G. B. Mortality, Causes of Death, C. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study, Lancet, vol.385, issue.14, pp.61682-61684, 2013.

L. M. Shaw, Cerebrospinal Fluid Biomarker Signature in Alzheimer's Disease Neuroimaging Initiative Subjects, Ann. Neurol, vol.65, pp.403-413, 2009.

N. Mattsson, CSF Biomarkers and Incipient Alzheimer Disease in Patients With Mild Cognitive Impairment, JAMA-J. Am. Med. Assoc, vol.302, pp.385-393, 2009.

V. L. Villemagne, Longitudinal Assessment of A beta and Cognition in Aging and Alzheimer Disease, Ann. Neurol, vol.69, pp.181-192, 2011.

L. Baum, Serum zinc is decreased in Alzheimer's disease and serum arsenic correlates positively with cognitive ability, Biometals, vol.23, pp.173-179, 2010.

L. M. Miller, Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer's disease, J. Struct. Biol, vol.155, pp.30-37, 2006.

D. Religa, Elevated cortical zinc in Alzheimer disease, Neurology, vol.67, pp.69-75, 2006.

L. L. Rulon, Serum zinc levels and Alzheimer's disease, Biological Trace Element Research, vol.75, pp.79-85, 2000.

A. Haines, S. Iliffe, P. Morgan, T. Dormandy, and B. Wood, Serum alumnium and zin and other variables in patients ith and without cognitive impairment in the community, Clin Chim Acta, vol.198, pp.261-266, 1991.

S. Vasto, Zinc and inflammatory/immune response in aging, Ann N Y Acad Sci, vol.100, pp.111-122, 2007.

V. Balter, Bodily variability of zinc natural isotope abundances in sheep, Rapid Commun Mass Spectrom, vol.24, pp.605-612, 2010.
URL : https://hal.archives-ouvertes.fr/insu-00677201

F. Moynier, T. Fujii, A. Shaw, and M. Le-borgne, Heterogeneous distribution of natural zinc isotopes in mice, Metallomics, vol.5, pp.693-699, 2013.

V. Balter, Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation, Metallomics, vol.5, pp.1470-1482, 2013.

P. Faller and C. Hureau, Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-beta peptide, pp.1080-1094, 2009.

F. Moynier, J. Foriel, A. Shaw, and M. Le-borgne, Zinc isotopic behavior during Alzheimer's disease, Geochemical Perspective Letters, vol.3, pp.142-150, 2017.

F. Moynier, D. Vance, T. Fujii, and P. Savage, Non-traditional stable isotopes, vol.82, pp.543-600, 2017.

L. Sauzeat, Isotopic Evidence for Disrupted Copper Metabolism in Amyotrophic Lateral Sclerosis, vol.6, pp.264-271, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02323863

R. Rajendran, A novel approach to the identification and quantitative elemental analysis of amyloid deposits-insights into the pathology of Alzheimer's disease, Biochemical and biophysical research communications, vol.382, pp.91-95, 2009.

M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell, and W. R. Markesbery, Copper, iron and zinc in Alzheimer's disease senile plaques, Journal of the neurological sciences, vol.158, pp.47-52, 1998.

K. J. Barnham, Structure of the Alzheimer's disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis, J Biol Chem, vol.278, pp.17401-17407, 2003.

C. Syme, R. Nadal, S. Rygby, and J. Viles, Copper Binding to the Amyloid-? (A?) Peptide Associated with Alzheimer's Disease, J Biol Chem, vol.279, pp.18169-18177, 2004.

M. Va?ák and G. Meloni, Mammalian Metallothionein-3: New Functional and Structural Insights, Int. J. Mol. Sci, vol.18, 2017.

I. Scheiber, J. Mercer, and R. Dringen, Metabolism and functions of copper in brain, Progress in neurobiology, vol.116, pp.33-57, 2014.

E. D. Gaier, B. A. Eipper, and R. E. Mains, Copper signaling in the mammalian nervous system: synaptic effects, J Neurosci Res, vol.91, pp.2-19, 2013.

R. Squitti, Excess of serum copper not related to ceruloplasmin in Alzheimer disease, Neurology, vol.64, pp.1040-1046, 2005.

K. J. Barnham, C. L. Masters, and A. I. Bush, Neurodegenerative diseases and oxidative stress, Nature reviews. Drug discovery, vol.3, pp.205-214, 2004.

J. L. Jankowsky, Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase, Hum Mol Genet, vol.13, pp.159-170, 2004.

M. Garcia-alloza, Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease, Neurobiol Dis, vol.24, pp.516-524, 2006.

C. Maréchal, P. Télouk, and F. Albarède, Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry, Chem. Geol, vol.156, pp.251-273, 1999.

Z. Rodovka, Zinc and copper isotope systematics in sediments from the Ries Impact Structure and central European tektites -implications for material sources and loss of volatiles, Meteorit. Planet. Sci, vol.52, pp.2178-2192, 2017.

P. Savage, Copper isotope evidence for large-scale sulphide fractionation during Earth's differentiation, Geochemical Perspective Letters, vol.1, pp.53-64, 2015.
URL : https://hal.archives-ouvertes.fr/insu-02136903

P. Telouk, Copper isotope effect in serum of cancer patients. A pilot study, Metallomics, vol.7, pp.299-308, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02334192

M. Costas-rodriguez, Isotopic analysis of Cu in blood serum by multi-collector ICP-mass spectrometry: a new approach for the diagnosis and prognosis of liver cirrhosis, Metallomics, vol.7, pp.491-498, 2015.

S. Lauwens, M. Costas-rodriguez, H. Van-vlierberghe, and F. Vanhaecke, Cu isotopic signature in blood serum of liver transplant patients: a follow-up study, Sci Rep, vol.6, 2016.

V. Balter, Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients, Proc Natl Acad Sci, vol.112, pp.982-985, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01262225

B. J. Scott and A. R. Bradwell, Identification of the Serum Binding-Proteins for Iron, Zinc, Cadmium, Nickel, and Calcium, Clin Chem, vol.29, pp.629-633, 1983.

A. Cabrera, Copper binding components of blood plasma and organs, and their responses to influx of large doses of (65)Cu, in the mouse, Biometals, vol.21, pp.525-543, 2008.

R. J. Cousins, Absorption, Transport, and Hepatic-Metabolism of Copper and Zinc -Special Reference to Metallothionein and Ceruloplasmin, Physiol Rev, vol.65, pp.238-309, 1985.

P. L. Wirth and M. Linder, Distribution of copper among components of human serum, J. Natl. Cancer Inst, vol.75, pp.277-284, 1985.

I. Bento, C. Peixoto, V. N. Zaitsev, and P. F. Lindley, Ceruloplasmin revisited: structural and functional roles of various metal cationbinding sites, Acta crystallographica. Section D, Biological crystallography, vol.63, pp.240-248, 2007.

M. Moriya, Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism. American journal of physiology, Cell physiology, vol.295, pp.708-721, 2008.

M. Sendzik, J. Pushie, E. Stefaniak, and K. Haas, Structure and Affinity of Cu(I) Bound to Human Serum Albumin, Inorg. Chem, vol.56, pp.15057-15065

B. Mahan, F. Moynier, A. L. Jorgensen, M. Habekost, and J. Siebert, Examining the homeostatic distribution of metals and Zn isotopes in Gottingen minipigs, Metallomics, vol.10, pp.1264-1281, 2018.

L. A. Meyer, A. P. Durley, J. R. Prohaska, and Z. L. Harris, Copper transport and metabolism are normal in aceruloplasminemic mice, J Biol Chem, vol.276, pp.36857-36861, 2001.

S. Lutsenko, Copper trafficking to the secretory pathway, Metallomics, vol.8, pp.840-852, 2016.

J. F. Quinn, Gender effects on plasma and brain copper, Int J Alzheimers Dis, 2011.

F. Albarede, P. Telouk, A. Lamboux, K. Jaouen, and V. Balter, Isotopic evidence of unaccounted for Fe and Cu erythropoietic pathways, Metallomics, vol.3, pp.926-933, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00676834

T. Walczyk and F. Von-blanckenburg, Deciphering the iron isotope message of the human body, Int. J. Mass spectrom, vol.242, pp.117-134, 2005.

K. Jaouen, Fe and Cu stable isotopes in archeological human bones and their relationship to sex, Am J Phys Anthropol, vol.162, pp.491-500, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00721117

K. Jaouen, Is aging recorded in blood Cu and Zn isotope compositions?, Metallomics, vol.5, p.1016, 2013.

L. Van-heghe, O. Deltombe, J. Delanghe, H. Depypere, and F. Vanhaecke, The influence of menstrual blood loss and age on the isotopic composition of Cu, Fe and Zn in human whole blood, J. Anal. At. Spectrom, vol.29, pp.478-482, 2014.

K. Jaouen and V. Balter, Menopause effect on blood Fe and Cu isotope compositions, Am J Phys Anthropol, vol.153, pp.280-285, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01347002

S. L. Byers, M. V. Wiles, S. L. Dunn, and R. A. Taft, Mouse estrous cycle identification tool and images, Plos One, vol.7, 2012.

V. Tougu, A. Karafin, and P. Palumaa, Binding of zinc(II) and copper(II) to the full-length Alzheimer's amyloid-beta peptide, Journal of neurochemistry, vol.104, pp.1249-1259, 2008.

J. W. Karr, H. Akintoye, L. J. Kaupp, and V. A. Szalai, N-Terminal deletions modify the Cu2+ binding site in amyloid-beta, Biochemistry-Us, vol.44, pp.5478-5487, 2005.

T. Fujii, F. Moynier, J. Blichert-toft, and F. Albarede, Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments, Geochim. Cosmochim. Acta, vol.140, pp.553-576, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02110399

R. Squitti, Elevation of serum copper levels in Alzheimer's disease, Neurology, vol.59, pp.1153-1161, 2002.

R. Squitti, Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF [beta]-amyloid, and h-tau, Neurology, vol.67, pp.76-82, 2006.