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ABSTRACT

Context. The gravitational strong equivalence principle (SEP) is a cornerstone of the general theory of relativity (GR). Hence, testing
the validity of SEP is of great importance when confronting GR, or its alternatives, with experimental data. Pulsars that are orbited by
white dwarf companions provide an excellent laboratory, where the extrerseedice in binding energy between neutron stars and
white dwarfs allows for precision tests of the SEP via the technique of radio pulsar timing.

Aims. To date, the best limit on the validity of SEP under strong- eld conditions was obtained with a unique pulsar in a triple stellar
system, PSR J0331715. We report here on an improvement of this test using an independent data set acquired over a period of 6
years with the Nancay radio telescope (NRT). The improvements arise from a uniformly sampled data set, a theoretical analysis, and
a treatment that xes some short-comings in the previously published results, leading to better precision and reliability of the test.
Methods. In contrast to the previously published test, we use &dint long-term timing data set, developed a new timing model and

an independent numerical integration of the motion of the system, and determined the masses and orbital parametersneith a di
methodology that treats the parametedescribing a possible strong- eld SEP violation, identically to all other parameters.

Results. We obtain a violation paramete= (+0:5 1:8) 10 ® at 95% con dence level, which is compatible with and improves

upon the previous study by 30%. This result is statistics-limited and avoids limitation by systematics as previously encountered.
We nd evidence for red noise in the pulsar spin frequency, which is responsible for up to 10% of the reported uncertainty. We
use the improved limit on SEP violation to place constraints on a class of well-studied scalar-tensor theories, in particular we nd
! gp > 140000 for the Brans-Dicke parameter. The conservative limits presented here fully take into account current uncertainties in
the equation for state of neutron-star matter.

Key words. Gravitation — (Stars:) pulsars: individual PSR J088715 — Stars: neutron — Radio continuum: stars

1. Introduction and many later experimentalists have conducte@int exper-

. . e ._iments to verify UFF, no deviations have been found that are
Among the fundamental interactions of nature, gravity is UNiqy&aer than B~ 10 14 (Touboul et al. 2019). This equivalence

in attracting all material objects with the same acceleration, @lyyeen the inertial and passive gravitational masses for test par-
least within current observational precision. This feature of grayz|eg (de ned here as objects with negligible gravitational self-

ity (the universality of free fall, UFF below) was thought bynergy) is the so-called weak equivalence principle (WEP).
Newton to be a cornerstone of Newtonian mechanics (Newton

1687). Indeed, in the Newtonian theory of gravity, this universal When thinking about a new theory of gravity that incorpo-
acceleration implies that the inertial mass of a body is always if@{€s the laws of special relativity (SR), Einstein had the insight
xed proportion to its passive gravitational mass, and is indepeffiat the gravitational eld appears to be absent for a freely falling
dent of the mass, chemical composition, or the detailed inter@@Server. This was later described by Einstein as the ‘most for-
structure of the gravitating object. This was presented as an §#1ate thought in my life’ (Renn 2007). This idea, that gravity

served physical principle, without a deeper explanation. Newttheduivalent to acceleration, naturally explains the WEP. If the
relativity principle applies to this situation, then any observers

? Email: guillaume.voisin@manchester.ac.uk or adn a su ciently small room in a free-falling reference frame are
tro.guillaume.voisin@gmail.com not only unable to determine whether the room is in motion or
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at rest relative to distant bodies, but they are neither able to déierem, denotes the inertial mass of bobyr,, X4 Xy their
termine its rate of acceleration in the gravitational eld. This imfcoordinate) separation, ards the speed of lightG,, depends
plies that, in the vicinity of the observer the laws of physics amn the properties of bodyandb. In the weak- eld limit this can

(in very good approximation) given by SR, which means thae interpreted, to a good approximation, as a mismatch between
the Lorentz invariance of SR is obeyed locally (this is the loctie inertial and the gravitational masses of the objects:

Lorentz invariance, LLI) and furthermore, that it does not mat-
ter where or when an experiment is made (this is known as B;, = — —= Gy; (2)
cal position invariance, LPI). The combination of the WEP with ma mMbp

LLI and LPI is now known as the Einstein equivalence principighereGy, is the Newtonian gravitational constant, as measured
(EEP, Will 2018b). Schi's conjecture states that the WEP imj, g Cavendish-type experiment, anth and ma denote the
plies the full EEP for any consistent theory of gravity, for whichassive and active gravitational mass respectively. For semi-
a strong plausibility argument can be made (see e.g. Will 20188gnservative metric theories of gravity that have a conserva-
This generalisation of the relativity principle to referencgon of momentum one has only a single gravitational mass
frames.in frge fall guided Einstein towa(ds gengral relativi.tryk3 me = ma (Will 2018b). For the remainder of the paper
(GR, Einstein 1915). GR and other metric theories of gravijye assume that momentum is conserved in the gravitational in-
full the EEP in a natural way: in these theories the gravitagraction, and therefoi®,, = Gpa.2 More generally, we use the
tional attraction is seen as a result of spacetime curvature, whighnition Gab = Gn(1+  ap) Where we denoteap =  pa as the
itself originates from the energy, stress and momentum of thgative GWEP parameter between two bodiesdb.
masses in a system, determined by the eld equations of the |f one observes an isolated two-body system without prior
theory. This curvature changes the trajectories of test particigRwledge of the masses, then any violation of the GWEP at
moving within the spacetime (their "geodesics’) in a unique WaYewtonian order would be indistinguishable from a re-scaling
that does not depend Qf fthe detailed nature of the particles theypthe masses due to the symmetry of the equations of motion.
selves, hence the validity of the WEP. Furthermore, for spghis symmetry is broken in presence of a third body. One can
tial scales that are small compared to the radius of curvatujigen compare the rate at which two self-gravitating objects fall
the geometry of spacetime necessarily approximates the " @'the eld of a third one. This forms the base for a class of
Minkowski geometry, hence the LLI and LPI automatically apsWEP tests that includes Lunar laser ranging (LLR), tests with
ply to non-gravitational experiments. To rephrase, the EEP ig@ary pulsars falling in the gravitational eld of our Galaxy, and
consequence of a universal coupling between matter and grayiy/ test to be discussed in this paper.

(Damour 2012). . o . In the LLR test, one considers the Earth-Moon system falling
The quali cation of "non-gravitational’ is key here. If thejn the gravitational eld of the Sun. If GWEP is violated, then
EEP can be fully extended to gravitational experiments, likge Earth, which has a larger fractional gravitational binding en-

the Cavendish experiment, and to objects with large sedfrgy than the Moon, falls in the Sun's gravitational eld with a
gravitational energy, then we have the strong equivalent prinCigigyhtly di erent acceleration than the Moon. This causes a po-
(SEP). This is a crucially important distinction because, whilgrisation of the Earth-Moon orbit in the direction of the Sun
all metric theories of gravity ful | the EEP, there are suggestiveNordtvedt 1968). This so called Nortdvedtezt is the gravita-
arguments that GR is the only gravity theory in four spacetinignal equivalent of the Stark ect, where a strong electric eld
dimensions that fully embodies the SEP (Di Casola et al. 203®;|arises neutral atoms. It manifests itself as an added small or-
Will 2018b)-. . bital eccentricity vector that precesses in the sky with a period of
Therefore, if we are looking for phenomena beyond GR, ayear, trailing the Sun. The relative Earth-Moon distance can be
promising avenue would be to look for instances of SEP violgreasured with an accuracy of about 10 cm thanks to the re ec-
tion. This has an added advantage: if no SEP violation is fouRgs laid on the Moon by a variety of American and Soviet lunar
the results of such an experiment can in principle constrain g|ssions. No Nodtvedt eect has been measured, as predicted

alternative theories of gravity. by GR, e ectively constraining

Just as the EEP consists of the WEP, LLI and LPI, the SE%
must additionally include gravitational versions of these. Any vi-E v Me M _ (30 50) 104 3)
olations of the LLI and LPI of the gravitational interaction (e.g., m e m m

. ; ; ofmann & Miiller 2018), which is only about a factor of 10
pende_nce of gravity) have been strongly constrained using pu aker than the MICROSCOPE limit for WEP, therefore con-
géﬁ%gln?r?rxﬁétsfgﬁgvfs\/\\//% é%ti c?nh{ar]%eg;[rgtié(:i%)%alscggﬁn qf'(ning to a high degree that gravitational binding energy falls
the WEP (GWEP, Will 2018b), which states that the UFF a‘é’fiiae?]e way in an external gravitational eld as any other form
plies not only to test particles, but also to any objects where the In tgh):s test, all the involved bodies are weakly self-
gravitational binding energy is important. - ravitating, however, this is especially true for the two “proof

For alternative theories of gravity, the gravitational prope nasses', the Earth and the Moon: for the Eaftuc
) . \"4

ties of objects generally depend on their amount of self-gravity. - 10 . !
This means that at Newtonian level we have a body-dependEgevE Mec? = 46 10 *° (hereEguye is the Newtonian grav-
itational binding energy of the Earth), for the MoOgaym =

e ective gravitational constart,,, meaning the acceleration of

the existence of a preferred frame of reference or the Iocatio\r:ﬁ/%

a bodya in the gravitational eld of a body is given by 02 101 This means that the LLR experiment only tests
the weak- eld limit of GWEP. In this limit Eq. (2) implies
o — lab 2. ' + p, Wwhere (mg=m), 1; furthermore, the grav-
= + ab a by a a ’ '
Xa= GaoMy kr apk3 o s @) itational binding energy of the bodies relative to their mass is so

! Nordstrém's conformally- at scalar theory, which is also a metric> Shao (2016) investigates the possibility of constraining a@dince
theory, also ful Is the SEP, however, this is excluded by Solar Systeim active and passive gravitational mass with the pulsar system under
experiments (Deruelle 2011). consideration in this paper.
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small that it can only have a very smallect on ,. Within the Recently, this limit has been used to test the UFF of a neutron
parametrised post-Newtonian (PPN) formalism for metric thestar towards dark matter (Shao et al. 2018).

ries of gravity Although this test can detect any hypothetical large strong-
o ] 4 eld deviations of the gravitational properties of neutron stars,
aT gravas 4) the limits onj j are not very constraining because of the weak

where is the so calledNordtvedt parametera combination of gravitational eld of the Galaxy, which has accelerations of the
10 2 i~ini
several PPN parameters (see Will 2018b, for details). The curr@ff{€r of 2 10 ~“ms ©in the solar vicinity. In the case of the
limit on the Nordtvedt parameter from LLRis@:2 1:1) 10 *. LLR test, the polarlsmsg grazvnauonal elq (that of the Sun) is
A violation of GWEP not only aects the dynamics of the Much stronger (6 10 “ms ), however, in that case the Earth

Earth-Moon system, but all self-gravitating masses in the Sofftd Moon have very small gravitational self energies.
System are aected according to Eq. (4). A consequence of this For this reason, Freire et al. (2012a) suggested that the (then)
is a shift of the Solar System barycentre (SSB) when modellifigmoured pulsar in a triple system would combine the best fea-
planetary ephemerides. Based on data from the MESSENGERes of both tests. In this experiment, we look for the Nordtvedt
mission, Genova et al. (2018) have derived ( 6:6 7:2) e ectinaninner binary system consisting of a pulsar and a white
10 5. dwarf; this system is orbited by a third hierarchical component

Equation 4 applies to the weak- eld limit, that is, thesigni cantly farther away. As in previous binary pulsar experi-
Nordtvedt parameter parametrises GWEP violation to leadifitents, the pulsar provides the precise tracking and an object with
order in"gava 1. This rst order approach is no longer ap-ery strong gravitational self energy; the white dwarf provides a
plicable in the strong- eld regime of neutron stars. Thus, in tH&st mass with a much smaller gravitational self energy, and -
remainder of this article we consider GWEP violations in terniiglly the third outer component in that system provides a strong
of limits directly on a5 and not on . (potentially) polarising gravitational eld (¢ 10 *ms?), as

In the Damour-Schéfer test (Damour & Schéafer 1991), olee Sun does for the LLR experiment. The outer component
veri es whether the two components of a pulsar - white dwayfould ideally be a neutron star, as this would provide a quali-
system (the rst with a very high degree of self-gravity, whicliatively di erent test, however, any type of star would already
allows the detection of strong- eld SEP violation) fall with theyield a much stronger polarising force than the Galactic gravita-
same acceleration in the eld of the Galaxy, which acts as ti@nal eld and therefore either a detection of GWEP violation,
third body. A violation of the UFF would again cause a polafr much improved limits on it.
isation of the orbit of the binary pulsar. At the time of that pa- PSR J033%¥1715 was discovered in data from the GBT drift-
per (1991), the timing precision and timing baselines of binaggan survey (Boyles et al. 2013; Lynch et al. 2013). This is a
pulsars were relatively small, so the authors proposed a sta®$-ms pulsar in a 1.6-day orbit with a 0:2M Helium white
tical approach to search for this polarisingeet in the orbital dwarf star, this is what we refer to from now on as the inner
eccentricities of the known pulsar - white dwarf systems. Fdbinary. The outer 0:4M white dwarf orbits the inner binary in
lowing that method, several analyses of the orbital eccentriabout 327 days in a low-eccentricity£ 0:035) orbit. This is the
ties have constrained for neutron stars: Stairs et al. (2005) rst, and so far the only pulsar con rmed to be in a triple stellar
derivej j < 56 103, and Gonzalez et al. (2011) derivesystem (Ransom et al. 2014). The two orbits (inner and outer)
j j<46 10 3 (both being 95 % con dence limits). However,are nearly coplanar, this and the small observed eccentricities
the latter limit is derived with the inclusion of a binary pulsamprovide important clues for the evolution of the system, which
PSR J17114322 that does not ful | all the necessary criteriavas described in detail by Tauris & van den Heuvel (2014).

for the Damour-Schafer test (Wex 2014). _ _ The pulsar has very good rotational stability, as usually mil-

_ This method has several shortcomings, which are listed apgcond pulsars (MSPs) do, and is relatively bright, which al-
discussed in detail by Freire et al. (2012a); the two most imp@éws a very good measurement of the times of arrival of the
tant ones are a) the fact that it cannot detect GWEP violatigfy|ses. This has allowed precise measurements of the varying
only produce statistical upper limits for it and b) generally, newypital parameters, and also extremely precise mass measure-
tron stars with dierent masses have dirent values of , this  ments for the pulsar and the two white dwarf stars (Ransom et al.
limits the meaningfulness of a generalfor neutron stars (cf. 2014). More importantly, the GWEP test was eventually carried
footnote 25 in Damour 2009). __out for PSR J03371715 by Archibald et al. (2018), yielding

Apart from the statistical test based on small eccentriciti Sj 26 10 °©(95% C.L.). This represents an improvement
Damour & Schafer (1991) have also proposed a test basedopfhree orders of magnitude over previous pulsar tests and con-

a direct measurement of the variation of the orbital eccentricifyed the power of a MSP in a triple stellar system for testing
vector for individual systems, (no matter whether eccentric orthe GWEP.

not) that results from the polarisation of the binary orbit by the : ; : :
: . . This measurement represents a tight constraint on alternative
Nordtvedt e ect. As discussed by Freire et al. (2012a), this tegto s of gravity. Archibald et al. (2018) derived constraints
not only avoids all the shortcomings of the statistical test, bijt,' e of the best studied alternatives to GR, the class of mono-
Its premsmnéjus:]kielps |mprovm.ghw.|th the greqﬁgn of the megz ar-tensor theories described by Damour & Esposito-Farése
surement ok, which improves with time and with better timing - :
instruments. Indeed, they estimated that this test should, for 292, 1993, henceforth DEF gravity). The constraints on the

&ak- eld coupling parameter for these theorieg)(derived
best timed binaries, yield slightly bettervalues than the sta- - ; ;
tistical test by the mid 2010's. More recently Zhu et al. (201 om PSR J033¥1715 signi cantly improve upon all previous

con rmed this by using thee constraint for the wide orbit of xperiments for most of thei, space.
PSR J17180747 to derivg j<2 10 3 (95 % C. L). Without The UFF experiment with the PSR J0337715 triple system

further assumptions, this limit is strictly speaking only for nei@nd its results are clearly of greatimportance. Itis, at present, the
tron stars arou%d':’aM which is the ma);,s %f PSRgJ17E>{/C8747. most powerful test of the GWEP, for either the strong or weak
] ' eld limits. It is also extremely sensitive to strong- eld devia-

% More precisely, the constraint is ORuisacalaxy  companiorGalaxy- tions in the gravitational properties of neutron stars.
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This test is of special value because, according to a grafdgr 10 seconds at the start of each observation to conduct a
tational analogue of Schis conjecture, it is plausible that thesimple calibration accounting for gain and phaseedéences be-
validity of GWEP implies the SEP (Will 2018b); this in turntween the two polarisations, as implemented in sirgleaxis
strongly suggests, according to the arguments mentioned ab@atarisation calibration opsrchive
that GR isthetheory of gravity (see also Will 2014a).

For all these reasons, we nd it is important to improve both
the precision and reliability of the test. These are the primary
objectives of this work. We use fully independent observational
data, taken with a wholly dierent observing system (described
in detail in Section 2), a completely independent numerical in-
tegration of the motion of the system and ae&lient implemen-
tation of the determination of the masses and orbital parame-
ters (described in Section 3) than those used by Archibald et al.

(2018). One of the main derences is, however, that the un-
certainties we report are purely statistical; we found no need
to postulate the existence of additional systematieats that
can bias . Consequently, this parameter can be self-consistently
processed like the others without requiring a special treatment.

The results of our analysis are presented in Section 4. Here
we discuss not only the parameters we obtain, but also anal-
yse the trends observed in the residuals after subtracting the
best model for the system. In Section 5, we interpret tlwon-
straint, as well as constraints on the post-Newtonian strong- eld
parameters, within the context of a wide framework of alterna-
tive theories of gravity, the Bergmann-Wagoner theories of grav-
ity (Will 2018b). We also derive new constraints on a sub-class
of those theories, the Damour-Esposito Farése (DEF) theories
(Damour & Esposito-Farése 1992; Damour & Esposito-Faréese
1993), these new limits are derived in a conservative way that
accounts for uncertainties in our knowledge of the equation of
state (EOS) for neutron star matter. We nally summarise our
ndings in Section 6.

2. Observations and data reduction

The pulsar J033#71715 has been regularly observed since July

2013 every 2 or 3 days with the Nancay radio telescope using its

L-band receiver at a central frequency of 1484 MHz. The Nancay

radio telescope is a meridian Kraus design collector equivalent

to a 94-meter dish able to conduct hour observations on any

given source within its declination range each day. The dual lin-

ear polarisation signals are sent to the Nangay Ultimate Pulsar

Processing Instrument (NUPPI, Desvignes et al. 2011), an g, 1. (top) Template pulse pro le of PSR J0387715 used for tim-

strument that is able to coherently dedisperse (Hankins & Rickei. 450 hours of observations conducted with the Nancay Radio Tele-

1975) a total bandwidth of 512 MHz. It consists of a ROACH#&cope were integrated over the frequency range 1230-1742 MHz. (bot-

board (designed by the CASPER group, University of Californiggm) Pulse pro le obtained on October 4, 2014. When pro les are ToA

Berkeley) providing 128 baseband data streams of 4MHz banicertainty ranked, this one is at the 10th percentile of the lowest un-

width each. The instrument software has many similarities wiggrtainties, typical of a good observation.

GUPPI (Green Bank Ultimate Pulsar Processing Instrument, Du- . . L

Plain et al. 2008) used at the Green Bank Telescope (GBT). A AS the pulsar period model used to fold in real time is not

cluster of four nodes hosting eight GTX2885 Graphics Pro- SUICtly satisfactory, itis necessary to properly phase-shift all the

cessing Units (GPUs) is used to coherently dedisperse and faighived individual pro les. A posteriori, the drifts within indi-

the data in real-time. vidual sub—ln.tegratlons were stgtlstlcally smaller than the mean
The real-time folding process uses a pulsar period comip{gA uncertainty and characterised by an rms of 038thus

from a simple model with two non-interacting Keplerian orit¢a/idating the parameters of our sub-integrations. In an iterative

over short 15-second sub-integrations. A single standard tiffgy; measured times of arrival are used to derive a pulsar timing

ing parameter le intempoformat® containing this pulsar tim- model which is used to improve the times of arrival and so on.

ing model is used for all the observations. The full frequeng actlc_ally,‘the ”“me“,ca”y derlv_ed pu_lsar timing model is used

and time resolution daily pulsar pro les are stored in PSRFI provide “theoretical’ barycentric arrival times for each of the

archives (Hotan etal. 2008)A 3 Hz pulsed noise diode is red 5-second sub-integrations. A code transforms those barycentric
' arrival times into a simple dailfempoparameter le with rota-

4 tempois a standard pulsar timing software, this can be found Hen rate described by only a frequency and its rst three deriva-
http://tempo.sourceforge.net . tives around an epoch corresponding to the middle of the obser-
5 http://ipsrchive.sourceforge.net . vation (FO, F1, F2, F3 and PEPOCH). This polynomial predicts
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the barycentric rotational phases within 5 ns at maximum. Thetbeories of gravity (without preferred location ect$) based
daily parameter les are then used to re-align the pulse pron a modi ed Einstein-Infeld-Homann approach (see details
les within their corresponding archives. A pro le “template',in Appendix A). In this framework, in the most generic case,
built with more than one thousand observations (see Fig. 1, tophe has three parameterg, at the Newtonian and 12 strong-
is used for determining the topocentric pulse times of arrivald parameters at the post-Newtonian level. All these param-
(ToAs) in the following way. After integrating pro les over 128eters depend on the structure of the individual bodies. The 12
MHz and 20 minutes, the times of arrival are estimated usipgst-Newtonian parameters generalise the parametrised post-
thepat function frompsrchivewithin the Fourier domain with Newtonian (PPN) ppy and ppyn (Will 1993) to the regime of
Markov chain Monte Carlo (FDM) method. The total bandwitktrongly self gravitating masses.
of 512 MHz was thus split in four sub-bands in order to be able to In the PSR J03371715 system we have only one strongly
tfor variations in the dispersion measure (DM) representing thgelf-gravitating body with" gay 0:1, the pulsar, while the
integrated electron column density along the line-of-sight durifgo white dwarfs are weak- eld objects withgay . 10 “.
the numerical t. The ToA uncertainties as reportedfi®t are That generally leads to a signi cant reduction of the number
characterised by a mean of 2.15and a median of 1.8%. A of strong- eld parameters relevant for the orbital dynamics of
pulse pro le typical of a good observation, characterised by @Re PSR J03371715 system. In fact, on the Newtonian level
uncertainty of 1.15s, is showr_1 in Fig. 1 (bottom). The goodnesghere is only one 4, which we simply denote by. Among the
of tas reported bypat can give a sense of the dérences be- post-Newtonian terms, as we discuss in detail within a theory
tween the template pro le and the pro les used to derive ToOAgased framework in Section 5, there remain three strong eld
The goodness values are characterised by a mean of 1.05 (WBfameters which are a priori unconstrained by Solar System
a median of 104) and an r.m.s. of 0.12 with 99% of the Valugﬁperiments ang ||m|ts on a|ready imposed by the "Newto-
between 3 (0.69 to 1.41). The rather low signal to noise ratigjan' dynamics: ,, pp P. Since the limits we nd for these
of the PSR J03371715 pro les observed at Nancay prevents thgarameters in Section 4 are many orders of magnitude weaker
detection of subtle eects of incorrect polarisation calibration orthan limits inferred indirectly from binary pulsar experiments, at
the ToA determination. In this work, we use a dataset (see fop{ast within our theory based framework, we primarily consider a
note 7) of 9303 ToAs divided in four 128 MHz bands observegodel where the 1PN strong- eld parameters are set to their GR
between MJD 56492 and MJD 58761 (July 2013 and Octobgilues that is, zero. This practically corresponds to using priors
2019). arising from a combination of Solar System and binary pulsar

limits at the post-Newtonian level when estimating

Our specially developed softwameutimd, solves numeri-

cally the 3-body equations of motion at 1PN (see appendix A.1
3. NUmerical TIming MOdel: NUTIMO and particularly equation (A.2)) before computing propagation

and relativistic delays. All the geometrical delays are taken into
For the description of the orbits of binary pulsars, timing praccount up to rst order in.=d whered is the distance to the
grammes such as the aforementioriethpoand alsotemp@ system and.  d is any other length scale of the problem. In
(Edwards et al. 2006; Hobbs et al. 2006) rely on existing angther words, the code computes the so-called Rcemer, Kopeikin
lytical models to calculate the times of arrival with nanosecornthd Shklovskii delays (Shklovskii 1970; Kopeikin 1996), and
accuracy (such as, e.g. the DD and DDGR models, Damouraglds an extra second order correction, thatisg?, for the lat-
Deruelle 1986). These models are built from precise analytiggt (the only second order correction that may become impor-
solutions of the equations of motion (for the examples abownt with time, see e.g. Voisin 2017). We note that Kopeikin
these were derived by Damour & Deruelle 1985). However, ramd Shklovskii delays were not included in previous works
such solution is yet available for a triple system where the thr@&rchibald et al. 2018; Ransom et al. 2014). The former allows
masses are of comparable size and experience moderately stien@ measure the longitude of ascending node of the outer orbit
mutual interactions. Therefore, and similarly to Ransom et alnd might be important because it accounts for systematicte
(2014) and Archibald et al. (2018), we perform a high precisicit the Earth orbital frequency which is close to the outer orbital
numerical integration of the equations of motion, which we sufrequency. We do not expect the latter to signi cantlyeat the
sequently use to calculate the delays. results of the t but it allows us to derive the intrinsic pulsar

The equations of motion we use are accurate up to rst po§Pin parameters which would otherwise absorb thisce (see

Newtonian order (1PN), that is, include the rst-order terms delow). We caution that the intrinsic spin parameters we report

an expansion of GR in the small parameter ST V2 in Table 2 are still biased by the ect of Galactic acceleration

ac? 2 i i 0 i -
5 10 7 wherem, v anda are characteristic mass, velocity an%\/hlch amounts to approximately 25% of the Shklovskii correc

length scales of the system aadhe speed of light. These cor on (according to the Galactic model of McMillan (2017)). Rel-

4 .“ativistic delays include time dilation between the frame of the
rections are absolutely necessary because they translate '”g?ﬂ@ar and the frame of the observer, namely the so-called Ein-
relative accelerationa=a which is of similar magnitude as ’

a potential SEP violation (see above). In addition, 1PN corr stein delay, as well as the deformation of space-time by the pul-

tions are responsible for ects that accumulate over time suc r companions on the light travel path, the so-called Shapiro

L . . elay, and the aberration of the direction of the radio beam. All
as the well-known relativistic precession of periastron. On tté?e calculated at 1PN order

other hand, second order corrections can be safely ignored sincer, delays due to interstellar medium propagation described

the same line of reasoning predicts that even a cumulative gf-
fect such as gravitational wave radiation cannot account for m(gr)éthe DM as well as the Solar System counterparts of the pre-

than a nanosecond within the current span of our observations: , . . .
P '®" preferred location eects are already tightly constrained using pul-

We use the 1PN generic strong- eld framework of Wilkars by Shao & Wex (2013).

(1993) and Damour & Taylor (1992) which parametrises al- Source, data, and results are available dui.org/10.5281/
most the entire class of “fully conservative' Lagrangian-basednodo.3778978
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viously mentioned delays are calculated by the commonly us Plane ofthe sky
softwaretemp@ (Edwards et al. 2006; Hobbs et al. 2006) whic N

nutimointegrates as an external library. A thorough descriptic — o iner binar
of the timing model can be found in Chapter 5 of Voisin (2017 / . x Ve
3.1. Parametrisation of the problem ‘ Barycentre | \.‘

. ‘

| Direction of ascending | |
node / /

In total, the model must include at least 27 parameters (resp |

tively 30 in the so-called secondary model when the 3 1F \ ///

strong- eld parameters are included). One of them is a ToA u \ ~—
certainty scale factor (called EFAC in the pulsar timing litere

\\ ///
ture) which quanti es our ignorance of unmodelled systemat —
e ects. The other 26 parameters (resp. 29) can be grouped
four categories: Egh _)Emh

— pulsar rotation: pulsar spin frequency and its derivative; g 2 sketch of the orbits of PSR J038Z715 (not to scale). Note that

— orbital dynamics: six parameters for the inner-binary orbifze orbits are nearly circular and that the ellipsoidal shape of the orbits
six parameters for the outer-WD orbit, three masses, one SrRhe left-hand sketch arises purely from projection. The osculating or-
violation parameter (resp. one SEP violation parameter aifig of the system can be parametrised by the Keplerian orbital elements

three 1PN strong- eld parameters); of the pulsar within the inner binary and of the inner binary within the
— astrometry: three position and three proper motion parantefer binary (see text). In particula, is the semi-major axis of the pul-

ters; sar orbit within the inner binarg, is the semi-major axis of the inner
— radio propagation: DM and DM derivative. binary within the outer binary arg} its eccentricity. Are also shown the

!ongitude of p_eriastron the outer binary as well as _the inner and outer
Each category is essentially uncorrelated with the others ($e@inations with respect to the plane of the skyandio respectively.
Figure 5). The rst two are speci ¢ to the triple-system problenilote that for simplicity the sketch neglects the elience between the
and we shall discuss them in some details. On the other hafiggctions of the inner and outer lines of ascending nodesas itis in
the astrometric parameters, position and proper motion, and hfctice very small.
are treated using a standard approach and we refer the interested
reader to Edwards et al. (2006), for exa’.“p'e-. ones has proven to be veryective in speeding up convergence
The intrinsic pulsar parameters are its spin frequeheyd .
. LT, in our MCMC.
spin-frequency derivativé® taken at the reference epodh.

These parameters need to be re-scaled to avoid non-linear corre- e Orbital parameters for a triple system are at most 3
+ 3 = 21 that is, three position coordinates and three velocity

lations with astrometric parameters due to the Shklovskii del ordinates per bodv plus the three masses. However we con-
(see Chapter 5 of Voisin (2017) for details about the delays), per body p . : )
ider the system in the frame of its centre of mass which results

This is a common practice in pulsar timing. In addition, we r . ; L " X

scaled the spin frequency to include the lineaeet (that is, pro- N applying two vector relations to j[he initial velocmgs and posi-

portional to time) of the Einstein delay, which is approximat ns such that the centre of'mass is atrest at coordinateso

by the second term of Eqn. (5) below. In usual pulsar-timing €€ relations suppress six degrees of freedom, and we end up
: ' h fteen independent orbital parameters. Note that, eventu-

models, the term of the Einstein delay responsible for a line the six dedrees of freedom corresponding to the centre of
increase of the delay with time can be calculated exactly and Y, 9 ; ; P 9
mass appear as the six astrometric parameters.

moved from the timing model since its ect is strictly impossi- . o
ble to separate from a re-scalingfofHowever, because here we The orbital parametrisation uses the fact that the system, be-

calculate numerically the delay, we can only estimate the lindg9P hier%r_chical, can _appro>r<]imateily be dgscr:]rib_ed by aﬂ_inngr KP}'
drift using the initial parameters. As a result of these re-scalifg/€"an binary containing the pulsar and the inner white dwar

the e ective t parameters and f%are connected to the intrinsic{ VD) itself forming an outer binary with the outer WD (see Fig-
parameterd and f by ure 2). Thus, the usual Keplerian orbital elements can be used to

” describe the osculating Keplerian orbits to the actual trajectory

— V2 + Ui + Uy ) 3 of the pulsar and of the inner binary. For eccentricity, we use
f=11 — 22 5d T 1 2 Ta < O the Laplace-Lagrange parametrisation relevant for small eccen-
_ 0 5 tricities (Lange et al. 2001) which replaced; t,, respectively
fo = 7 fd3(1 3T g=; (6) eccentricity, longitude of periastron and time of periastron pas-
where sage, byecos!; esin! . andtase Itis important_ to note tha_t we
! de ne the transformation.sc = t, !=2 P, with P an orbital
v = 2 B ) period.
B Po P’ Similarly, we tted for ay, Sinip; a, cosio for the outer orbit,
Gm whereay, is the semi-major axis of the inner binary's orbit around
U; _ (8) the centre of mass of the system agdits inclination relative to
3p(1+ my=m) the plane of the sky. For the inner binary we nd it better to t
U. = Gmy . @) foraysinijand i =i ipinstead of, sini; anda, cosi; as this
° ap(1+ (Mp + m)=my) ’ cancels several non-linear correlations in the t. This is helped
T = Tt Tpos; (10) by the fact the two orbits are very nearly coplanar. In the same

way, we tted for the longitude on the plane of the sky of the
where the symbols correspond to those de ned in Table 2. Theter orbit, o, as well as for the oset between inner and outer
use of the two re-scaled parameters above instead of the intrirestoits, = | o. We note that only the latter was reported
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in Archibald et al. (2018) while the former was considered ine ect of numerical round-oerrors, we use the model to gener-
possible to constrain with the available data. Interestingly, vag¢e fake times of arrival from parameters that t the data from
were able to constrain ¢ in this work, perhaps thanks to ourPSR J033¥%1715. The fake times of arrival are the theoretical
inclusion of Kopeikin's delays. times of arrival that are closest to the actual measurements, and
The inner binary massy, = m + m, as well as the outer WD therefore only dier from those by a few microseconds at most.
mass are derived using Kepler's third law in the inner and outéfe feed this mock data set back into our model such that the
binary respectively. The pulsar mass and the inner WD mass tggiduals should be exactly zero in absence of numerical round-
derived fromm, using the mass ratim=m, which is also part of 0 errors. In practice we observe round-errors at the level of
the t. In addition, we use the post-Keplerian orbital elements @0 3ns showing that numerical round-@rrors are not an issue
Damour & Deruelle (1985) which incorporate the 1PN corre@iven our objective of a 1ns accuracy. Note that this procedure
tions for relativistic binaries. Using Damour & Deruelle (1985)]oes not assess any systematic inaccuracy due to the modelling
one maps the orbital elements to the position and velocity of thethe numerical scheme themselves (see below) but it does ac-
pulsar relative to the inner-binary centre-of-magsy(Vvys) and  count consistently for the entire chain of operations, including
to the inner-binary centre-of-mass position and veloaity\p). not only the numerical integration but also the Solar-system cal-
One can then nd the position and velocity of the pulsar rekulations done byemp@ and the pulsar system delays. It is also
ative to the centre of mass of the system,= rp + r, and conservative since the chain of operations is performed twice:
Vi = Vi + V.8 The position and velocity of the inner WD, {v;), ©Once to create the fakes and once to analyse them. .
can then be derived by solving the equations of conservation of The main source of systematic inaccuracy due to numerical
momentum and centre-of-mass position, (A.4) and (A.5) resp@&gpProximations lies in the precision pf the mt_erpolatlons of the
tively, with P = (H =?)v, andX = ry,. Finally, one solve® = 0 timing delays that are calculated in intermediate steps. We use
andX = 0 for the outer WD position and velocity, Vo). a cubic-spline interpolation algorithm (Press 1996) for all our
interpolations. There are two parameters than can be tuned: the
number of interpolation points and the width of “margins' at the
3.2. Model accuracy beginning and the end of the interpolated range in order to avoid
The main signature of a SEP violation in our pulsar-timing eb_.oundary eects. The latter need only be a few points in prin-
periment would be a residual signal at the frequengy 2f )&ple, however the former has a direct and opposite impact on
(Archibald et al. 2018), wherg., are the inner and outer orboitalaCCl"ra.Cy and performance and t_herefore requires a trad@eo
frequency res éctivel ! (see a{rso Figure 9). According to Iir]ed(?terr.mne the Iev_el of interpolation accuracy required we need
q y resp y 9 : 9 f3 estimate what is the ect of a 1ns signal on thée? value in

g;iergg’il;hrzseuelg iﬂfaas}léilsgi%gltgatr?:tigfsf ?;eng\gggﬁgno(;?teééder to make sure that this value is computed with the necessary

! . : _ ccuracy. Let us assume that theelience between the data and

T e e O e model s 1+ where the secord term expicily represert
a 2 . ) 3

tween the observer and the pulsar and this distance is modul contribution of a putative 1ns signal, then the® can be

by the orbit of the inner binary with the outer WD. It follows tha anded as follow,

the main net eect is a modulation atf2 f, as originally pointed o W X2
out by Archibald et al. (2018). Using the Newtonian-order lin-2 = _é + _'2' + _'2; (11)
ear theory of Nordtvedt (1968), one can show that 10 © i=1 i =1 i =1 i

translates into a signal amplitude of0:1s via the Roemer de- . . )

lay. However, the magnitude that caneetively be detected in WhereN is the number of data points. NowN 1 and the

the tresiduals appears to be reduced to onl§0 ns (Archibald NuUmber of t parameters is N, then for the best t param-

et al. 2018) due to the ect of the many strong correlations ofers 1 i wheref ;gzpi;y) are the uncertainties which we

the parameter with the other orbital parameters (see FigUpk® to be approximately equal to= 2 s. In the present case

5). Therefore, we aim in this work to achieve nanosecond acdl- 10,000 for only 27 parameters. Thus, the rst term in (11)

racy within our model. This level of accuracy is compatible Wit@pproxmates N. The second term in equation (11) can

the level aimed at byemp@ (Edwards et al. 2006; Hobbs et alP€ as large abl = ~assuming that every term contributes posi-

20086). plv_ely. However it is als_o p055|bl_e that the sumzavezrages_ to zero
There are essentially three types of inaccuracies that can'aft altérnates. The third term is of order N “= “. Taking

fect the output of our model:numerical round-errors, post- | = 1ns we see that the Secfgd and th'_rd term ;)fzequa-

Newtonian truncation, interpolation precision. The rst one, m{;_\(;n (11) are respectl\_/ely 5 10 and . 25 107~

merical round-o errors, is expected to grow with the num-Ve retain the last estimate as a conservative level of accuracy

ber of oating-point operations performed to obtain the resultd achleV(_a. To QO So we mcreasgad exp'on.entlally the number of

The main source of operations is the numerical integration |81ter_polat|on points until the relative v?rlanon of thé between

the equations of motion (A.2). The integration is performed ylvo Increments s smajler thans2 10 . : L

ing the Bulirsch-Stoer scheme (Stoer & Bulirsch 2011) imple- The last source of inaccuracy, post-Newtonian truncation, is

mented in the Odeint module (Ahnert et al. 2011) of the Bogtrinsic to the theoretical framework used. Indeed, although the
' eqguations of motion and the various conserved quantities of Sec-

library °. In addition our numerical model relies on 80 bit oat-- , X .

ing point numbers (long double in C) throughout. To assess A all consistently defnve.from the same Lagrangian and can
hérefore be exactly veri ed in principle, the method of calculus

8 Although addition of velocities only applies to Newtonian mecharp-y successive apprOX|matlon doe_s nc_)t n practlce ac“"?"e Fhat

ics, we are here only interested in transforming the orbital elements iﬁﬁ)su"' Ingegd, since th7e Lagrangian itself is an apprOXImatlon

initial conditions for the numerical integrator. Such transformation {9 orderv=® 5 10  of a more general theory, there is no

somewhat arbitrary, and we choose to add these velocities for simph#lysical justi cation for conserving in the subsequent derivation
ity. any term of higher order. It follows that the equations of mo-

% Boost library version 1.55.@ww.boost.org tion and the corresponding conserved quantities are only accu-
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lee13 Table 1. Gaussian priors adopted in MCMC posterior inference.
101 — (EEnlEn Parameter Mean Std dev Source

. 33774378270 037 ma¥ 1
5 057 17 15°14°°8178 038 ma¥ 1
2 d 1:3kpc 160 p¥ 3
3 o0 4:8 masyr! 1masyr? 1
—05 44masyr!  0:8masyr? 1
Vi= 4d 297kms!? 0:9kms1t 2

0 500 1000 1500 2000 ¥:2 the uncertainty reported in the source.

Times of interpolation (days) -1 the uncertainty reported in the source.

Fig. 3. Relative error in energy conservation during the numerical intReferences.(1) Gaia DR2 (Lindegren et al. 2018); (2) Kaplan et al.
gration of the equations of motion over the 2268 day span of our da@gom); (3) Ransom et al. (2014).

The envelope of the signal oscillates at the outer binary frequency while

a zoom would show a fast oscillation at the inner binary orbital fre-

quency. of the centre of mass does not exceed1 m, or Q3 ns in terms
of geometric delay, which is well within our tolerance.
In practice, the largest systematic errors may come from un-
0.10 modelled e ects. In particular, gravitational wave damping in the
/)g\ /)ﬁ /)S\ /}\ /)\ inner binary should account for a few nanoseconds after 5 years.
€ o005 Another e ect that might become important for high-precision
= —— X—(0.016+0.0012t+1.2-107%7t2) timing over time is the eect of the gravitational quadrupole mo-
§ 0.00 Y —(0.042 + —0.0011t + 6.3 107°7t2) ment of the inner white dwarf. Indeed this star should be slightly
2 ‘ —— Z—(0.11+0.00043t + 1.4 - 107%t2) deformed by the tidal eld of the neutron star and by its spin
8 -0.05 W W \W W \ which would lead to a slight correction to the orbital precession
rate.
—0.10
0 500 1000 1500 2000 . .
Times of interpolation (day) 4. BayeSIan analySIS results

Fig. 4. Three components of the centre-of-mass position variation d&@Ur main goal in this work has been to get a Bayesian estimate
ing the integration of the equations of motion over the 2268 day sp8hthe uncertainties on each of the parameters of the problem,
of our data. A quadratic component has been tted out (see text a@&in other words to estimate the posterior probability density
legend) which leaves only the oscillatory components. The main visilgnction (PDF) of the parametersbelonging to modeM given
oscillation is at the frequency of the outer binary while a zoom woulur dataD using Bayes' rule,
show a fast oscillation at the inner binary orbital frequency.

P(Dj ; M)P( ;M)

P(D)

rate to rst order (LPN) and that systematic ‘residuals' of ord@the prior functionP( ; M), was chosen at except for astromet-
vi=c* 2 10 3(2PN) are present in the equations themselvesc parameters that bene ted from prior knowledge of position
As a result, we see on Figure 3 that the energy of the systand angular proper motion from the Gaia mission DR2 (Lin-
is conserved up to systematic oscillations at the orbital frequetegren et al. 2018), of distance from photometric observations
cies accompanied with a linear drift at a level consistent witif the inner white dwarf (Ransom et al. 2014) and radial ve-
the neglected 2PN terms, and numerical noise does not play bty from optical spectroscopy of the same star (Kaplan et al.
signi cant role. More interesting regarding the timing accurac014). The Gaia DR2 catalogue does not model orbital motion
is to look at the conservation of the centre-of-mass position. hwhich may then contaminate both position and proper motion.
deed, a shift in this position immediately transforms into a gé the present case, given the distance of the source the mag-
ometric delay. We nd that, due to the fact that the neglectedtude of orbital motion is similar to the uncertainties reported
2PN terms in the equations of motion do not necessarily genky- Gaia DR2. In order to account for potential systematic er-
ate residuals which average to zero, the two successive integosis we have multiplied by two these uncertainties before using
tionsX! x! xleading to the centre-of-mass motion createthem as standard deviations of our Gaussian priors (see Table 1).
quadratic drift that increases over time. Through the time sp@fe have also applied a factor of two to the uncertainty on the
of our observations this results into a drift of less than 10 mhotometric distance reported in Ransom et al. (2014) in order
namely about 3 ns in terms of geometric delay. Such a quadraticaccount for potential systematic ects that would bias this
drift can undoubtedly be entirely absorbed in the spin frequenayeasurement. For instance an inaccurate spectroscopic estimate
and spin-frequency derivative as well as by the astrometric p-surface gravity (the “high log g problem' in low-mass white
rameters when tting the data. For example, the linear drift rebwarfs, see Tremblay et al. (2015) and references therein) would
ported on Figure 4 would bias the spin frequency b}0 *Hz, in turn bias the stellar radius estimate and therefore the absolute
much less than the nevertheless very tight uncertainty on this pegnitude of the star. It is worth pointing out that the two com-
rameter. Therefore we conclude that the quadratic drift can omhonly used free-electron density models for the Galaxy, NE2001
result in a negligible bias of a few parameters which is why wW€ordes & Lazio 2002) and YMW16 (Yao et al. 2017), both pre-
subtract this component with a linear-least-square t on Figudict a distance of about 800 pc which is signi cantly smaller that
4. The residuals show that the systematic oscillatory 2PN motiagported in Tables 1-2. This indicates that the electron density for

P( ;MjD) = 12)
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Table 2. Mean values of the MCMC t with their 68% con dence interval.

Parameter Symbol

Fixed values
Reference epoch (MJD) Tret 56492
Position epoch (MJD) Thos 57205

Fitted values
Right ascension 3"37M43:82703(92)72
Declination 17 15°149818(43) %
Distance (kpc) d 1:3(75)%
Right-ascension proper motion (masyr 5:(01)3;
Declination proper motion (mas y1) (0:85)+5¢2
Radial proper motion (mas y#) d 4:(58)"30
Dispersion measure (pc cf) DM 21:316(49) 13
Dispersion measure variation (pc chyr 1) DM? (63 10°
Rescaled spin frequency (Hz) f 365:9533379022(28};
Rescaled spin frequency derivative (ItHz s 1) fo 2:35587(76§75
Orbit of pulsar around centre of mass (CM) of inner binary
Orbital period (days) P, 1:62940(06)39
Projected semi-major axis (It-s) a, siniy 1:21752(80y11
Inclination o set () i=i o 0:00(29) 23
Laplace-Lagrange g sin! | 6:93(65y1 10°
Laplace-Lagrange g cos! | 85(44y%2 10°
Time of ascending node (MJD) tasq 5591715(84) 15
Long. of asc. nodes et () = o i 0:00001(74)34
Orbit of CM of inner binary around CM of the whole system
Orbital period (days) Po 327:255(39) 2
Projected semi-major axis (It-s) ap sinip 74:6723(74)3;
Co-projected semi-major axis (It-s) ap CoSip 91:4(35)41
Laplace-Lagrange eosin! o 0:035114(31)78
Laplace-Lagrange € Cos! o 0:003524(80)%4
Time of ascending node (MJD) taso 56230195(11)%}
Longitude of outer ascending nod@ ( ) 44,(34)'15
Inner mass ratio m=my, 0:1373(50)18
SEP 48)% 107
ToA uncertainty rescaling EFAC :31(53) 32

Derived values

Parallel proper motion (km §) Vi 29(82)'%
Plane-of-sky proper motion (km% Vo 3(31)+28
Spin frequency (Hz) f 365:9533630(00)1¢
Spin frequency derivative (18 Hzs ?) f0 2:32(44y 4
Orbit of pulsar around CM of inner binary
Semi-major axis (It-s) a 1:924(27 &
Orbital inclination () i 39:2(51)'15
Orbital eccentricity e 6:98(90y3 104
Longitude of periastron J Iy 97.0(22) 78
Time of periastron passage (MJD) ty, 5591759(75) 15
Longitude of asc. node) | 44:(34) 14
Orbit of CM of inner binary around CM of the whole system
Semi-major axis (It-s) ap 1180(53)'%
Orbital inclination () io 39.2(37)y%4
Orbital eccentricity € 0:035290(78)78
Longitude of periastron J 'o 95:732(19§%7
Time of periastron passage (MJD) too 56317219(76) 32
Pulsar mass\ ) my 1:44(01)13
Inner-companion mas$ ) m 0:197(80)}3
Outer-companion mas$A ) m 0:410(58)%°

Notes. The error bars apply to the digits between parenthesis. Upper-case indixesfér to the inner and outer binary respectively while
lower-case indices;p; o refer to the pulsar, inner white dwarf and outer white dwarf respectively.
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Fig. 5. Corner plot of the correlations between the tted parameters of Table 2 and their marginalised distribution (diagonal histograms) sample
by our MCMC. A high-resolution version is available as online supplementary material.

the given Galactic height& 690(40) pc) is overestimated. Allwas achieved using a home-made implementation of theea
priors are summarised in Table 1. Let us note that our t for tHavariant Markov-chain Monte Carlo (MCMC) of Goodman &
radial proper motion 4 is unconstraining as the uncertainties réf/eare (2010) parallelised with the scheme of Foreman-Mackey
ported in Table 2 match the radial velocity prior of Table 1. Thet al. (2013). The advantage of this algorithm is to becient
uncertainties of all the other tted quantities are improved withn high dimensionality (Allison & Dunkley 2014) and insensi-
respect to their prior. tive to any level of linear correlations between the parameters.

. . . . . This is particularly important as we foundto be highly cor-
The high dimensionality of the PDF together with the ne- . : ;
cessity to integrate numerically the equations of motion mal?\%ated with many orbital parameters (see Figure 5). However,

the problem computationally challenging. However our+C also found that non-linear "correlations" between parameters

code is able to calculate one PDF value in less than 1 ;esglr\tla(\a/gngmg c?gv%;g;nrcﬁ gme?riéiﬁzznézf ggﬁi’o\ggc{;
on a last-generation laptop, which made it possible to sam- Y approp P e
I

ple the PDF on a medium-size computer cluster. The sampl 8nvergence was evaluated by requiring that uctuations of the
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mean and standard-deviation estimators be smaller that 6% df MCMC run and convergence
the full-chain standard deviation for each parameter (see
Dunkley et al. (2005), Section 4.1 and chain plot in supplem
tary online material). We noticed that standard deviations so
times converge later than means, particularly foicon rming
the importance of monitoring both indicators to ensure relia
uncertainties.

Due to its very low ecliptic latitude, 2 deg, the timing of
PSR J033¥1715 is potentially sensitive to a range ofeets
occurring in the Solar-system. In particular, we detected in p

:ﬁﬂé a ne-invariant algorithm of Goodman & Weare (2010) re-
nuires to moveN walkers together at each iteration. The gist of
this algorithm is that the walkers within the set are not indepen-
bqignt from each other while the set as a whole constitutes a single
e ective walker in the Markov process sense, namely that it de-
pends only on its previous state. Individual moves within the set
are informed by the positions of other walkers in a way that ren-
(ders the algorithm rigorously immune to any linear correlation,

liminary runs a slight increase in timing residuals of the ord&f @1y @ ne parameter transformation. However it might be sen-
of 1 s when the pulsar was within 3deg of the Sun. We aitive to cqrrelatlon ofahlgherdegre_e, or to non-convexity of the
tributed this increase to the inaccuracy of the Solar-wind eldRosterior isosurfaces. Therefore, with this algorithm one should

tron density model used emp@ to calculate the related DM, [2ke care of removing as much as possible any non-linear cor-
We mitigated this eect by removing all the ToAs taken withinrelat'ons by choosing an appropriate parameter set (see Section

5 deg of the Sun. Moreover, our periodogram shows aseconﬁ but very large linear correlations, as can be seen in Figure

: ; : Il resolved by the algorithm.
0:2 s component close to the Earth orbital frequency, sigh %€ W€ _
of possible extra inaccuracies in the Solar-wind model or in the 1he authors of Goodman & Weare (2010); Foreman-Mackey

Solar-system ephemerides. This is likely teeat outer-orbit pa- et al. (2013) recommend to choose a humber of walkers within

rameters since this period is close to 1 year but such a correlafi S€t much larger than the number of parameters. In the present
can only widen posterior uncertainties. case we chose to use 288 walkers per set. The only other

tunnable parameter is the unique parameter of the proposal func-
tion, a, which controls the size of the steps that can be attempted.
The authors of Goodman & Weare (2010); Foreman-Mackey
et al. (2013) suggest the val@e= 2 in order to keep an ac-
ceptance fraction 0:4. We found that, as the chain was getting
closer to convergence the acceptance fraction could drop dra-
matically, sign of non-linear correlations or non-convexity. This
drop was largely mitigated by adopting the nal parameter set
of Section 3.1, but we still had to choose a smaller step-size pa-
rametera = 1.6 to keep the acceptance fraction close to the level
mentioned above.

Due to the large parameter space and the computing time
needed to compute one? (about 10s) we parallelised the
, ) o , ... MCMC code using the scheme of Foreman-Mackey et al.
Fig. 6. Left-hand side: Marginalised posterior probability dlstrlbutlor(2013)‘ This allowed us to run the MCMC using 144 cores of
of the SEP violation parametersampled by MCMC and normal law % meso-scale MesoPSL cluster (see acknowledgements) each

with the same mean and standard deviation. The upper axis gives lating 2 walk hich is th o b fwalk
mean value and the boundaries of the 95% con dence region. Rigﬁ?l culating 2 walkers (which is the minimum number of walkers

hand side: distribution of distance to GR derived from the left-hand-si@€" core given the algorithm used). A few 10,000 steps were typi-
distribution. cally necessary to reach convergence. However, it is important to

quantitatively estimate convergence as one cannotdato run
Two modelsM were tested. Our main model includes only the MCMC for an unnecessarily large number of iterations. Be-
as a free parameter while our secondary model includes the thyegd visual inspection of the parameter chains which allows to
additional 1PN-strong- eld parameters,, pp, P, yielding the discard any obvious burn-in phase, we also monitored the auto-

following 95% C. L. constraints for them: correlation time of each chain (Goodman & Weare 2010). How-
ever, we found that the most constraining convergence estimator
= 11%8 109 (13) was to monitor the variation of the mean and standard deviation
T = i3, (14) of each parameter chain. Formally, one needs to compute the
_P 1:‘0’_9 value of the following estimator on each chain (Dunkley et al.
pp = 017%; (15) 2005),
P = +087[2: (16) ~ ()

In regard to binary-pulsar tests (see Section 5), the above res[ﬂi@f - ' (18)

on the three parameters are unconstraining. We used this prio% . dard-deviati . . istical
knowledge to run our main model with, = P = o, = 0 and where "is a standard-deviation estimatorjs”a statistical es-

obtain our primary SEP limit t!matpr which here is either the meamot the standard devia-

tion 7, and is the standard deviation estimated on the entire
= (+05 1:8) 10°® (95% C.L.) (17) length of the chain. In practice, we recorded the 288 walkers ev-

ery 5 iterations and use the last 69408 recorded elements (241

which translates intp j < 2:05 10 6 at 95% C. L. (see Figure independent sets of 288 walkers). The standard deviatian of ~

6). The full result of the main model is reported in Table 2. Notegas estimated by applyingon 20 sub-samples of the chain and

that 8% of the reported uncertainties are due to unaccountiden estimating the standard deviation of the set of the values

systematics absorbed in the EFAC parameter (see also Seatibtained. The chain was considered converged if bgndr>

4.2). The wider uncertainty obtained in the secondary run is destimated values are smaller tha@@® A situation we observed

to large correlations with the three additional parameters. is when the latter keeps varying signi cantly while the former
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is stable and under the cutoln other words, the chain widenslower limit on the actual uncertainty in the sense of the above
with constant mean, rendering a mean-based convergence ésussion.
mator uninformative and possibly leading to an underestimation Finally, the prominent peak at 1 ddyand its harmonics on
of the parameter uncertainties. the periodogram of Figure 9 result from the convolution of the
red noise component with the observing window functions of our
) _ data. Indeed, due to its meridian con guration, the Nancay radio
4.2. Analysis of the residuals telescope can only observe the same object durifig windows

. separated by an integer number of sidereal day. Due to the prox-
We have assessed the robustness of our t by evaluating the pg{%y of the inner orbital frequency with the observing frequency

ence of systematic components in the residuals (Figure 7). As 1day ! one might be concerned with a potential bias. How-

it_appears.from Figure 8, no signi cant structure s present aler we have checked that the Fourier transform of a comb of
either the inner or outer orbital period, nor at the Earth orb|ti1

eriod notwithstanding the sharp cut around the phase of cl  window functions results in sharp narrow peaks whose width
per ' Ing pcu u phas es not exceed a few percents of the daily frequency and there-
est approach to the Sun made to prevent any bias induce

unmodelled DM contributions. % cannot signi cantly bias signals at the orbital frequencies.

In order to estimate more thoroughly the presence of sys-
tematic modulations we produced a Lomb-Scargle periodogram
(Lomb 1976; Scargle 1982) of the same residuals, Figure 95}t Theory dependent tests
appears that indeed there is no signi cant power at the frequ
cies mentioned above, except for a tentative sign&:2 s at
the Earth orbital frequency. Because of the proximity of this fr
guency with the outer-binary orbital frequency this might le

to correlate Solar-system and outer-binargets a.md therefore System. Unfortunately, there is no such framework that generi-
enlarge unce_rtalnt|es related tg the parameters involved. cally extends beyond the weak eld approximation of the PPN
The dominant component is the low-frequency peak and fismalism and therefore is able to cover gravity experiments
subsequent harmonics which we interpret as time-correlated y@h strongly self-gravitating bodies, like the one in this paper.
noise. A number of causes have been proposed in the literatigsfie reason is that, unlike in the Solar System, the treatment of
The main ones are the intrinsic spin frequency noise (Shannoffe motion of a neutron star in an external gravitational eld
Cordes 2010; Melatos & Link 2014) or magnetospheric uctugequires the full complexity of a gravity theory (Will 2018a).
tions (Lyne et al. 2010). It has also been proposed that aStefPﬁput the UFF test conducted in this paper into context with
belts could result in apparent timing noise (Shannon et al. 201gher experiments, in particular Solar System tests and gravita-
Propagation eects under the form of long-term variations of thgional wave tests with binary pulsars, it has been suggested to use
dlsp_er5|on measure along the line of sight _due to turbulencet"féory_dependem frameworks (see e.g. Damour 2009). Scalar-
the interstellar medium could be the cause in some cases (Keihsor theories of gravity have turned out to be particularly use-
etal. 2013). We have tried to split the time span of our observgt for this purpose. Apart from being well motivated and well
tions into several intervals with derent DM values, but the t stydied alternatives to GR (Fujii & Maeda 2007), they show
was cqnsistent wi_th an absence of variation discarding thi_s @Xrich phenomenology in their deviations from GR, including
planation. Red noise can also have a local cause, such as irrgggminent e ects related to the non-linear strong- eld regime of
larities of the terrestrial time realisation used to time the pulsgéyutron stars (see e.g. Damour & Esposito-Farése 1993; Damour
(Hobbs et al. 2020, 2012) or inaccuracies in the planetary masggSsposito-Farése 1996).
used to generate the Solar System ephemeris (Champion et aljn this paper, as a theory-dependent framework we use the
2010; Caballero et al. 2018). However, we use the 2016 realiggyss of Bergmann-Wagoner theories. Bergmann-Wagoner theo-
tion of the BIPM terrestrial time which Hobbs et al. (2012) hages represent the most general scalar—tensor theories with one
con rmed as suitable for precision pulsar timing. Besides, if th&calar eld that are at most quadratic in the derivatives of the
red noise was caused by any inaccuracy in planetary masses, tgfg (Will 2018b). Quite a number of well known scalar-
the signature would be at the orbital frequency of the responginsor theories belong to this class, like Jordan-Fierz-Brans-
ble planet (Champion et al. 2010). The only orbital period ipicke (JFBD) gravity (Jordan 1955; Fierz 1956; Brans & Dicke
the Sol_ar System that a_pproaches the 1650 days of the red-n@g@l), DEF gravity (Damour & Esposito-Farése 1993), MO
signal is the orbital period of the dwarf planet Ceres. HowevgFayity (Mendes & Ortiz 2016)f (R) gravity (De Felice & Tsu-
the uncertainty on its mass in the NASA JPL ephemeris DE4gawa 2010), and massive Brans-Dicke gravity (Alsing et al.
(Folkner et al. 2014) we use in this work is too small to explaipp12). Bergmann-Wagoner theories form a subclass of the class
a signal of that magnitude. of Horndeski theories (Horndeski 1974), which is the most gen-
Thus, there is no deterministic model that can be tted teral class of mono-scalar-tensor theories in four dimensions
that component, but since its frequency is much lower than ampose Lagrangian leads to second order eld equations.
other in the system it is unlikely to bias the parameters. How- In the following we interpret our limits of Section 4 in two
ever, it results in increasing the scale of the ToA uncertaintids erent approaches within the class of Bergmann-Wagoner the-
(EFAC parameter in Table 2) in order to accommodate this sysies. In the rst approach we remain (mostly) generic, in the
tematic e ect into a reduced? equal to unity. Were the PDF sense that make as few assumptions as possible concerning the
perfectly Gaussian, that would result into posterior uncertaidetails of the theory. In the second approach, we pick a spe-
ties increased in exactly the same proportion, which we can here two-parameter scalar-tensor theory, that is, DEF gravity. For
estimate at 8%. Therefore, our posterior uncertainties shouldhis two-parameter class of theories we can then explicitly cal-
be seen as upper limits. Interestingly, because the analysicwhte the properties of neutron stars for elient equations of
Archibald et al. (2018) focuses on a speci ¢ frequency signatuseate (EOS) and derive constraints on the two-dimensional the-
for the SEP, the result quoted in that work should be seen asrg space from the limits presented here.

&HKe parametrised post-Newtonian (PPN) formalism (see e.g.
Will 2018b), with its ten theory-independent parameters, has
roven to be a powerful tool to quantify and compare tests of GR
d its alternatives in the weak- eld environment of the Solar
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Fig. 7. Residuals of the times of arrival using the mean parameters reported in Table 2.

Fig. 8. Residuals of the times of arrival corresponding to the parameters of Table 2 plotted versus the inner-binary orbital phase (top), the oute
binary orbital phase (middle) and the Earth orbital phase (bottom). The red vertical bars of the rst two plots show the phase where the puls
(resp. the inner binary) is closer to the Solar System. The red vertical bar on the bottom plot, shows the Earth orbital phase where the line of si
to the pulsar passes closest to the Sun. We have removed every ToA when the pulsar is less than 5 deg from the Sun, which explains the gap ar

that particular phase.
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Fig. 9. Lomb-Scargle periodogram of the timing residuals for the solution of Table 2. The periodogram is sanipt&dsteref,,' 2268days'
is the inverse of the full time span. From left to right vertical lines show the frequencies of the red-noise compgpierit§50day?, black), the
Earth orbital period fg, green), the outer-orbit orbital periofi orange), the inner-binary orbital periofi (red) and the SEP violation signature

(2f,  fo, purple).

5.1. Generic tests within Bergmann-Wagoner scalar-tensor accounts for the dependence of each body on a change in the
gravity ambient scalar eld, while the number of baryons remains xed
Will 2018b). For neutron stars, depends on the EOS. ltis typ-
ically of the order of 0.1 but, depending on the details ¢f), its
(absolute) value can be very large, as we discuss further below.

In Bergmann-Wagoner theories, the eld equations for the (ph
ical) metricg and the scalar eld are a result of the following

action d 0) I For therelative GWEP parametesne nds
1 P !
= g, xR —e@e U b= 2(8+s 25%) (23)
[
+Smat  patd (19) Because of the produsis,, in general it is not possible to inter-

whereGy is the fundamental (‘bare') gravitational constagt pret the quasi-Newtonian equations of motion in terms of inertial
0 9 AL and gravitational masses of the individual bodies imM\ahody

the determinant of , R the curvature scalat,( ) is the cou- system (Will 2018b). For weakly self-gravitating bodies the sen-

pling function, andJ( ) the scalar potential. The physical (New'sitivity s, is simply related to the fractional gravitational binding

'g(man_) gravftatlc_mal constant, as measured in a Cavendlsh—t)ép]%rgy.gra\,’a via
periment, is given by
Gn = % , (20) 2= (1+2)"gaat O "Srav,a ; (24)
0
where  denotes the cosmological background eld and ~ Where o' A 0) 1 ) " The two Eddington parameters

152! ( o) +4). Smatis the action of the matter elds?,, which ©f the PPN formalism are given by
couple universally to the spacetime metgic. For our discus- -1 o- 14 o
sion, we assume that( ) can be neglected on the scale of thePPN ~ v PPNT ' (25)
triple system, thatid)%{ )  1=a. Interms of a massive scalar, | the Nordtvedt parameter of equation (4) reads
eld, this means that we assume that the Compton wavelength Ps P d “)

much larger than the extension of the system (see Seymour & 4 oo ppy 3=2 (1+2): (26)
Yagi 2019, on how J03371715 can be used to constrain mas-
sive scalar elds). For the inner and outer white dwarf we haVg.,; ' 1:8
The e ective gravitational constant that enters thébody 10 ° and"gavo ' 48 10 5 respectively. ConsequentB, '
Lagrangian is given by Gy for the interaction between the two white dwarfs, &’
Gb=Gn 1l 2 (+% 29%) (21) Gpo" Gn(1 2 ) for the interaction between the pulsar and
" the white dwarfs. Hence, our result forin Table (2) leads to a

where the sensitivity direct constraint for

dinmy( )’ 55

“din | @2) o 5=(02 09) 10° (95%C.L), @7)
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where (S = 0). The above limit can be consideredsee e.g. Will 2018a, for details). Solar System constraints on
as generic within the family of Bergmann-Wagoner theories ofpy and  put tight constraints ( 10 %) on , and ng is

gravity, in the sense that it does not require a speci cation of t@nstrained to 10 2 because of equation (27). However, the
coupling function! (). Later, we use this limit to impose con-quantities , s,, and sj are unconstrained by above consider-

straints on the parameter space of a speci c two parameter faﬁﬂbns Consequently, s, 5‘2] and 2< are a-priori uncon-

ily of Bergmann-Wagoner theories. Before that, we need t0 digiaineq. Below, in a more theory speci ¢ context, we discuss a
cuss the strong- eld modi cations at the post-Newtonian lev

fthe 3-bodv d . ituation in DEF gravity wheresg can be of order unity, even if
ot the 3-body dynamics. s, 1 (spontaneous scalarisation of neutron stars). In such a
highly non-linear strong eld regimes, and% can assume very

First post-Newtonian contributions large values. As a consequence, theerms can become much

: larger than ppy, €ven under condition (27). To give an example,
At the rst post-Newtonian (1PN) level (ordaf=c?), the PPN in the regime of spontaneous scalarisation in DEF gravity, one
parameters ppy pen 1 and ppyn ppn 1 need

N~ nds pp= PPN 1 while pp Ffemains practically unaected
to be replaced by the body-dependent quantitigsand ¢ when | 0 (cf. Damour & Esposito-Farése 1996).

(see Appendix A for details). These strong- eld generalisa- : : .
tions of the PPN Eddington parameters depend on the segﬁi-lf we restrict to values which are not very large, it can be

tivities and their derivatives of the bodies in a system. For thy own that  can be considered as small as well, since it only
; ) ; : ntains as an a priori unconstrained term, whess has
detailed expressions, we refer the reader to Will (1993) a N P =

. . e small according to equation (27).
Damour & Esposito-Farese (1992). The latter uses the so—cale Further constraints can come from binary pulsar experi-

ElnTte|n-framehrep(esen'\;atlon and glI\I/es' th?‘se t¢r|ms for leH' nts. In particular, dipolar-radiation tests in binary pulsars with
scalar-tensor theories. More generally, In the triple system Ofg <o nic white dwarfs (see e.g. Lazaridis et al. 2009; Freire
PSR J033¥1715, where two of the bodies are weakly self 9t . 2012b), can in principle provide generic constraintsﬁn
ltating, one ’.“’S for the twelve 1PN-strong- eld parameters, tE’although some additional assumptions are needed, for instance
good approximation, for U( ) (cf. Alsing et al. 2012). IfU( ) = 0, the change in the

' e (28) orbital period of a pulsar-white dwarf binary,, due to dipolar
_ _ — radiation damping is given b
pi po (S = 0) ps (29) pingisg Y
— O : 2 —
_:)o ' _ﬁ PPN ~ (30) pipole. % 12 ”\imc (i+ 222);2;2 < (35)
o k®Es=0 p; (31) LA

0 To o A=) o (32) (see e.g. equation (12.32) in Will 2018b), wherdenotes the
_Pp _PP _omw _ orbital eccentricity, andn, andm are the masses of pulsar and
P e 0 pdm=sx=0) P (33)  white-dwarf companion respectively. To apply constraints from
other pulsar to the PSR J038Y715 system it also requires some

Iea\g_ng duES' W'tth. S'i( ?'%r?_'m parameterst_at theflPI:l_ level (?[f S the dependence of the sensitivity of the pulsgr,on the
modi €d Einstein-inteld-rio mann équations ol motion, INSteaa, ;g5 mass. In the strong- eld regime of neutron stars this de-

gfth_egNo inérlae vzeg!( eld limit. Note the following Symmetries:pendence can be highly non-linear (Damour & Esposito-Farése
ab= badNd . = ¢ 1996; Shao et al. 2017). PSR J178833 is a pulsar with a mass

b
At this stage, we can further reduce the number of 1PN p milar to PSR J03371715 f, © 1:46M ). The dipolar radia-

rameters, without making more detailed assumptions about : .7 |

theory, for instance aboii, ). The tight limits on ppyand pen i test by Freire et al. (2012b); Zhu et al. (2019) leads to

from Solar System tests 10  (Will 2018b), directly put tight % =( 05 17) 10°% (95% C.L.): (36)
constraints on two of the six 1PN parameters. Furthermgyre,
only depends on terms proportional tcand s;, the rst be-  As a result, 5, can, in general, also be assumed to be small in
ing constrained to 10 ° by Cassini (Bertotti et al. 2003) andthe PSR J03371715 system. _
the latter to 10 © already by the Newtonian-level dynamics of Imposing a generic constraint oﬁsg, and therefore onP,
the triple system (cf. equation (27); see also limit (13)). Consis-somewhat less direct; enters, for instance, the precession
quently, without loss of generalityan, 4o, and ? can be ig- of periastron! , which is particularly well tested — in combina-
nored in a self-consistent gravity test with the PSR JB3FA5 tion with other post-Keplerian parameters — in eccentric short-
system. Besides the at the Newtonian level, we are left withorbital-period binary pulsars (Wex 2014; Will 2018b). However,
the 1PN strong- eld parameters, pp, and P. These three pa- only the so called Double Pulsar allows for a generic constraint
rameters cannot be constrained without further assumptionspasdeviations from GR inl , which is of the order of 1¢
we discuss below. Hence we have implemented a model ba@éhmer & Wex 2009). However, the masses of the Double Pul-
on deviations from GR parametrised by, (p; pp; P), Whichis sar are signi cantly lower than the mass of PSR JO8B715.
calledsecondary modeh Section 3 and 4. Our analysis baselllevertheless, the general agreement of all these systems with
on this model leads to the generic limits (13) and (14) — (16). GR at least suggests thats;, and thereforeP can generally be

In our generic approach, the parametgys pp, can a-priori assumed to be small as well. Moreover, given that the Cassini ex-
only be constrained if we make further assumptions and applgriment already imposeg . 10 1°, % would have to assume

existing constraints from binary-pulsar systems. The reason iggfte extreme values to lead to a signi cart certainly in view
follows. The three parameters have terms, which are propogf the (still) quite weak limit (16).

tionalto , °s;, s, s, and s}, where To summarise, under additional assumptions, which we con-
) I sider as reasonable for most situations, all three strong- eld

L d*Inma( ) (34) Parameters are tightly constrained by a combination of equa-
d(in )2 tion (27) with constraints from binary pulsars experiments. The
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limits in equations (14) to (16) are therefore generally not of paConsequently, using equation (41), while keeping in mind that
ticular interest, at least for constraining the class of scalar-tensgcording to equation (38) 0, one nds
theories considered in this section. | 5o > 140000 (95% C.L) (43)

This limit is more than a factor of three larger, that is, more con-
straining, than the Cassini limit (Will 2018b). When using EOS
H4, which is already disfavoured by the GW170817 LIG@go

In order to explicitly calculates, and% and therefore and the event, we nd! gp > 130000, which is only marginally weaker
1PN strong- eld parameters that enter our equations of motidhan the above limit. Just to illustrate the EOS dependence of
one has to pick a speci ¢ theory of gravity, which we do in thighe limit on JFBD gravity, for the soft EOS WFF1 (outeft in
subsection. In the quadratic mono-scalar tensor th&dryo; o) Fig. 10), the lower limit forl gp increases to 180 000.

of Damour & Esposito-Farése (1993), the coupling function in

the Einstein frame is quadratic in the scalar eld, meaning that

the coupling strength between the scalar eld and the trace of

the stress-energy tensor becomes eld dependentin a linear way.

In the Jordan-frame representation with the physical metric

which we are using here, the coupling function then reads

1 1
()= 5%—3 = * 37

where ¢ 1, without loss of generality (Will 2018b). Further-
more, one nds

5.2. EOS-agnostic constraints on Damour—Esposito-Farése
(DEF) gravity

2
0 0
=_0 . =-__0° . (38)
1+ 2 21+ 3
The tight constraints on from the Cassini mission imply thatFig- 10- Radius-mass diagram for the 12 EOSs used in this paper

2 10 5. Furthermore, from equation (26) one then nds fof° @ccomplish a good coverage of the range from soft to BDSs,
o - . ,
the Nordtvedt parameter while still being in agreement with the tidal deformability test in

the GW170817 LIG®/irgo event (Abbott et al. 2017; Abbott et al.

' 2 2(1+ ) (39) 2018) (black curves). The blue dashed line indicates the mass of
0 0/- PSR J033¥1715, and the red dotted line corresponds to the most mas-

like thesive neutron star used in our combined test: PSR J63482 (Anto-

The sensitivitys, of a weakly self-gravitating body, iadis et al. 2013). The black curves correspond to the following EOSs

WD companions to JO337715, can be calculated accordin from left to right in their intersection with the red dotted line): WFF1,

to equation (24): Sly4, WFF2, AP4, BSk20, ENG, SLy9, AP3, BSk25, BSk21, MPAL,
' 1+ " . 40 BSk22 (see Lattimer & Prakash (2001) and httgempose.obspm.fr).
Sa ( 0) grava - (40) Our sti est EOS, BSk22, is also in agreement with the (more model

- endent) constraint ™.« . 2:3M by Rezzolla et al. (2018); Shi-
For neutron stars, the absolute value of the sensitivity C%ﬁfaetal.(ZOlQ).We have included EOS H4 (grey curve), which is dis-

b’?cﬁ’me ve.ry Iarge_ ifo . . 45, a fact rst diS_CO"efe‘P' favoured by GW170817, and therefore has not been used in Figs. 11 and
within Ta1( o; o) gravity theories by Damour & Esposito-Farésg, |l these EOSs also agree with the latest constraints from NICER
(1993), and generally referred to as “spontaneous scalarisatigWiiler et al. 2019).

As a result, even for arbitrarily smally, the quantity ¢s; '
%5, remains at order unity? While a sti er EOS gives a more conservative limit for JFBD
A special case oT1( o; o) is JFBD gravity, for which o =  gravity, such a general statement is no longer true for the whole
0. In that case = 0, and the coupling function is a constant: - ; parameter space @f( o, o). In particular for certain neg-
1 1 3 ative values of g, a softer EOS can be more conservative. For
il =— 2 lgp> =: (41) low and medium mass neutron stars, like PSR J83315, the
2 2 2 o range where that is the case is rather small (see Fig. 11). For
_ . high mass neutron stars the situation is quiteedént. A soft
which is called the Brans-Dicke parameter. Fep ! 1, that Qg that has a maximum mass close to the mass of the neutron
is, oand ! 0, JFBD gravity approaches GR. We obtain thg, |eads to considerably weaker limits for ajl. 2 (Shibata
most conservative limits on JFBD when using the et EOS ot 51 2014; Shao et al. 2017). This is of particular importance
from our set of viable EOSs (see Fig. 10), that is, BSk22. Fpfi. constraints from pulsars like PSR J0348132 (Antoniadis
this EOS, in JFBD gravity, the sensitivity of PSR JO33715 o 5| 5013) (see Fig. 10). Hence for our combined constraints on
has the values, = 0:149. Most importantly, for . 1%, this e narameter space Bf( o: o) theories we used a set of EOSs
value is practically mdependent °f(5h'b'?ta etal. 2014; Sha‘,’that provide a good coverage of the range from soft to. §tur-
etal. 2017). Hence, equation (27) can directly be converted iRt rmore, if for a given point (; o), which corresponds to a
limits on the coupling parameter: speci ¢ gravity theory, there is a single EOS from our set with
_ 6 . which all pulsar constraints are ful lled then this point in the the-
=(1 6 107 (B%CL) (42) ory space is not excluded. For our joint analysis we have used the
10 The e ective scalar coupling, used by Damour & Esposito-FareseJFF results from this paper in combination with the dipolar ra-
(1993) is linked to the sensitivity as de ned here via= o(1 2s,). diation tests of PSRs J1043307 (Desvignes et al. 2016; Anto-
Furthermore, o' 2 for small . niadis et al. 2016), J1145545 (Bhat et al. 2008), J1788333

()=

on
NIl w
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(Freire et al. 2012b; Zhu et al. 2019), J19@344 (Desvignes
et al. 2016; Arzoumanian et al. 2018), and J222237 (Cog-
nard et al. 2017). Our results are shown in Fig. 12.

Fig. 12. Combined EOS-agnostic pulsar constraints on e, space

of scalar-tensor theories (Damour & Esposito-Farese 1993; Damour &

Esposito-Farese 1996) from equation (17): the area under the curve is

still allowed by experiments. The blue curve is the result of a com-
Fig. 11. PSR J033%1715 constraints on theo- o space of scalar- bination of dipolar radiation tests from six pulsar-WD binary systems
tensor theories (Damour & Esposito-Farése 1993; Damour & Esposi@ge text for details). The red curve indicates the improvement when
Farése 1996) from equation (17): the area under the curve is still e constraints from this paper are added to the dipolar radiation tests.

lowed by experiments. Two derent neutron-star equations of state arén€ grey curves show the Zimits from Solar-system experiment:
used: a soft one, WFF1 (red curve), and a stie, BSk22 (blue curve). Cassini (solid), LLR (dashed), MESSENGER (dotted). JFBD gravity

The two solid lines use the SEP constraint of this paper. The grey curg&responds too = 0 (thin vertical line).
show the 2 -limits from Solar-system experiment: Cassini (solid), LLR

(dashed), MESSENGER (dotted). JFBD gravity corresponds to 0 . ) ) )
(thin vertical line). these constraints for a wide class of gravity theories, and as a

part of this derive EOS-independent constraints on the param-
eter space of quadratic mono-scalar-tensor gravity. Speci cally,
) for the coupling parameter of Jordan-Fierz-Brans-Dicke (JFBD)
6. Conclusions gravity we nd ! gp > 140000, which is the so far the tight-

We described in this paper a test of the universality of free f&ft imit for this scalar-tensor theory. We also present new con-
(UFF) with the pulsar in a triple star system, PSR JO3B715, Straints for Damour—Esposito-Farese (DEF) gravity, a quadratic

The result we obtain for the UFF violation parameter for tHgxtension of JFBD gravity. We combine our limit with limits
MSPis = (+05 1:8) 10 °© (95% C.L.), which can be f_rom binary pulsar experiments wh|le accounting for uncertain-
stated as a limif, j < 205 10 © (also 95% C.L.). This rep- ties in our knowledge of the equation of state (EOS) of neutron-

resents 30% improvement over the previous test using the satig Matter. _ _

pulsar (Archibald et al. 2018). Interestingly, although we obtajn " What remains of the paper, we make a detailed compar-
a similar value for , the nature of our limit is dierent: the un- 1S0n Of this experiment with the best previous constraints on
certainty reported in this work is statistical, while the result & WEHSEP violation. In Section 6.1 we make a more detailed
Archibald et al. (2018) is largely made of a systematic uncégomparison with the experiment by Archibald et al. (2018). In
tainty which we did not nd necessary in the present analysi8€ction 6.2, we compare our experiment to radiative experiments
This particular di erence makes our two limits dcult to com- 7om binary pulsars, which have also produced strong and com-
pare in absence of a physically motivated model for the systeRiémentary constraints on GWEP violation via their strong con-
atic bias, but should also provide an independent veri cation 8f&ints on the emission of dipolar gravitational waves. Further-
the solidity of the result. more, we compare the present limit with potential future limits

Furthermore, in a generic approach we also provide limits f8f dipolar radiation from binary neutron-star and neutron star-
three post-Newtonian strong- eld parameters of the three-boB{Rck hole mergers. o
interaction, and discuss in detail the relevance of these limits. In all of these experiments, no GWEP violation can be de-
In view of other binary pulsar limits, it seems that these limi§cted; gravity behaves, to within observable precision, as de-
might be of interest only in very speci ¢ situations. scribed by GR, which is conjectured to be the only viable theory
As for Archibald et al. (2018), our results are fully consisterf¥hich fully embodies the SEP.
with the predictions of GR. This limit strongly constrains SEP
violation and any alternative theories of gravity that _predict avkq Comparison with previous work on J0337+1715
olation of the universality of free fall for self-gravitating masses
(GWEP), particularly for neutron stars with masses similar fhis work distinguishes itself from the Archibald et al. (2018)
that of PSR J033#1715. In this paper we explicitly calculateon the following points:
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1. Independent data set; are statistics-limited. The physical mechanism of the systemat-

2. Independent timing model including additionaleets; ics being unknown, Archibald et al. (2018) propose to model

3. Statistics-limited versus systematics-limited accuracy; ~ Systematics using an empirical stochastic model where the ex-

4. Tension in the mass measurements and the rst measurent&iteous signal is a weighted sum of sine and cosine functions
of o; at frequenciekf; + I f, (k; | being small integers) whose weights

5. Generic test of those strong- eld post-Newtonian param@te drawn from a single Gaussian distribution for each particu-

ters, which are a-priori unconstrained, even within a brodf realisation. In order to sample the distribution ofaused by
class of scalar-tensor theories. di erent realisations of the (stochastic) systematics, Archibald
6. EOS-agnostic constraints on DEF gravity, while accountiré &- (2018) bootstrapped many sets of synthetic data from the

for the latest observational constraints on the range of EO8¥del, re- tted the orbital model, and thus obtained a value of
for each synthetic dataset. This estimate heavily depends on

Point 1) bene ts from the well sampled timing data acquired e modelling choices for which no physical justi cation is cur-
the Nancay radio telescope alone (Section 2). All the observantly available. It also seems unlikely that systematics should
tions used here were conducted within the same frequency rangeur at frequenciesf; + If, if the physical mechanism is unre-
(1.2-1.7GHz) and with the same environmental conditions siniééed to orbital motion (as an SEP violation would be), unless the
Nancay is a meridian Kraus design telescope. The NUPPI fignal at these frequencies is the tail (in Fourier space) of a sys-
strumentation is also routinely used for long term high-precisié@matic signal which peaks at a dirent frequency, but should
timing providing excellent and stable results. The instrumentien be seen in a periodogram such as Figure 9. In this respect,
tion did not change since its installation in 2011 and there is ftgure 9 does not suggest that we should consider a systematics-
need for any time jump in the whole dataset since 2011. limited regime in the present work. Although some systematics
Point 2) makes use ofiutimo (Section 3) which has the are present as red noise (see Section 4.2), there is no sign of an
speci city of allowing for a fully self-consistent treatment ofadditional signal around the signature frequency.
astrometric parameters via the binding wigtimp@ and the in- Point 4) is about comparing the parameter set of Table 2
clusion of Kopeikin and Shklovskii delays in the model. Theith the results of Archibald et al. (2018). A direct compari-
model in Archibald et al. (2018) did not include these delay®n is not straightforward because of i) slightly éient de -
and used a local linear approximation for astrometric corregition of the parameters (see section 3.1) and ii) the fact that
tions. The argument in favour of such proxy was that any systemest of the parameters are not constants of motion but are
atic e ect caused by these approximations should necathe de ned either at the reference tinger or Tpos TO Minimise
main SEP signature which has a dient frequency. However, the span of numerical computations we do not use the same
we observe that the astrometry then foundeds signi cantly reference time as Archibald et al. (2018). However, one can
from prior knowledge and in particular Gaia observations whigtompare masses which are constants of motion (and, in the
led Archibald et al. (2018) to acknowledge that the resulting a&8ame way, ). The values reported in Archibald et al. (2018),
trometry should not be used for other applications. In additiom, = 1:4359(3M ;m = 0:19730(4M ;m, = 0:40962(9M 1%,
nutimoalso ts consistently for DM and DM variations and al-whose statistical 68% con dence intervals are about 5 times bet-
lows to check for local epoch DM variations (DMX parameterter than ours - similar to the ratio between the uncertainties on
in temp@) which revealed no uctuations over time. Note that - are in tension with the values we report in Table 2, with
Archibald et al. (2018) did t DM over 1 year time intervals my, " 29; m ' 26; m,' 214 where is half of the
and marginalised over these parameters using the solution &8&6 con dence interval reported in this paper, theseedénces
least-square t. We also included the aberration delay that naire much more signi cant than for. Due to the very large corre-
ther Ransom et al. (2014) nor Archibald et al. (2018) mentiolation between and the orbital parameters on which depend the
This delay has a very small amplitude (sum 080 ns sinusoid masses (period and semi-major axis), the systematic uncertainty
at the outer period and a 0:1 s sinusoid at the inner period)estimated in Archibald et al. (2018) for should be similar for
and therefore can easily be absorbed by other parameter in &hg masses (but not reported) and partly release the tension.
but still creates a signal of magnitude larger than the expected In addition, we report the rst measurement of the outer lon-
SEP sensitivity. Imutima potential systematic eects that may gitude of ascending node o, which was deemed unconstrained
not be accounted for by the model are absorbed in a re-scaling\rchibald et al. (2018) although the dispersion of the tresid-
of the error bars of the times of arrival via the EFAC parametaels in Archibald et al. (2018) is smaller than ours. We speculate
which ensures a reduced equal to unity. This in turns conser-that the absence of Kopeikin delay in their analysis prevented
vatively increases uncertainties on the posterior parameters. that measurement. However, this parameter is uncorrelated with
Point 3) arises from the fact that, in Archibald et al. (2018), and should therefore not act the SEP test, but its absence
most of the total reported uncertainty of ( 0:74 10 8 at should bias astrometric parameters.
68% CL) is associated with systematic uncertainties while in Point 5) is related to our implementation of the rst
this work our uncertainty is mostly statistical. We account fgrost-Newtonian equations of motion, derived from the mod-
unmodelled systematic ects, mostly a red-noise componenf,ed Einstein-Infeld-Ho mann Lagrangian for strongly self-
via the EFAC parameter which is responsible for a modest agihvitating masses (Appendix A). In this we use twoeatient
conservative widening of 8% of the uncertainties. The sta-approaches, a (mostly) generic one where three of the 12 1PN
tistical uncertainty of Archibald et al. (2018) is estimated ustrong- eld parameters are unconstrained by Solar System ex-
ing MCMC sampling similarly as we do in this work and reperiments, and a second approach where, under additional as-
sultsin = ( 11 0:2) 10 5 (68% CL). Taken alone, this sumptions, all the strong- eld 1PN parameters are tightly con-
would signify a 5-sigma SEP violation. However, the authosrained by adopting binary pulsar constraints for the neutron star
argue that most of the uncertainty comes from unaccounted sysnsitivity and its derivative. A detailed motivation for the two
tematic e ects which could generate a signal at the signature
frequency of an SEP violation. In other words, it is claimed The number between brackets gives the uncertainty on the last
that the accuracy is systematics-limited while in this work wdigit(s).
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di erent approaches is given in Section 5. In the rst approach
we nd generic limits for the remaining three 1PN strong- eld
parameters, which however are not very tight, and therefore gen-
erally not of particular interest. Archibald et al. (2018) do not
provide an equally generic analysis as done in our rst approach.
Point 6) refers to the constraints of quadratic mono-scalar-
tensor gravity, where Archibald et al. (2018) have used a single
(outdated) EOS. In our combined tests we have fully accounted
for our imperfect knowledge of the EOS of neutron-star matter,
and used a set of modern EOSs that covers the range from soft
to sti EOSs. A reason for that is the fact that the most conser-
vative pulsar limits do not always come from the st EOS.
Our set of EOSs is in agreement with the latest constraints from
LIGO/Virgo and NICER, and can account for the largest neutron
star masses measured to date (Antoniadis et al. 2013; Cromartie
et al. 2019). We would like to point out, that the recent limits of
Capano et al. (2019) exclude some of theestiEOSs used in our
analysis, which consequently leads to even more stringent con-
straints than the ones shown in Fig. 12, in particular fo& 1.
In view of this, our limits can be considered as conservative.

6.2. Comparison with radiative tests Fig. 13. Comparison of the PSR J038%715 constraints of this paper

InGR. the | ltiol h with expected constraints from future gravitational wave observatories
n GR, the lowest source multipole moment that generates grayz single binary neutron-star merger: Cosmic Explorer (CE; blue dot-

itational waves is the quadrupole moment (Thorne 1980). In @y curve) and Einstein Telescope (ET; blue dashed curve). CE and ET
ternatives to GR, however, one nds lower multipoles, whergrves are taken from Fig. 9 in Shao et al. (2017). Like for the CE and
for the dynamics of a binary system, the dipole moment is tiEa curves, the PSR J0381715 curve is also based on EOS AP4. Solar
most important one. The occurrence of these lower multipolesSigstem constraints (grey) are as in Fig. 11. JFBD gravity corresponds
closely related to a violation of the SEP (see e.g. Will 2018b, ftsr o = O (thin vertical line).

a discussion). In scalar-tensor theories, for instance, an asymme-

try in the sensitivitiess, in a binary system gives rise to scala
dipolar radiation (see equation (35)). While a eience in sen-
sitivity is also the reason for a violation of GWEP, where mass
with di erent compactness are falling @irently in an external
gravitational eld (see equation (21)). In a sense, the UFF exp
iment with PSR J033#71715 and constraints on dipolar radiatio
damping with binary pulsars are exploring two drent sides of
the same coin. The limits in Fig. 12 show that currently for
large part of the parameter space, the test with PSR 3335

Become (almost) independent of the parametér the sense
ggat 1 remains practically xed for ! 0. In such a sit-
uation, the eective gravitational constant in the interaction be-
dyeen a neutron star and a white dwarf becomes indistinguish-
I;flble fromGy and the test with J03371715 becomes practically
insensitive to such deviations from GR. Dipolar radiation test
\g{ith pulsar-white dwarf systems, in contrast, are extremely con-
straining with respect to such scalarisation phenomena, as can
is more constraining than dipolar radiation tests from binary pi€ S€en from equation (35). More generally, in situations where
sars. For su ciently, negative o, however, gravitational wave only the stro.ng.eld of a neutron star can source additional (long-
tests with binary pulsars become more constraining, in part@-nge) gravitational elds that lead to deviations from GR, the
ular for small 5. We have a more detailed discussion on thi FF test with PS.R JO337L715 cannot place any constraints, in
further below. contrast to radiative tests. Hence, both types of tests are comple-

Gravitational wave observation of a double neutron-stJIS"ary and valuable. Binary pulsar tests have already tightly

merger can also be used to constrain the emission of dipoqustrained the occurrence _of spontaneous scalarisation in neu-
gravitational waves, as has been done for the rst LIgi@jo Uon stars. However, depending on the EOS and mass of the neu-
binary neutron-star merger GW170817 (Abbott et al. 5014dfon star, spontaneous scalarisation is not yet fully ruled out by
Limits on scalar-tensor theories as discussed here, fr H10h experiments (Shao et al. 2017).
LIGO/Virgo observations, however, are not expected to be com-
petitive with Solar System and pulsar experiments for most of
the parameter space (see Shao et al. 2017). Future ground based
gravitational wave detectors have the potential to improve on
limits presented here, in particular in @ range which is dif-
cult to constrain with pulsar experiments (see Fig. 13). Future
gravitational wave observations of mixed (black helaeutron
star) mergers, in particular the combination of multiple events or
the combination of ground and space based gravitational-wave
observatories promise signi cant improvements (see e.g. Carson
etal. 2019).
As a nal comment, there is an important dirence between
the UFF test conducted with PSR J033715 and dipolar ra-
diation tests. As discussed in the previous subsection, in the
regime of spontaneous scalarisation, the neutron star charge can
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Appendix A: Strong- eld equations of motion

One can then use the Euler-Lagrange equations (Will 1993)

to derive the equations of motion for each body:

In our timing model, the motion of the three bodies follows(a
the equations of motion derived from the post-Galiean-invariant
n-body Lagrangian of the modi ed Einstein-Infeld-Hmann
(mEIH) formalism (Will 1993; Damour & Taylor 1992). The
mEIH equations of motion describe the rst post-Newtonian dy-
namics of an-body system which also contains strongly self-
gravitating masses, under the assumption that the gravitational
interaction is Poincaré invariant. Furthermore, it assumes that
there are no “asymmetric' terms in the Lagrangian, which are
anyway absent in many well motivated theories of gravity (see
the discussion in Nordtvedt 1985; Damour & Taylor 1992). The
mEIH formalsim is a generalisation of the parametrised post-
Newtonian (PPN) equations of motion for fully conservative the-
ories with = 0, in order to include eects related to the strong

X 1
Gaby = —Np 1l S Ny Vi 2V

I#
Vb)?

b, a I’ab

3 _
t5 (Vb nab)2 ab (Va

x G
+ an;o (Vo Va) Nap (4Va 3V
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X X g
abicrrbmc 1 7
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2 2
b,ac a rabra‘cc

internal elds of strongly self-gravitating objects, like neutron
stars. The mEIH Lagrangian can be written as (cf. Damour

Esposito-Farése 1992) % the weak- eld limit one can check that this equation does give

the PPN equation of motion (e.g. Sal 1989; Will 1993).
Conserved quantities are key elements to check the numer-
ical implementation and accuracy of the equations of motion.
We have used the Hamiltonian (conservation of energy), and the
momentum and position of the centre of mass of the system. The
last two are also necessary to derive the initial conditions of the

system.
The Hamiltonian correspondlng to equation (A.1) is derived
Xn 2 v ! using the Legendre transforkh = = v, &a L,
L = C + — +
) THC My + Mgy x 1 3 VA
T " Ho= MmO oMt g
+ 1— GapMaimy 1 (Va nab)(Vb nab) a " c
2 iba T 22 LAY Gamamy L 7va G
ZVa Vp + §%§ + \/_§§+ _ (Va Vb)2§ 2 b, a lab 2 ¢ |
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The momentum of the centre of mass is given by the same
E,xpression as in GR only with the replacemént G, P =

2% and
ém & }X Gabm"é
o , . . 2c2 C2r ap
wherem, are the inertial masses with coordinate posmotas b, a
and coordinate velocitieg, rap = kxa Xpk, Va_= kvgk, and 1X G My
al

Nab = (Xp  Xa)=ap- The quantities ;o= 1, gc =51 > 5— (Va  Nab)Nanif; (A.4)
andG,, are the eective strong- eld interaction constants The ba C'ab

unbarred quantities are the strong- eld generalisation of the PPN X
parameters ppy and ppy (Eddington parameters). The strong-  The centre-of-mass positiok satis es H =) = P (see
eld parameters satisfy the symmetri@y, = Gpa (@ , b), €9 Will 2014D),

ab= pa(@, b,and 2. = & (a, b,a, c). The body- X 5 X
dependent eective strong eId |nteract|0n constants depend ohl MuXa B + Va 17 Gamy o ): (A.5)
the details of the underlying gravity theory as well as the strue2 a a 2c2 2 b a C%rap ' '

ture of the individual bodies. Hence, in the most general case of a
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