J. N. Connelly, The absolute chronology and thermal processing of solids in the solar protoplanetary disk, Science, vol.338, pp.651-655, 2012.

M. Bizzarro, J. N. Connelly, and A. N. Krot, Chondrules: Ubiquitous chondritic solids tracking the evolution of the solar protoplanetary disk. Formation, Evolution, and Dynamics of Young Solar Systems, Astrophysics and Space Science Library, vol.445, pp.161-195, 2017.

C. Burkhardt, Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth, Earth Planet Sci Lett, vol.312, pp.390-400, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00673509

P. H. Warren, Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites, Earth Planet Sci Lett, vol.311, pp.93-100, 2011.

H. Palme, O. Neill, and H. , Cosmochemical estimates of mantle composition, Treatise on Geochemistry, pp.1-39, 2014.

C. Burkhardt, In search of the Earth-forming reservoir: Mineralogical, chemical, and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites, Meteorit Planet Sci, vol.52, pp.807-826, 2017.

N. Dauphas, The isotopic nature of the Earth's accreting material through time, Nature, vol.541, pp.521-524, 2017.

J. Render, M. Fischer-gödde, C. Burkhardt, and T. Kleine, The cosmic molybdenumneodymium isotope correlation and the building material of the Earth, Geochem Perspect Lett, vol.3, pp.170-178, 2017.

J. L. Gooding, Oxygen isotopic compositions of petrologically characterized chondrules from unequilibrated chondrites, Meteoritics, vol.15, p.295, 1980.

G. Lux, K. Keil, and G. J. Taylor, Chondrules in H3 chondrites: Textures, compositions and origins, Geochim Cosmochim Acta, vol.45, pp.675-685, 1981.

R. H. Hewins and C. T. Herzberg, Nebular turbulence, chondrule formation, and the composition of Earth, Earth Planet Sci Lett, vol.144, pp.1-7, 1996.

M. Gerber, Chondrule formation in the early solar system: A combined ICP-MS, ICP-OES and petrologic study, 2012.

D. C. Hezel, M. Harak, and G. Libourel, What we know about elemental bulk chondrule and matrix compositions: Presenting the ChondriteDB database, Chem Erde, vol.78, pp.1-14, 2018.

E. Amsellem, F. Moynier, E. A. Pringle, and J. Day, Testing the chondrule-rich accretion model for planetary embros using calcium isotopes, Earth Planet Sci Lett, vol.469, pp.75-83, 2017.

A. Johansen, M. Low, P. Lacerda, and M. Bizzarro, Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion, Sci Adv, vol.1, p.1500109, 2015.

H. F. Levison, K. A. Kretke, K. J. Walsh, and W. F. Bottke, Growing the terrestrial planets from the gradual accumulation of submeter-sized objects, Proc Natl Acad Sci, vol.112, pp.14180-14185, 2015.

J. Bollard, Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules, Sci Adv, vol.3, p.1700407, 2017.

M. Schiller, M. Bizzarro, and V. A. Fernandes, Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon, Nature, vol.555, pp.507-510, 2018.

F. Ciesla and J. Cuzzi, The evolution of the water distribution in a viscous protoplanetary disk, Icarus, vol.181, pp.178-204, 2006.

H. S. O'neill and H. Palme, Collisional erosion and the non-chondritic composition of the terrestrial planets, Philos Trans A Math Phys Eng Sci, vol.366, pp.4205-4238, 2008.

J. Siebert, Chondritic Mn/Na ratio and limited post-nebular volatile loss of the Earth, Earth Planet Sci Lett, vol.485, pp.130-139, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02363566

K. Lodders, Solar system abundances and condensation temperatures of the elements, Astrophys J, vol.591, pp.1220-1247, 2003.

K. Righter, M. J. Drake, and E. Scott, Compositional relationships between meteorites and terrestrial planets, pp.803-828, 2006.

B. Zanda, R. H. Hewins, M. Bourot-denise, P. A. Bland, and F. Albarède, Formation of solar system nebula reservoirs by mixing chondritic components, Earth Planet Sci Lett, vol.248, pp.650-660, 2006.

C. Alexander, Re-examining the role of chondrules in producing the elemental fractionations in chondrites, Meteorit Planet Sci, vol.7, pp.943-965, 2005.

J. Siebert, A. Corgne, and F. J. Ryerson, Systematics of metal-Silicate partitioning for many siderophile elements applied to Earth's core formation, Geochim Cosmochim Acta, vol.75, pp.1451-1489, 2011.

M. Schönbächler, R. W. Carlson, M. F. Horan, T. D. Mock, and E. H. Hauri, Heterogeneous accretion and the moderately volatile element budget of Earth, Science, vol.328, pp.884-887, 2010.

D. C. Rubie, Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed solar system bodies and accretion of water, Icarus, vol.248, pp.89-108, 2015.

D. C. Rubie, Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation, Science, vol.353, pp.1141-1144, 2016.

R. H. Hewins and B. Zanda, Chondrules: Precursors and interactions with the nebular gas, Meteorit Planet Sci, vol.47, pp.1120-1138, 2012.

R. H. Hewins, B. Zanda, and C. Bendersky, Evaporation and recondensation of sodium in Semarkona type II chondrules, Geochim Cosmochim Acta, vol.78, pp.1-17, 2012.

E. Jacquet, M. Paulhiac-pison, O. Alard, A. T. Kearsley, and M. Gounelle, Trace element geochemistry of CR chondrite metal, Meteorit Planet Sci, vol.48, pp.1981-1999, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003975

M. Pasek, Sulfur chemistry with time-varying oxygen abundance during solar system formation, Icarus, vol.175, pp.1-14, 2005.

F. Albarède, Volatile accretion history of the terrestrial planets and dynamic implications, Nature, vol.461, pp.1227-1233, 2009.

M. Schiller, Rapid timescales for magma ocean crystallization on the howardite-eucrite-diogenite parent body, Astrophys J Lett, vol.740, pp.1-6, 2011.

M. Schiller, J. N. Connelly, A. C. Glad, T. Mikouchi, and M. Bizzarro, Early accretion of protoplanets inferred from a reduced inner solar system 26 Al inventory, Earth Planet Sci Lett, vol.420, pp.45-54, 2015.

N. Dauphas and A. Pourmand, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo, Nature, vol.473, pp.489-492, 2011.

K. Lodders and B. J. Fegley, The Planetary Scientist's Companion, 1998.

A. J. Stewart, M. W. Schmidt, W. Van-westrenen, and C. Liebske, Mars: A new corecrystallization regime, Science, vol.316, pp.1323-1325, 2007.

W. F. Mcdonough, Compositional model for the Earth's core. Treatise on Geochemistry, vol.2, pp.547-568, 2003.

T. Plank, Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents, J Petrol, vol.46, pp.921-944, 2005.

C. Allègre, G. Manhès, and É. Lewin, Chemical composition of the Earth and volatility control on planetary genetics, Earth Planet Sci Lett, vol.185, pp.49-69, 2001.

K. Righter, H. Yang, G. Costin, and R. T. Downs, Oxygen fugacity in the Martian mantle controlled by carbon: New constraints from the nakhlite MIL 03346, Meteorit Planet Sci, vol.43, pp.1709-1723, 2008.

M. Wadhwa, Redox conditions on small bodies, the Moon and Mars, Rev Mineral Geochem, vol.68, pp.493-510, 2008.