S. Dasgupta, A. Bandyopadhyay, and S. Bose, Zn and Mg Doped Hydroxyapatite Nanoparticles for Controlled Release of Protein, Langmuir, vol.26, pp.4958-4964, 2010.

V. Aina, G. Lusvardi, B. Annaz, I. R. Gibson, F. E. Imrie et al., Magnesium-and strontium-co-substituted hydroxyapatite: The effects of doped-ions on the structure and chemico-physical properties, J. Mater. Sci. Mater. Med, vol.23, pp.2867-2879, 2012.

W. Mróz, A. Bombalska, S. Burdynska, M. Jedynski, A. Prokopiuk et al., Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture, J. Mol. Struct, vol.977, pp.145-152, 2010.

W. Mroz, B. Budner, R. Syroka, K. Niedzielski, G. Golanski et al., In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser deposition, J. Biomed. Mater. Res. B, vol.103, pp.151-158, 2014.

S. L. Iconaru, A. M. Prodan, C. S. Turculet, M. Beuran, R. V. Ghita et al., Enamel Based Composite Layers Deposited on Titanium Substrate with Antifungal Activity, J. Spectrosc, p.4361051, 2016.

M. Sartori, G. Giavaresi, M. Tschon, L. Martini, L. Dolcini et al., Long-term in vivo experimental investigations on magnesium doped hydroxyapatite bone substitutes, J. Mater. Sci. Mater. Med, vol.25, pp.1495-1504, 2014.

A. S. Greenwald, S. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin et al., Bone-graft substitutes: Facts, fictions, and applications, J. Bone Jt. Surg. Am, vol.83, pp.98-103, 2001.

, Global Industry Analysts Inc, 2011.

, Coatings 2020, vol.10, p.510

G. Zimmermann and A. Moghaddam, Allograft bone matrix versus synthetic bone graft substitutes, Injury, vol.42, pp.16-21, 2011.

P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, Bone substitutes: An update, Injury, vol.36, pp.20-27, 2005.

A. L. Oliveira, J. F. Mano, and R. L. Reis, Nature-inspired calcium phosphate coatings: Present status and novel advances in the science of mimicry, Curr. Opin. Solid State Mater. Sci, vol.7, pp.309-318, 2003.

D. Predoi, S. L. Iconaru, N. Buton, M. L. Badea, and L. Marutescu, Antimicrobial Activity of New Materials Based on Lavender and Basil Essential Oils and Hydroxyapatite, vol.8, p.291, 2018.

F. H. Albee and H. F. Morrison, Studies in bone growth triple calcium phosphate as a stimulus to osteogenesis, Ann. Surg, vol.71, pp.32-39, 1920.

E. B. Nery, K. L. Lynch, W. M. Hirthe, and K. H. Mueller, Bioceramic Implants in Surgically Produced Infrabony Defects, J. Periodontol, vol.46, pp.328-347, 1975.

H. Zhou and J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater, vol.7, pp.2769-2781, 2011.

Y. Yana, Q. Dinga, Y. Huanga, S. Hana, and X. Panga, Magnesium substituted hydroxyapatite coating on titanium with nanotublar TiO 2 intermediate layer via electrochemical deposition, Appl. Surf. Sci, vol.305, pp.77-85, 2014.

J. H. Shepherd, D. V. Shepherd, and S. M. Best, Substituted hydroxyapatites for bonerepair, J. Mater. Sci. Mater. Med, vol.23, pp.2335-2347, 2012.

S. L. Iconaru, A. M. Prodan, N. Buton, and D. Predoi, Structural Characterization and Antifungal Studies of Zinc-Doped Hydroxyapatite Coatings, vol.22, 2017.

C. S. Ciobanu, S. L. Iconaru, C. L. Popa, M. Motelica-heino, and D. Predoi, Evaluation of samarium doped hydroxyapatite, ceramics for medical application: Antimicrobial activity, J. Nanomater, vol.849216, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01160556

D. Predoi, S. L. Iconaru, and M. V. Predoi, Bioceramic layers with antifungal properties, vol.8, p.276, 2018.

T. Nagyné-kovács, L. Studnicka, A. Kincses, G. Spengler, M. Molnár et al., Synthesis and characterization of Sr and Mg-doped hydroxyapatite by a simple precipitation method, Ceram. Int, vol.44, pp.22976-22982, 2018.

D. Predoi, S. L. Iconaru, A. Deniaud, M. Chevallet, I. Michaud-soret et al., Structural and Biological Evaluation of Hydroxyapatite Doped with Zinc at Low Concentrations, Materials, vol.10, p.229, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01577002

C. S. Turculet, A. M. Prodan, I. Negoi, G. Teleanu, M. Popa et al., Preliminary Evaluation Of The Antifungal Activity Of Samarium Doped Hydroxyapatite Thin Films, Rom. Biotechnol. Lett, vol.23, pp.13928-13932, 2018.

D. Predoi, S. L. Iconaru, M. V. Predoi, G. E. Stan, and N. Buton, Characterization, and Antimicrobial Activity of Magnesium-Doped Hydroxyapatite Suspensions. Nanomaterials, vol.9, 1295.

I. Cacciotti, A. Bianco, M. Lombardi, and L. Montanaro, Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behavior, J. Eur. Ceram. Soc, vol.29, pp.969-2978, 2009.

S. Adzila, M. C. Murad, and I. Sopyan, Doping metal into calcium phosphate phase for better performance of bone implant materials, Rec. Pat. Mater. Sci, vol.5, pp.18-47, 2012.

C. M. Serre, M. Papillard, P. Chavassieux, and J. C. Voegel, Influence of magnesium substitution on a collagen-appatite biomaterial on the production of calcifying matrix by human osteoblasts, J. Biomed. Mater. Res, vol.42, pp.626-633, 1998.

W. J. Dhert, C. P. Klein, and J. A. Jansen, A histological and histomorphometrical investigation of fluorapatite magnesiumwhitlockite, and hydroxylapatite plasma-sprayed coatings in goats, J. Biomed. Mater. Res, vol.27, pp.127-138, 1993.

T. J. Webster, C. Ergun, R. H. Doremus, and R. Bizios, Hydroxylapatie with substituted magnesium, zinc, cadmium and yttrium. II. Mechanisms of osteoblast adhesion, J. Biomed. Mater. Res, vol.59, pp.312-317, 2002.

S. L. Iconaru, M. V. Predoi, M. Motelica-heino, D. Predoi, N. Buton et al., Dextran-Thyme Magnesium-Doped Hydroxyapatite Composite Antimicrobial Coatings, vol.10, 2020.
URL : https://hal.archives-ouvertes.fr/insu-02436549

U. Mishra, , 2013.

S. Kulanthaivel, U. Mishraa, T. Agarwala, S. Girib, K. Pala et al., Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion, Ceram. Int, vol.41, pp.11323-11333, 2015.

S. J. Kalita and H. A. Bhatt, Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization, Mater. Sci. Eng. C, vol.27, pp.837-848, 2007.

E. Boanini, P. Torricelli, M. Fini, F. Sima, N. Serban et al., Magnesium and strontium doped octacalcium phosphate thin films by matrix assisted pulsed laser evaporation, J. Inorg. Biochem, vol.107, pp.65-72, 2012.

C. S. Ciobanu, S. L. Iconaru, F. Massuyeau, L. V. Constantin, A. Costescu et al., Synthesis, structure, and luminescent properties of europium-doped hydroxyapatite nanocrystalline powders, J. Nanomater, 2012.

D. Predoi, S. L. Iconaru, M. V. Predoi, M. Motelica-heino, R. Guegan et al., Evaluation of Antibacterial Activity of Zinc-Doped Hydroxyapatite Colloids and Dispersion Stability Using Ultrasounds, Nanomaterials, vol.9, 2019.
URL : https://hal.archives-ouvertes.fr/insu-02088572

L. Rodriguez and J. Matou?ek, Preparation of TiO 2 sol-gel layers on glass, Ceram. Silik, vol.47, pp.28-31, 2003.

A. M. Prodan, S. L. Iconaru, M. V. Predoi, D. Predoi, M. Motelica-heino et al., Silver-Doped Hydroxyapatite Thin Layers Obtained by Sol-Gel Spin Coating Procedure, vol.10, 2020.
URL : https://hal.archives-ouvertes.fr/insu-02426951

M. Yamaguchi, Role of zinc in bone formation and bone resorption, J. Trace Elem. Exp. Med, vol.11, pp.119-135, 1998.

I. Website, , p.10, 2018.

D. Predoi and R. A. Vatasescu-balcan, Osteoblast interaction with iron oxide nanoparticles coated with dextrin in cell culture, J. Optoelectron. Adv. Mat, vol.10, pp.152-157, 2008.

P. J. Kadu, S. S. Kushare, D. D. Thacker, and S. G. Gattani, Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS), Pharm. Dev. Technol, vol.16, pp.65-74, 2011.

S. S. Mohapatra, S. Ranjan, and S. Thomas, Characterization and Biology of Nanomaterials for Drug Delivery Nanoscience and Nanotechnology in Drug Delivery A volume in Micro and Nano Technologies, 2019.

E. Joseph and G. Singhvi, Chapter 4-Multifunctional nanocrystals for cancer therapy: A potential nanocarrier, In Nanomaterials for Drug Delivery and Therapy, pp.91-116, 2019.

L. Ley, F. R. Mcfeely, S. P. Kowalczyk, J. G. Jenkin, and D. A. Shirley, Many-body effects in x-ray photoemission from magnesium, Phys. Rev. B, p.11, 1975.

S. Ardizzone, L. Bianchi, M. Fadoni, and B. Vercelli, Magnesium salts and oxide: An XPS overview, Appl. Surf. Sci, vol.119, pp.253-259, 1997.

O. Friedrichs, J. C. Sánchez-lópez, C. López-cartes, M. Dornheim, T. Klassen et al., Chemical and microstructural study of the oxygen passivation behaviour of nanocrystalline Mg and MgH2, Appl. Surf. Sci, vol.252, 2006.

D. Zhang, O. Lepparanta, E. Munukka, H. Ylanen, M. K. Viljanen et al., Antibacterial effects and dissolution behavior of six bioactive glasses, J. Biomed. Mater. Res. A, vol.93, pp.475-483, 2010.

V. Mortazavi, M. M. Nahrkhalaji, M. H. Fathi, S. B. Mousavi, and B. N. Esfahani, Antibacterial effects of sol-gel-derived bioactive glass nanoparticle on aerobic bacteria, J. Biomed. Mater. Res. A, vol.94, pp.160-168, 2010.

L. Zhu, P. Wana, J. Duanb, L. Tana, and K. Yanga, An alternative magnesium based root canal disinfectant: Preliminary study of its efficacy against Enterococcus faecalis and Candida albicans in vitro, Prog. Nat. Sci. Mater. Int, vol.24, pp.441-445, 2014.

Y. H. Leung, A. M. Ng, X. Xu, Z. Shen, L. A. Gethings et al., Mechanisms of antibacterial activity of MgO: Non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli, Small, vol.10, pp.1171-1183, 2013.

A. Manke, L. Wang, and Y. Rojanasakul, Mechanisms of nano-particle-induced oxidative stress and toxicity, BioMed Res. Int, 2013.

S. Sabella, R. P. Carney, V. Brunetti, A. M. Malvindi, N. Al-juffali et al., A general mechanism for in-tracellular toxicity of metal-containing nanoparticles, Nanoscale, vol.6, pp.7052-7061, 2014.

M. Ghobadian, M. Nabiuni, K. Parivar, M. Fathi, and J. Pazooki, Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio), Ecotoxicol. Environ. Saf, vol.122, pp.260-267, 2015.

E. S. Thian, Z. Ahmad, J. Huang, M. J. Edirisinghe, S. N. Jayasinghe et al., The role of surface wettability and surface charge of electrosprayed nanoapatites on the behaviour of osteoblasts, Acta Biomater, vol.6, pp.750-755, 2010.

K. L. Kilpadi, P. Chang, and S. L. Bellis, Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel, J. Biomed. Mater. Res, vol.57, pp.258-267, 2001.

M. Hayyan, M. A. Hashim, and I. M. Alnashef, Superoxide Ion: Generation and Chemical Implications, Chem. Rev, vol.116, pp.3029-3085, 2016.

Q. A. Acton-general, Magnesium Compounds-Advances in Research and Application, p.333, 2013.

W. Xue, K. Dahlquist, A. Banerjee, A. Bandyopadhyay, and S. Bose, Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants, J. Mater. Sci. Mater. Med, vol.19, pp.2669-2677, 2008.

Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Kubo et al., Action of FGMgCO3Ap-collagen composite in promoting bone formation, Biomaterials, vol.24, pp.4913-4920, 2003.

S. F. Zhao, Q. H. Jiang, S. Peel, X. X. Wang, and F. M. He, Effects of magnesium-substituted nanohydroxyapatite coating on implant osseointegration, Clin. Oral Implant. Res, vol.24, pp.34-41, 2013.

Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida et al., Synthesis of functionally graded MgCO 3 apatite accelerating osteoblast adhesion, J. Biomed. Mater. Res, vol.62, pp.99-105, 2002.

E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri et al., Biomimetic Mg-substituted hydroxyapatite: From synthesis to in vivo behaviour, J. Mater. Sci. Mater. Med, vol.19, pp.239-247, 2008.

Y. L. Cai, J. J. Zhang, S. Zhang, S. S. Venkatraman, X. T. Zeng et al., Osteoblastic cell response on fluoridated hydroxyapatite coatings: The effect of magnesium incorporation, Biomed. Mater, vol.5, p.54114, 2010.

L. Jonasova, F. A. Muller, A. Helebrant, J. Strnad, and P. Greil, Biomimetic apatite formation on chemically treated titanium, Biomaterials, vol.25, pp.1187-1194, 2004.

A. Monzavi, S. Eshraghi, R. Hashemian, and F. Momen-heravi, In vitro and ex vivo antimicrobial efficacy of nano-MgO in the elimination of endodontic pathogens, © 2020 by the authors. Licensee MDPI, vol.19, pp.349-356, 2015.