M. Sunde, Common core structure of amyloid fibrils by synchrotron x-ray diffraction, J. Mol. Biol, vol.273, pp.729-739, 1997.

A. T. Petkova, A structural model for alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR, Proc. Natl Acad. Sci. USA, vol.99, pp.16742-16747, 2002.

C. P. Jaroniec, High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning nmr spectroscopy, Proc. Natl Acad. Sci. USA, vol.101, pp.711-716, 2004.

C. Ritter, Correlation of structural elements and infectivity of the het-sprion, Nature, vol.435, pp.844-848, 2005.

F. Chiti and C. M. Dobson, Protein misfolding, functional amyloid, and human disease, Annu. Rev. Biochem, vol.75, pp.333-366, 2006.

K. J. Channon, G. L. Devlin, and C. E. Macphee, Efficient energy transfer within self-assembling peptide fibers: a route to light-harvesting nanomaterials, J. Am. Chem. Soc, vol.131, pp.12520-12521, 2009.

S. Zhang, More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials, Nat. Biotechnol, vol.21, pp.1171-1178, 2003.

H. Zhang, H. Luo, and X. Zhao, Mechanistic study of self-assembling peptide rada16-i in formation of nanofibers and hydrogels, J. Nanotechnol. Engineer Med, vol.1, pp.1-6, 2010.

S. Zhang, T. C. Holmes, C. M. Dipersio, R. Hynes, X. Su et al., Self-complementary oligopeptide matrices support mammalian cell attachment, Biomaterials, vol.16, pp.1385-1393, 1995.

M. Reches and E. Gazit, Casting metal nanowires within discrete self-assembled peptide nanotubes, Science, vol.300, pp.625-627, 2003.

M. Reches and E. Gazit, Controlled patterning of aligned self-assembled peptide nanotubes, Nat. Nanotechnol, vol.1, pp.195-200, 2006.

L. Haines-butterick, Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells, Proc. Natl Acad. Sci. USA, vol.104, pp.7791-7796, 2007.

R. J. Morris and C. E. Macphee, Amyloid protein biomaterials. Encylopedia Biophys, 2012.

J. D. Harper and P. T. Lansbury, Model of amyloid seeding in alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the timedependent solubility of amyloid proteins, Annu. Rev. Biochem, vol.66, pp.385-407, 1997.

F. Ferrone, Analysis of protein aggregation, Methods Enzymol, vol.309, pp.256-273, 1999.

E. T. Powers and D. L. Powers, The kinetics of nucleated polymerizations at high concentrations: amyloid fibril formation near and above the ''supercritical concentration, Biophys. J, vol.94, pp.122-132, 2006.

C. C. Lee, A. Nayak, A. Sethuraman, G. Belfort, and G. J. Mcrae, A three-stage kinetic model of amyloid fibrillation, Biophys. J, vol.92, pp.3448-3458, 2007.

M. M. Pallitto and R. M. Murphy, A mathematical model of the kinetics of b-amyloid fibril growth from the denatured state, Biophys. J, vol.81, pp.1805-1822, 2001.

A. M. Morris, M. A. Watzky, J. N. Agar, and R. G. Finke, Fitting neurological protein aggregation kinetic data via a 2-step, minimal 'ockham's razor' model: The finke-watzky mechanism of nucleation followed by autocatalytic surface growth, Biochemistry, vol.47, pp.2413-2427, 2008.

A. M. Morris, M. A. Watzky, and R. G. Finke, Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature, BBA Protein. Proteom, vol.1794, pp.375-397, 2009.

T. Scheibel, J. Bloom, and S. L. Lindquist, The elongation of yeast prion fibers involves separable steps of association and conversion, Proc. Natl Acad. Sci, vol.101, pp.2287-2292, 2004.

S. R. Collins, A. Douglass, R. D. Vale, and J. S. Weissman, Mechanism of prion propagation: amyloid growth occurs by monomer addition, PLoS Biol, vol.2, pp.1582-1590, 2004.

E. T. Powers and D. L. Powers, Mechanisms of protein fibril formation: nucleated polymerization with competing off-pathway aggregation, Biophys. J, vol.94, pp.379-391, 2008.

W. F. Xue, S. W. Homans, and S. E. Radford, Systematic analysis of nucleationdependent polymerization reveals new insights into the mechanism of amyloid self-assembly, Proc. Natl Acad. Sci. USA, vol.105, pp.8926-8931, 2008.

T. P. Knowles, An analytical solution to the kinetics of breakable filament assembly, Science, vol.326, pp.1533-1537, 2009.

S. I. Cohen, Nucleated polymerization with secondary pathways. I: time evolution of the principal moments, J. Chem. Phys, vol.135, pp.65-105, 2011.

S. I. Cohen, M. Vendruscolo, C. M. Dobson, and T. P. Knowles, Nucleated polymerization with secondary pathways. II. Determination of self-consistent solutions to growth processes described by non-linear master equations, J. Chem. Phys, vol.135, pp.65-105, 2011.

S. I. Cohen, M. Vendruscolo, C. M. Dobson, and T. P. Knowles, Nucleated polymerization with secondary pathways. III. Equilibrium behavior and oligomer populations, J. Chem. Phys, vol.135, pp.65-105, 2011.

F. Oosawa and M. Kasai, A theory of linear and helical aggregations of macromolecules, J. Mol. Biol, vol.4, pp.10-21, 1962.

S. S. Rogers, P. Venema, L. M. Sagis, E. Van-der-linden, and A. M. Donald, Measuring the length distribution of a fibril system: a flow birefringence technique applied to amyloid fibrils, Macromolecules, vol.38, pp.2948-2958, 2005.

A. J. Baldwin, Measurement of amyloid fibril length distributions by inclusion of rotational motion in solution nmr diffusion measurements, Angew. Chem, vol.47, pp.3385-3387, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00273328

M. Sorci, R. A. Grassucci, I. Hahn, J. Frank, and G. Belfort, Time-dependent insulin oligomer reaction pathway prior to fibril formation: Cooling and seeding, Protein Struct. Funct. Bioinformat, vol.77, pp.62-763, 2009.

P. Hortchansky, V. Schroeckh, V. Christopeit, G. Zandomeneghi, and M. Fandrich, The aggregation kinetics of Alzheimer's b-amyloid peptide is controlled by stochastic nucleation, Protein Sci, vol.14, pp.1753-1759, 2005.

V. Fodera, F. Librizzi, M. Groenning, M. Van-de-weert, and M. Leone, Secondary nucleation and accessible surface in insulin amyloid fibril formation, J. Phys. Chem. B, vol.112, pp.3853-3858, 2008.

M. Groenning, L. Olsen, M. Van-de-weet, J. M. Flink, S. Frokjaer et al., Study of the binding of thioflavin-t to beta-sheet-rich and nonb-sheet cavities, J. Struct. Biol, vol.158, pp.358-369, 2007.

M. Groenning, Binding mode of thioflavin-t in insulin amyloid fibrils, J. Struct. Biol, vol.159, pp.483-497, 2007.

M. R. Krebs, E. H. Bromley, and A. M. Donald, The binding of thioflavin-t to amyloid fibrils: localisation and implications, J. Struct. Biol, vol.149, pp.30-37, 2005.

J. S. Pedersen, The changing face of glucagon fibrillation: structural polymorphism and conformational imprinting, J. Mol. Biol, vol.355, pp.501-523, 2006.

R. Perez-jimenez, R. Godoy-ruiz, B. Ibarra-molero, and J. M. Sanchez-ruiz, The efficiency of different salts to screen charge interactions in proteins: a hofmeister effect?, Biophys. J, vol.86, pp.2414-2429, 2004.

R. Kayed, Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis, Science, vol.200, pp.486-489, 2003.

S. Lesné, A specific amyloid-b protein assembly in the brain impairs memory, Nature, vol.440, pp.352-357, 2005.

G. M. Shankar, Amyloid-b protein dimers isolated directly from alzheimer's brains impair synaptic plasticity and memory, Nat. Med, vol.14, pp.837-842, 2008.

I. C. Martins, Lipids revert inert Ab amyloid fibrils to neurotoxic protofibrils that affect learning in mice, EMBO J, vol.27, pp.224-233, 2008.

C. G. Glabe and R. Kayed, Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis, Neurology, vol.66, pp.74-78, 2006.

A. Campbell, b-amyloid: friend or foe, Med. Hypotheses, vol.56, pp.388-391, 2001.

H. G. Lee, Perspectives on the amyloid-beta cascade hypothesis, J. Alzheimers Dis, vol.6, pp.137-145, 2004.

W. F. Xue, Fibril fragmentation enhances amyloid cytotoxicity, J. Bio. Chem, vol.284, pp.34272-34282, 2009.

R. D. Terry, The pathogenesis of alzheimer disease: an alternative to the amyloid, J. Neuropathol. Exp. Neurol, vol.55, pp.1023-1025, 1996.

M. Mendes-sousa, Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates, Am. J. Pathol, vol.159, 1993.

C. A. Mclean, Soluble pool of Ab amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease, Ann. Neurol, vol.46, pp.860-866, 1999.

H. J. Aizenstein, Frequent amyloid deposition without significant cognitive impairment among the elderly, Arch. Neurol, vol.65, pp.1509-1517, 2008.

A. Y. Hsia, Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models, Proc. Natl Acad. Sci. USA, vol.96, pp.3228-3233, 1999.

M. A. Westerman, The relationship between Ab and memory in the tg2576 mouse model of alzheimer's disease, J. Neurosci, vol.22, pp.1858-1867, 2002.

D. Iacono, The nun study: clinically silent ad, neuronal hypertrophy, and linguistic skills in early life, Neurology, vol.73, pp.665-673, 2009.

B. M. Taylor, Spontaneous aggregation and cytotoxicity of the b-amyloid Ab(1-40): A kinetic model, J. Protein Chem, vol.22, pp.31-40, 2003.

S. L. Gras, Functionalised amyloid fibrils for roles in cell adhesion, Biomaterials, vol.29, pp.1553-1562, 2008.

J. C. Crocker and D. G. Grier, Methods of digital video microscopy for colloidal studies, J. Colloid Interface Sci, vol.179, pp.298-310, 1996.

D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem, vol.81, pp.2340-2361, 1977.

J. F. Smith, T. P. Knowles, C. M. Dobson, C. E. Macphee, and M. E. Welland, Characterization of the nanoscale properties of individual amyloid fibrils, Proc. Natl Acad. Sci. USA, vol.103, pp.15806-15811, 2006.