Topo-bathymetric airborne LiDAR for fluvial-geomorphology analysis - INSU - Institut national des sciences de l'Univers Access content directly
Book Sections Year : 2020

Topo-bathymetric airborne LiDAR for fluvial-geomorphology analysis

Dimitri Lague

Abstract

Topographic airborne lidar using a near-infrared laser cannot penetrate water. A new generation of topo-bathymetric sensors adds a green laser to measure shallow bathymetry. We synthesize previous work and present new results using these sensors in the context of fluvial geomorphology. These sensors allow synoptic continuous topography and bathymetry with a vertical accuracy better than 10 cm and a capacity to resolve details of 20–30 cm. The maximum measurable depth can vary from 1 to 6 m depending on water turbidity, bottom reflectance, and the sensor used. Based on a 55 km survey of the Ain River (France), we illustrate the level of detail recorded in raw data, the full-waveform record, and the challenges in detecting individual bathymetric points that require a refraction correction among billions of points. We show various applications, including synoptic measurement of erosion/sedimentation, back calculation of water optical properties, and large-scale, high-resolution mapping of inundation patterns.

Domains

Geomorphology
Not file

Dates and versions

insu-02550433 , version 1 (22-04-2020)

Identifiers

Cite

Dimitri Lague, Baptiste Feldmann. Topo-bathymetric airborne LiDAR for fluvial-geomorphology analysis. Paolo Tarolli, Simon M. Mudd (Eds.). Remote Sensing of Geomorphology, 23, Elsevier, pp.25-54, 2020, Developments in Earth Surface Processes, 978-0-444-64177-9. ⟨10.1016/B978-0-444-64177-9.00002-3⟩. ⟨insu-02550433⟩
133 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More