L. Remusat, Organic material in meteorites and the link to the origin of life, BIO Web Conf, vol.2, pp.3001-03010, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00984376

C. Koeberl, , vol.2, pp.73-118, 2014.

A. N. Krot, K. Keil, E. R. Scott, C. A. Goodrich, and M. Weisberg, Treatise on Geochemistry, vol.1, pp.1-63, 2014.

K. ?ák, Chemistry of tertiary sediments in the surroundings of the Ries impact structure and moldavite formation revisited, Geochim. Cosmochim. Acta, vol.179, pp.287-311, 2016.

A. Trinquier, J. Birck, and C. J. Allègre, The nature of the KT impactor. A 54 Cr reappraisal, Earth Planet. Sci. Lett, vol.241, pp.780-788, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00272225

C. Koeberl and S. B. Shirey, Detection of a meteoritic component in Ivory Coast tektites with rhenium-osmium isotopes, Science, vol.261, pp.595-598, 1993.

A. M. Vickery, The theory of jetting: application to the origin of tektites, Icarus, vol.105, pp.441-453, 1993.

I. Friedman, The water, deuterium, gas and uranium content of tektites, Geochim. Cosmochim. Acta, vol.14, pp.316-322, 1958.

A. Beran and C. Koeberl, Water in tektites and impact glasses by Fouriertransformed infrared spectrometry, Meteorit. Planet. Sci, vol.32, pp.211-216, 1997.

N. Watt, R. A. Bouchet, and C. A. Lee, Exploration of tektite formation processes through water and metal content measurements, Meteorit. Planet. Sci, vol.46, pp.1025-1032, 2011.

K. ?ák, R. Skála, Z. ?anda, and J. Mizera, A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass, Meteorit. Planet. Sci, vol.47, pp.1010-1028, 2012.

D. Stöffler, N. A. Artemieva, and E. Pierazzo, Modeling the Ries-Steinheim impact event and the formation of the moldavite strewn field, Meteorit. Planet. Sci, vol.37, pp.1893-1907, 2002.

W. Von-engelhardt, C. Berthold, T. Wenzel, and T. Dehner, Chemistry, smallscale inhomogeneity, and formation of moldavites as condensates from sands vaporized by the Ries impact, Geochim. Cosmochim. Acta, vol.69, pp.5611-5626, 2005.

H. J. Melosh and N. Artemieva, How does tektite glass lose its water?, Lunar Planet. Sci, vol.35, p.1723, 2004.

N. Artemieva, Tektites: model versus reality, Lunar Planet. Sci. XXXIX, p.1651, 2008.

H. J. Melosh and A. M. Vickery, Melt droplet formation in energetic impact events, Nature, vol.350, pp.494-497, 1991.

B. C. Johnson and H. J. Melosh, Formation of spherules in impact produced vapor plumes, Icarus, vol.217, pp.416-430, 2012.

B. C. Johnson and H. J. Melosh, Formation of melt droplets, melt fragments, and accretionary impact lapilli during a hypervelocity impact, Icarus, vol.228, pp.347-363, 2014.

R. Clayton, Treatise on Geochemistry, vol.1, pp.129-142, 2003.

R. N. Clayton and T. K. Mayeda, Oxygen isotope studies of achondrites, Geochim. Cosmochim. Acta, vol.60, pp.1999-2017, 1996.

I. A. Franchi, I. P. Wright, A. S. Sexton, and C. T. Pillinger, The oxygen-isotopic composition of Earth and Mars, Meteorit. Planet. Sci, vol.34, pp.657-661, 1999.

E. D. Young, L. Y. Yeung, and I. E. Kohl, On the ? 17 O budget of atmospheric O 2, Geochim. Cosmochim. Acta, vol.135, pp.102-125, 2014.

M. H. Thiemens, History and applications of mass-independent isotope effects, Annu. Rev. Earth. Planet. Sci, vol.34, pp.217-262, 2006.

C. Engrand, Isotopic compositions of oxygen, iron, chromium, and nickel in cosmic spherules: toward a better comprehension of atmospheric entry heating effects, Geochim. Cosmochim. Acta, vol.69, pp.5365-5385, 2005.

A. Trinquier, J. Birck, and C. J. Allègre, Widespread 54 Cr heterogeneity in the inner solar system, Astrophys. J, vol.655, pp.1179-1185, 2007.

C. Göpel, J. Birck, A. Galy, J. Barrat, and B. Zanda, Mn-Cr systematics in primitive meteorites: insights from mineral separation and partial dissolution, Geochim. Cosmochim. Acta, vol.156, pp.1-24, 2015.

J. Mizera, Z. ?anda, and I. Tomandl, Geochemical characterization of impact glasses from the Zhamanshin crater by various modes of activation analysis. Remarks on genesis of irghizites, J. Radioanal. Nucl. Chem, vol.293, pp.359-376, 2012.

?. Joná?ová, Geochemistry of impact glasses and target rocks from the Zhamanshin Impact Structure, Kazakhstan: Implications for mixing of target and impactor matter, Geochim. Cosmochim Acta, vol.190, pp.239-264, 2016.

R. Skála, L. Strnad, C. Mccammon, and M. ?ada, Moldavites from the Cheb Basin, Geochim. Cosmochim. Acta, vol.73, pp.1145-1179, 2009.

D. Stöffler, Ries crater and suevite revisited-observations and modeling Part I: observations, Meteorit. Planet. Sci, vol.48, pp.515-589, 2013.

E. Buchner, M. Schmieder, W. H. Schwarz, and M. Trieloff, Das Alter des Meteoritenkraters Nördlinger Ries-eine Übersicht und kurze Diskussion der neueren Datierungen des Riesimpakts, Z. Dt. Ges. Geowiss, vol.164, pp.433-445, 2013.

I. Vetvicka, J. Frank, and J. Drtina, Electron microprobe analysis (WDS EPMA) of Zhamanshin glass reveals the impactor and a common role of accretion in the origin of splash-form impact glass, IOP Conf. Ser.: Mater. Sci. Eng, vol.7, p.12029, 2010.

P. V. Florenskii, A. I. Dabizha, and . Meteoritnyi-krater-zhamanshin, , 1980.

P. W. Florenski, Der Meteoritenkrater Zhamanshin (nordliches Aralgebiet UdSSR) und seine Tektite und Impaktite, Chem. Erde, vol.36, pp.83-95, 1977.

K. Fredriksson, A. De-gasparis, and W. D. Ehrmann, The Zhamanshin structure: chemical and physical properties of selected samples, Meteoritics, vol.12, pp.229-230, 1977.

H. Palme, R. A. Grieve, and R. Wolf, Identification of the projectile at the Brent crater, and further considerations of projectile types at terrestrial craters, Geochim. Cosmochim. Acta, vol.45, pp.2417-2424, 1981.

K. Von-heide and H. Schmidt, Über das thermische Entgasungsverhalten und den Gasgehalt der Irghisite, Chem. Erde, vol.37, pp.271-273, 1978.

K. Von-heide, H. Brückner, H. Schmidt, and P. W. Florenski, Untersuchungen zum Gasgehalt der Irghisite und Zhamanshinite, Chem. Erde, vol.40, pp.340-351, 1981.

J. W. Delano, V. Bou?ka, and Z. ?anda, 2nd International Conference on Natural Glasses, pp.221-230, 1988.

V. Bou?ka, J. Benada, Z. ?anda, and J. Kuncí?, Geochemical evidence for the origin of moldavites, Geochim. Cosmochim. Acta, vol.37, pp.121-131, 1973.

W. Von-engelhardt, E. Luft, J. Arndt, H. Schock, and W. Weiskirchner, Origin of moldavites, Geochim. Cosmochim. Acta, vol.51, pp.1425-1443, 1987.

P. Horn, D. Müller-sohnius, H. Köhler, and G. Graup, Rb-Sr systematics of rocks related to the Ries Crater, Germany. Earth Planet. Sci. Lett, vol.72, pp.384-392, 1985.

E. Luft, Zur Bildung der Moldavite beim Ries-Impact aus, Tertiären Sedimenten, vol.202, 1983.

Z. ?anda, J. Mizera, J. Frána, and J. Ku?era, Geochemical characterization of moldavites from a new locality, the Cheb Basin, Meteorit. Planet. Sci, vol.43, pp.461-477, 2008.

T. Meisel, J. Lange, and U. Krähenbühl, The chemical variation of moldavite tektites: simple mixing of terrestrial sediments, Meteorit. Planet. Sci, vol.32, pp.493-502, 1997.

M. Trnka and S. Houzar, Moldavites: a review, Bull. Czech. Geol. Surv, vol.77, pp.283-302, 2002.

W. H. Schwarz and H. J. Lippolt, 40 Ar-39 Ar step-heating of impact glasses from the Nördlinger Ries impact crater-Implications on excess argon in impact melts and tektites, Meteorit. Planet. Sci, vol.49, pp.1023-1036, 2014.

C. Palme, M. Janssens, H. A. Takahashi, and J. Hertogen, Meteoritic material at five large impact craters, Geochim. Cosmochim. Acta, vol.42, pp.313-323, 1978.

G. Schmidt and E. Pernicka, The determination of platinum group elements (PGE) in target rocks and fall-back material of the Nördlinger Ries impact crater, Geochim. Cosmochim. Acta, vol.58, pp.5083-5090, 1994.

L. Ackerman, The behavior of osmium and other siderophile elements during impacts: Insights from the Ries impact structure and central European tektites, Geochim. Cosmochim. Acta, vol.210, pp.59-70, 2017.

H. P. Taylor and S. Epstein, Correlations between O 18 /O 16 ratios and chemical compositions of tektites, J. Geophys. Res, vol.74, pp.6834-6844, 1969.

H. P. Taylor and S. Epstein, Oxygen isotope studies on the origin of tektites, J. Geophys. Res, vol.67, pp.4485-4490, 1962.

H. P. Taylor and S. Epstein, Oxygen isotope studies of Ivory Coast tektites and impactite glass from the Bosumtwi Crater, Ghana. Science, vol.153, pp.173-175, 1966.

A. Pack and D. Herwartz, The triple oxygen isotope composition of the Earth mantle and understanding D 17 O variations in terrestrial rocks and minerals, Earth. Planet. Sci. Lett, vol.390, pp.138-145, 2014.

A. Trinquier, J. Birck, C. J. Allègre, C. Gopel, and D. Ulfbeck, Mn-53-Cr-53 systematics of the early solar system revisited, Geochim. Cosmochim. Acta, vol.72, pp.5146-5163, 2008.

L. Qin, C. M. Alexander, R. W. Carlson, M. F. Horan, and T. Yokoyama, Contributors to chromium isotope variation of meteorites, Geochim. Cosmochim. Acta, vol.74, pp.1122-1145, 2010.

T. Magna, Lithium in tektites and impact glasses: implications for sources, histories and large impacts, Geochim. Cosmochim. Acta, vol.75, pp.2137-2158, 2011.

B. Mougel, F. Moynier, C. Göpel, and C. Koeberl, Chromium isotope evidence in ejecta deposits for the nature of Paleoproterozoic impactors, Earth Planet. Sci. Lett, vol.460, pp.105-111, 2017.

T. W. Vennemann, A. Morlok, W. Von-engelhardt, and K. Kyser, Stable isotope composition of impact glasses fron the Nördlinger Ries impact crater, Geochim. Cosmochim. Acta, vol.65, pp.1325-1336, 2001.

T. Utescher, A. A. Bruch, A. Micheels, V. Mosbrugger, and S. Popova, Cenozoic climate gradients in Eurasia-a palaeo-perspective on future climate change?, Palaeogeograph. Palaeoclimat. Palaeoecol, vol.304, pp.351-358, 2011.

G. L. Foster, C. H. Lear, and J. W. Rae, The evolution of pCO 2 , ice volume and climate during the middle Miocene, Earth Planet. Sci. Lett, pp.243-254, 2012.

T. Tütken and T. Vennemann, Stable isotope ecology of Miocene large mammals from Sandelzhausen, southern Germany, Paläontol. Z, vol.83, pp.207-226, 2009.

Z. Rodovská, The fate of moderately volatile elements in impact eventslithium connection between the Ries sediments and central European tektites, Meteorit. Planet. Sci, vol.51, pp.2403-2415, 2016.

H. F. Shaw and G. J. Wasserburg, Age and provenance of the target materials for tektites and possible impactites as inferred from Sm-Nd and Rb-Sr systematics, Earth Planet. Sci. Lett, vol.60, pp.155-177, 1982.

M. F. Miller, Mass-independent fractionation of oxygen isotopes during thermal decomposition of carbonates, Proc. Natl Acad. Sci. USA, vol.99, pp.10988-10993, 2002.

Z. Rodovská, Implications for behavior of volatile elements during impacts-zinc and copper systematics in sediments from the Ries impact structure and central European tektites, Meteorit. Planet. Sci. doi

F. Moynier, Isotopic fractionation of zinc in tektites, Earth. Planet. Sci. Lett, vol.277, pp.482-489, 2009.
URL : https://hal.archives-ouvertes.fr/insu-00362260

F. Moynier, C. Koeberl, P. Beck, F. Jourdan, and P. Telouk, Isotopic fractionation of Cu in tektites, Geochim. Cosmochim. Acta, vol.74, pp.799-807, 2010.
URL : https://hal.archives-ouvertes.fr/insu-00681754

M. Humayun and C. Koeberl, Potassium isotopic composition of Australasian tektites, Meteorit. Planet. Sci, vol.39, pp.1509-1516, 2004.

G. Beaudoin and P. Therrien, Handbook of Stable Isotope Analytical Techniques, vol.II, pp.1120-1122, 2009.

C. Koeberl, W. U. Reimold, J. D. Blum, and C. P. Chamberlain, Petrology and geochemistry of target rocks from the Bosumtwi impact structure, Ghana, and comparison with Ivory Coast tektites, Geochim. Cosmochim. Acta, vol.62, pp.2179-2196, 1998.

V. Bou?ka, P. Povondra, P. V. Florenskij, and . ?anda, Z. Irghizites and zhamanshinites: Zhamanshin crater, USSR. Meteoritics, vol.16, pp.171-184, 1981.

G. M. Raisbeck, F. Yiou, S. Z. Zhou, and C. Koeberl, 10 Be in irghizite and zhamansinite impact glasses, Chem. Geol, vol.70, p.120, 1988.

H. P. Taylor and S. M. Sheppard, Igneous rocks: I. Processes of isotopic fractionation and isotope systematics, Rev. Mineral, vol.16, pp.227-271, 1986.

K. Lodders and B. Fegley, The Planetary Scientist's Companion, vol.400, 1998.

A. Pack, The oxygen isotope composition of San Carlos olivine on VSMOW2-SLAP2 scale, Rapid Commun. Mass. Spectrom, vol.30, pp.1495-1504, 2016.

A. Schedl, Searching for distal ejecta on the craton: the sedimentary effects of meteorite impact, J. Geol, vol.123, pp.201-232, 2015.

R. N. Clayton and T. K. Mayeda, The oxygen isotope record in Murchison and other carbonaceous chondrites, Earth. Planet. Sci. Lett, vol.67, pp.151-161, 1984.

H. Bao, J. R. Lyons, and C. Zhou, Triple oxygen isotope evidence for elevated CO 2 levels after a Neoproterozoic glaciation, Nature, vol.453, pp.504-506, 2008.

A. Gehler, P. D. Gingerich, and A. Pack, Temperature and atmospheric CO 2 concentration estimates through the PETM using triple oxygen isotope analysis of mammalian bioapatite, Proc. Natl Acad. Sci. USA, vol.113, pp.7739-7744, 2016.

A. Pack, A. Gehler, and A. Süssenberger, Exploring the usability of isotopically anomalous oxygen in bones and teeth as paleo-CO 2 -barometer, Geochim. Cosmochim. Acta, vol.102, pp.306-317, 2013.

W. R. Shields, T. J. Murphy, E. J. Catanzaro, and E. L. Garner, Absolute isotopic abundance ratios and the atomic weight of a reference sample of chromium, J. Res. Natl. Bur. Stand, vol.70, pp.193-197, 1966.

J. A. Philpotts and W. H. Pinson, New data on the chemical composition and origin of moldavites, Geochim. Cosmochim. Acta, vol.30, pp.253-266, 1966.