang et al., Pore-Types and Pore-Network Evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett Mudstones: Insights from Laboratory Thermal Maturation and Organic Petrology, Int. J. Coal Geol, vol.190, pp.3-28, 2018.

L. T. Ko, R. G. Loucks, T. Zhang, S. C. Ruppel, and D. Shao, Pore and Pore Network Evolution of Upper Cretaceous Boquillas (Eagle Ford?Equivalent) Mudrocks: Results from Gold Tube Pyrolysis Experiments, vol.100, pp.1693-1722, 2016.

R. M. Reed, R. G. Loucks, and S. C. Ruppel, Comment on "Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin, Int. J. Coal Geol, vol.127, pp.111-113, 2012.

N. S. Fishman, P. C. Hackley, H. A. Lowers, R. J. Hill, S. O. Egenhoff et al., The Nature of Porosity in Organic-Rich Mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, Offshore United Kingdom, Int. J. Coal Geol, vol.103, pp.32-50, 2012.

H. Guo, R. He, W. Jia, P. A. Peng, Y. Lei et al., Pore Characteristics of Lacustrine Shale within the Oil Window in the Upper Triassic Yanchang Formation, Southeastern Ordos Basin, China. Mar. Pet. Geol, vol.91, pp.279-296, 2018.

B. J. Katz and I. Arango, Organic Porosity: A Geochemist's View of the Current State of Understanding, Org. Geochem, vol.123, pp.1-16, 2018.

K. L. Milliken, M. Rudnicki, D. N. Awwiller, and T. Zhang, Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull, 2013.

L. Pan, X. Xiao, H. Tian, Q. Zhou, J. Chen et al., A Preliminary Study on the Characterization and Controlling Factors of Porosity and Pore Structure of the Permian Shales in Lower Yangtze Region, Eastern China, Int. J. Coal Geol, vol.146, pp.68-78, 2015.

J. Schieber, Common Themes in the Formation and Preservation of Intrinsic Porosity in Shales and Mudstones? Illustrated with Examples Across the Phanerozoic, SPE Unconventional Gas Conference, 2010.

F. Wang, J. Guan, W. Feng, and L. Bao, Evolution of Overmature Marine Shale Porosity and Implication to the Free Gas Volume, Pet. Explor. Dev, vol.40, pp.819-824, 2013.

O. H. Ardakani, H. Sanei, A. Ghanizadeh, D. Lavoie, Z. Chen et al., Do All Fractions of Organic Matter Contribute Equally in Shale Porosity? A Case Study from Upper Ordovician Utica Shale, Pet. Geol, vol.92, pp.794-808, 2018.

A. Cavelan, M. Boussafir, C. L. Milbeau, O. Rozenbaum, and F. Laggoun-defarge, Effect of Organic Matter Composition on Source Rock Porosity during Confined Anhydrous Thermal Maturation: Example of Kimmeridge-Clay Mudstones, Int. J. Coal Geol, p.103236, 2019.
URL : https://hal.archives-ouvertes.fr/insu-02265254

L. T. Ko, R. G. Loucks, K. L. Milliken, Q. Liang, T. Zhang et al., Controls on Pore Types and Pore-Size Distribution in the Upper Triassic Yanchang Formation, Ordos Basin, China: Implications for Pore-Evolution Models of Lacustrine Mudrocks, vol.5, pp.127-148, 2017.

R. G. Loucks, R. M. Reed, S. C. Ruppel, and U. Hammes, Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores, vol.96, pp.1071-1098, 2012.

M. Mastalerz, A. Schimmelmann, A. Drobniak, and Y. Chen, Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion, AAPG Bull, vol.97, pp.1621-1643, 2013.

. Tissot,

D. H. Welte, Petroleum Formation and Occurrence, 2nd revised and enlarge ed, 1984.

J. M. Wood, H. Sanei, O. Haeri-ardakani, M. E. Curtis, and T. Akai, Organic Petrography and Scanning Electron Microscopy Imaging of a Thermal Maturity Series from the Montney Tight-Gas and Hydrocarbon Liquids Fairway, Bull. Can. Pet. Geol, vol.66, pp.499-515, 2018.

F. Behar, S. Kressmann, J. L. Rudkiewicz, and M. Vandenbroucke, Experimental Simulation in a Confined System and Kinetic Modelling of Kerogen and Oil Cracking, Org. Geochem, vol.19, pp.173-189, 1992.

C. J. Boreham, I. H. Crick, and T. G. Powell, Alternative Calibration of the Methylphenanthrene Index against Vitrinite Reflectance: Application to Maturity Measurements on Oils and Sediments, Org. Geochem, vol.12, pp.289-294, 1988.

P. Landais, R. Michels, and M. Elie, Are Time and Temperature the Only Constraints to the Simulation of Organic Matter Maturation?, Org. Geochem, vol.22, pp.617-630, 1994.

M. Monthioux, P. Landais, and J. Monin, Comparison between Natural and Artificial Maturation Series of Humic Coals from the Mahakam Delta, Indonesia. Org. Geochem, vol.8, pp.275-292, 1985.

K. E. Peters, C. C. Walters, and J. M. Moldowan, Biomarkers and Isotopes in Petroleum Exploration and Earth History, vol.2, 2005.

M. Radke, Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils, Mar. Pet. Geol, vol.5, pp.224-236, 1988.

P. C. Hackley, C. C. Walters, S. R. Kelemen, M. Mastalerz, and H. A. Lowers, Organic Petrology and Micro-Spectroscopy of Tasmanites Microfossils: Applications to Kerogen Transformations in the Early Oil Window, Org. Geochem, vol.114, pp.23-44, 2017.

Y. Wang, L. Liu, Q. Hu, L. Hao, X. Wang et al., Nanoscale Pore Network Evolution of Xiamaling Marine Shale during Organic Matter Maturation by Hydrous Pyrolysis, Energy Fuels, vol.34, pp.1548-1563, 2020.

M. D. Lewan, Experiments on the Role of Water in Petroleum Formation, Geochim. Cosmochim. Acta, vol.61, pp.3691-3723, 1997.

R. Michels, P. Landais, B. E. Torkelson, and R. P. Philp, Effects of Effluents and Water Pressure on Oil Generation during Confined Pyrolysis and High-Pressure Hydrous Pyrolysis, Geochim. Cosmochim. Acta, vol.59, pp.1589-1604, 1995.

L. Ramanampisoa and J. R. Disnar, Primary Control of Paleoproduction on Organic Matter Preservation and Accumulation in the Kimmeridge Rocks of Yorkshire (UK), Org. Geochem, vol.21, pp.1153-1167, 1994.

M. Boussafir, F. Gelin, E. Lallier-verges, S. Derenne, P. Bertrand et al., Electron Microscopy and Pyrolysis of Kerogens from the Kimmeridge Clay Formation, UK: Source Organisms, Preservation Processes, and Origin of Microcycles, Geochim. Cosmochim. Acta, vol.59, pp.3731-3747, 1995.

M. Boussafir, E. Lallier-verges, P. Bertrand, and D. Badaut-trauth, Studies on Isolated Organic Matter and Rock Microfacies from a Short-Term Organic Cycle of the Kimmeridge Clay Formation (Yorkshire, GB)

. Springer-verlag, , 1995.

A. Desprairies, M. Bachaoui, A. Ramdani, and N. Tribovillard, Clay Diagenesis in Organic-Rich Cycles from the Kimmeridge Clay Formation of Yorshire (G.B.): Implication for Palaeoclimatic Interpretations. Organic Matter Accumulation, 1995.

L. R. Ramanampisoa and M. Radke, Extractable Aromatic Hydrocarbons in a Short-Term Organic Cycle of the Kimmeridge Clay Formation, Relationship to Primary Production and Thermal Maturity, vol.23, pp.803-817, 1995.

M. Boussafir and E. Lallier-verges, Accumulation of Organic Matter in the Kimmeridge Clay Formation (KCF): An Update Fossilisation Model for Marine Petroleum Source-Rocks, Mar. Pet. Geol, vol.14, pp.75-83, 1997.

A. Cavelan, M. Boussafir, O. Rozenbaum, and F. Laggoun-defarge, Organic Petrography and Pore Structure Characterization of Low-Mature and Gas-Mature Marine Organic-Rich Mudstones: Insights into Porosity Controls in Gas Shale Systems, Pet. Geol, vol.103, pp.331-350, 2019.
URL : https://hal.archives-ouvertes.fr/insu-02057277

W. Oschmann, Kimmeridge Clay Sedimentation?A New Cyclic Model, Palaeogeogr., Palaeoclimatol., Palaeoecol, vol.65, pp.217-251, 1988.

E. Lallier-verges, P. Bertrand, N. Tribovillard, and A. Desprairies, Short-Term Organic Cyclicities from the Kimmeridge Clay Formation of Yorkshire (G.B.): Combined Accumulation and Degradation of Organic Carbon under the Control of Primary Production Variations, Organic Matter Accumulation, 1995.

M. A. Uliana, L. Legarreta, G. A. Laffitte, and H. J. Villar, Estratigrafiá y Geoqui?ica de Las Facies Generadoras de Hidrocarburos En Las Cuencas Petroli?feras de Argentina, 1999.

L. Legarreta and H. J. Villar, The Vaca Muerta Formation (Late Jurassic?Early Cretaceous), Neuque? Basin, Argentina: Sequences, Facies and Source Rock Characteristics, Unconventional Resources Technology Conference, 2015.

J. Espitalie, G. Deroo, and F. Marquis, La pyrolyse Rock-Eval et ses applications. Premiere partie, Rev. Inst. Fr. Pet, vol.40, pp.563-579, 1985.

J. Espitalie, G. Deroo, and F. Marquis, La pyrolyse Rock-Eval et ses applications. Deuxieme partie, Rev. Inst. Fr. Pet, vol.40, pp.755-784, 1985.

E. Lafargue, F. Marquis, and D. Pillot, Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies, Rev. Inst. Fr. Pet, vol.53, pp.421-437, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02079005

M. Radke, D. H. Welte, and H. Willsch, Maturity Parameters Based on Aromatic Hydrocarbons: Influence of the Organic Matter Type, Org. Geochem, vol.10, pp.51-63, 1986.

P. Bertrand, M. L. Bordenave, E. Brosse, J. Espitalie, J. P. Houzay et al., Other Methods and Tools for Source Rock Appraisal

M. L. Bordenave, , vol.525, pp.279-371, 1993.

P. Robert, Etude Petrographique Des Matieres Organiques Insolubles Par La Mesure de Leur Pouvoir Reflecteur: Contribution al 'exploration Petroliere et a?La Connaissance Des Bassins Sedimentaires, Rev. Inst. Fr. Pet. Ann. Combust. Liq, vol.26, pp.104-135, 1971.

E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, J. Am. Chem. Soc, vol.73, pp.373-380, 1951.

K. S. Okiongbo, A. C. Aplin, and S. R. Larter, Changes in Type II Kerogen Density as a Function of Maturity: Evidence from the Kimmeridge Clay Formation, Energy Fuels, vol.19, pp.2495-2499, 2005.

R. Michels, P. Landais, R. P. Philp, and B. E. Torkelson, Effects of Pressure on Organic Matter Maturation during Confined Pyrolysis of Woodford Kerogen, Energy Fuels, vol.8, pp.741-754, 1994.

K. S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem, vol.57, pp.603-619, 1985.

G. Shanmugam, G. H. Isaksen, and K. H. Ledje, (60) van Graas, G. W. Biomarker Maturity Parameters for High Maturities: Calibration of the Working Range up to the Oil/ Condensate Threshold, Australia. AAPG Bull, vol.69, issue.59, pp.1025-1032, 1241.

W. L. Orr, Comments on Pyrolytic Hydrocarbon Yields in Source-Rock Evaluation, Advances in Organic Geochemistry

Y. Huang, F. A. Street-perrott, R. A. Perrott, P. Metzger, and G. Eglinton, Glacial?Interglacial Environmental Changes Inferred from Molecular and Compound-Specific ?13C analyses of sediments from Sacred Lake, Geochim. Cosmochim. Acta, vol.63, pp.1383-1404, 1999.

K. J. Ficken, B. Li, D. L. Swain, and G. Eglinton, An N-Alkane Proxy for the Sedimentary Input of Submerged/floating Freshwater Aquatic Macrophytes, Org. Geochem, vol.31, pp.745-749, 2000.

W. Huang and W. G. Meinschein, Sterols as Ecological Indicators, Geochim. Cosmochim. Acta, vol.43, pp.739-745, 1979.

A. M. Jubb, P. C. Hackley, J. J. Hatcherian, J. Qu, and T. O. Nesheim, Nanoscale Molecular Fractionation of Organic Matter within Unconventional Petroleum Source Beds, Energy Fuels, vol.33, pp.9759-9766, 2019.

A. Chakhmakhchev, M. Suzuki, and K. Takayama, Distribution of Alkylated Dibenzothiophenes in Petroleum as a Tool for Maturity Assessments, Org. Geochem, vol.26, pp.483-489, 1997.

B. Tissot, Utilisation Des Alcanes Comme Fossiles Geóchimiques Indicateurs Des Environnements Geólogiques. Advance in Organic geochemistry

. Enadimsa, , pp.117-154, 1975.

P. C. Hackley and B. J. Cardott, Application of Organic Petrography in North American Shale Petroleum Systems: A Review, Int. J. Coal Geol, vol.163, pp.8-51, 2016.

P. C. Hackley, Application of Organic Petrology in High Maturity Shale Gas Systems. Role of Organic Petrology in the Exploration of Conventional and Unconventional Hydrocarbon Systems

L. Song, K. Martin, T. R. Carr, and P. K. Ghahfarokhi, Porosity and Storage Capacity of Middle Devonian Shale: A Function of Thermal Maturity, Total Organic Carbon, and Clay Content, Fuel, pp.241-1036, 2019.

D. M. Jarvie, R. J. Hill, T. E. Ruble, and R. M. Pollastro, Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment, AAPG Bull, vol.91, pp.475-499, 2007.

D. W. Waples and R. W. Marzi, The Universality of the Relationship between Vitrinite Reectance and Transformation Ratio, Org. Geochem, vol.28, pp.383-388, 1988.

P. Landais, Assessment of Coal Potential Evolution by Experimental Simulation of Natural Coalification, Org. Geochem, vol.17, pp.705-710, 1991.

H. Guo, W. Jia, P. A. Peng, J. Zeng, and R. He, Evolution of Organic Matter and Nanometer-Scale Pores in an Artificially Matured Shale Undergoing Two Distinct Types of Pyrolysis: A Study of the Yanchang Shale with Type II Kerogen, Org. Geochem, vol.105, pp.56-66, 2017.

Y. Liu, Y. Xiong, Y. Li, and P. A. Peng, Effect of Thermal Maturation on Chemical Structure and Nanomechanical Properties of Solid Bitumen, Pet. Geol, vol.92, pp.780-793, 2018.

M. D. Lewan, Laboratory Simulation of Petroleum Formation, Org. Geochem, vol.11, pp.419-442, 1993.

F. Behar, M. D. Lewan, F. Lorant, and M. Vandenbroucke, Comparison of Artificial Maturation of Lignite in Hydrous and Nonhydrous Conditions, Org. Geochem, vol.34, pp.575-600, 2003.

W. Huang, Experimental Study of Vitrinite Maturation: Effects of Temperature, Time, Pressure, Water, and Hydrogen Index, Org. Geochem, vol.24, pp.233-241, 1996.

M. Monthioux, Expected Mechanisms in Nature and in Confined-System Pyrolysis, Fuel, vol.67, pp.843-847, 1988.