G. Burgos, J. P. Montagner, E. Beucler, Y. Capdeville, A. Mocquet et al., Oceanic 444, 2014.

, lithosphere/asthenosphere boundary from surface wave dispersion data, J. Geophys. Res. Solid Earth, vol.445, issue.119, pp.1079-1093

J. Chantel, G. Manthilake, D. Andrault, D. Novella, T. Yu et al., Experimental evidence 447 supports mantle partial melting in the asthenosphere, Sci. Adv, vol.2, 2016.

C. J. Cline, U. H. Faul, E. C. David, A. C. Berry, and I. Jackson, Redox-influenced seismic 449 properties of upper-mantle olivine, Nature, vol.555, pp.355-358, 2018.

A. P. Cocoo, G. J. Nelson, W. M. Harris, A. Hakajo, T. D. Myles et al., , p.451

W. K. , Three-dimensional microstructural imaging methods for energy materials, 2013.

, Chem. Chem. Phys, vol.15, p.16377

R. Dasgupta, A. Mallik, K. Tsuno, A. C. Withers, G. Hirth et al., Carbon-454 dioxide-rich silicate melt in the Earth's upper mantle, Nature, vol.493, pp.211-215, 2013.

U. H. Faul, J. D. Fitz-gerald, and I. Jackson, Shear wave attenuation and dispersion in melt-bearing 456, 2004.

, olivine polycrystals: 2. Microstructural interpretation and seismological implications, J. Geophys

. Res, , vol.109, p.6202

F. Gaillard, N. Sator, E. Gardés, B. Guillot, M. Massuyeau et al., The Link between the Physical and Chemical Properties of Carbon-Bearing Melts and Their 460, 2019.

, Application for Geophysical Imaging of Earth's Mantle, p.461

, Deep Carbon: Past to Present, pp.163-187

E. Gardés, F. Gaillard, and P. Tarits, Toward a unified hydrous olivine electrical conductivity law, 2014.

, Geochem. Geophys. Geosyst, vol.15, pp.4984-5000

E. Gardés, F. Gaillard, and P. Tarits, Comment to "High and highly anisotropic electrical 465 conductivity of the asthenosphere due to hydrogen diffusion in olivine, p.466, 2015.

C. J. Grose and J. Afonso, Earth Planet. Sci. Lett, vol.408, pp.296-299, 2014.

C. , Comprehensive plate models for the thermal evolution of oceanic lithosphere, 2013.

, Geophys. Geosyst, vol.14, pp.3751-3778

T. Hammouda and D. Laporte, Ultrafast mantle impregnation by carbonatite melts, Geology, vol.28, pp.470-283, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01900319

N. Hirano, E. Takahashi, J. Yamamoto, N. Abe, S. P. Ingle et al., , p.472

T. Ishii, Y. Ogawa, S. Machida, and K. Suyehiro, , 2006.

, Science, vol.313, pp.1426-1428

M. M. Hirschmann, Partial melt in the oceanic low velocity zone, Phys. Earth Planet. Inter, vol.179, pp.60-71, 2010.

G. Hirth and D. L. Kohlstedt, Experimental constraints on the dynamics of the partially molten 477 upper mantle: Deformation in the diffusion creep regime, J. Geophys. Res, vol.100, 1981.

G. Hirth and D. L. Kohlstedt, Experimental constraints on the dynamics of the partially molten 479 upper mantle 2. Deformation in the dislocation creep regime, J. Geophys. Res, vol.100, pp.15441-15449, 1995.

G. Hirth and D. L. Kohlstedt, Water in the oceanic upper mantle: Implications for rheology, melt 481 extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett, vol.144, pp.93-108, 1996.

G. Hirth and D. L. Kohlstedt, Rheology of the upper mantle and the mantle wedge: a view from the 483 experimentalists, Geophysical Monograph, vol.138, pp.83-105, 2003.

B. K. Holtzman, Questions on the existence, persistence, and mechanical effects of a very small 486 melt fraction in the asthenosphere, Geochem. Geophys. Geosyst, vol.17, pp.470-484, 2016.

S. I. Karato, J. Park, and H. Yuan, On the Origin of the Upper Mantle Seismic Discontinuities, p.488, 2019.

, Lithospheric Discontinuities, Geophysical Monograph, vol.239, pp.5-34

. Agu-&-wiley,

H. Kawakatsu, P. Kumar, Y. Takei, M. Shinohara, T. Kanazawa et al., , 2009.

, Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates, Science, vol.324, pp.499-502

D. Laporte and E. B. Watson, Experimental and theoretical constraints on melt distribution in crustal 494 sources: the effect of crystalline anisotropy on melt interconnectivity, Chem. Geol, vol.124, pp.161-184, 1995.

M. Laumonier, R. Farla, D. J. Frost, T. Katsura, K. Marquardt et al., Experimental determination of melt interconnectivity and electrical conductivity in the upper 497 mantle, Earth Planet. Sci. Lett, vol.496, pp.286-297, 2017.

L. Voyer, M. Kelley, K. A. Cottrell, E. Hauri, and E. H. , Heterogeneity in mantle carbon content 499 from CO2-undersaturated basalts, Nat. Commun, vol.8, p.14062, 2017.

S. Machida, T. Kogiso, and N. Hirano, Petit-spot as definitive evidence for partial melting in the 501 asthenosphere caused by CO2, Nat. Commun, vol.8, p.14302, 2017.

M. Massuyeau, E. Gardés, Y. Morizet, and F. Gaillard, A model for the activity of silica along the 503, 2015.

, carbonatite-kimberlite-mellilitite-basanite melt compositional joint, Chem. Geol, vol.418, pp.206-216

K. J. Miller, W. Zhu, L. G. Montési, and G. A. Gaetani, Experimental quantification of 505 permeability of partially molten mantle rock, Earth Planet. Sci. Lett, vol.388, pp.273-282, 2014.

W. Minarik and E. B. Watson, Interconnectivity of carbonate melt at low melt fraction, 1995.

, Sci. Lett, vol.133, pp.423-437

S. Mu and U. H. Faul, Grain boundary wetness of partially molten dunite, Contrib. Mineral. Petrol, vol.509, p.40, 2016.

S. Naif, K. Key, S. Constable, and R. L. Evans, Melt-rich channel observed at the lithosphere-511 asthenosphere boundary, Nature, vol.495, pp.356-359, 2013.

K. Preistley and D. Mckenzie, The relationship between shear wave velocity, temperature, p.513, 2013.

, attenuation and viscosity in the shallow part of the mantle, Earth Planet. Sci. Lett, vol.381, pp.78-91

M. Rabinowicz, Y. Ricard, and M. Grégoire, Compaction in a mantle with a very small melt 515 concentration: Implications for the generation of carbonatitic and carbonate-bearing high alkaline 516 mafic melt impregnations, Earth Planet. Sci. Lett, vol.203, pp.205-220, 2002.

A. Rohrbach and M. W. Schmidt, Redox freezing and melting in the Earth's deep mantle resulting 518 from carbon-iron redox coupling, Nature, vol.472, pp.209-212, 2011.

C. A. Rychert and P. Shearer, Imaging the lithosphere-asthenosphere boundary beneath the Pacific 520 using SS waveform modelling, J. Geophys. Res, vol.116, p.7307, 2011.

E. Sarafian, R. L. Evans, J. A. Collins, J. Elsenbeck, G. A. Gaetani et al., , p.522

D. Lizarralde, The electrical structure of the central Pacific upper mantle constrained by the 523 NoMelt experiment, Geochem. Geophys. Geosyst, vol.16, pp.1115-1132, 2015.

E. Sarafian, G. A. Gaetani, E. H. Hauri, and A. R. Sarafian, Experimental constraints on the damp 525 peridotite solidus and oceanic mantle potential temperature, Science, vol.355, pp.942-945, 2017.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., , p.527

C. Rueden, S. Saafeld, B. Schmid, J. Y. Tinevez, D. J. White et al., , p.528

P. Tomancak and A. Cardona, Fiji: an open-source platform for biological-image analysis, 2012.

, Nature Methods, vol.9, pp.676-682

N. Schmerr, The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary, 2012.

, Science, vol.335, pp.1480-1483

D. Sifré, E. Gardés, M. Massuyeau, L. Hashim, S. Hier-majumder et al., Electrical 533 conductivity during incipient melting in the oceanic low-velocity zone, Nature, vol.509, pp.81-85, 2014.

V. Stagno and D. J. Frost, Carbon speciation in the asthenosphere: Experimental measurements of 535 the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite 536 assemblages, Earth Planet. Sci. Lett, vol.300, pp.72-84, 2010.

Y. Takei and B. K. Holtzman, Viscous constitutive relations of solid-liquid composites in terms of 538 grain boundary contiguity: 1. Grain boundary diffusion control model, J. Geophys. Res, vol.114, p.6205, 2009.

Y. Takei and B. K. Holtzman, Viscous constitutive relations of solid-liquid composites in terms of 541 grain boundary contiguity: 2. Compositional model for small melt fractions, J. Geophys. Res, vol.114, p.6206, 2009.

Y. Takei, Effects of Partial Melting on Seismic Velocity and Attenuation: A New Insight from 544, 2017.

, Experiments. Annu. Rev. Earth Planet. Sci, vol.45, pp.447-70

S. M. Ten-grotenhuis, M. R. Drury, C. J. Spiers, and C. J. Peach, Melt distribution in olivine rocks 546 based on electrical conductivity measurements, J. Geophys. Res, vol.110, p.12201, 2005.

S. Tharimena, C. Rychert, N. Harmon, and P. White, Imaging Pacific lithosphere seismic 548 discontinuities-Insights from SS precursor modelling, J. Geophys. Res. Solid Earth, vol.122, pp.2131-2152, 2017.

N. Von-bargen and H. S. Waff, Permeabilities, interfacial areas and curvatures of partially molten 550 systems: Results of numerical computations of equilibrium microstructures, J. Geophys. Res. Solid 551 Earth, vol.91, pp.9261-9276, 1986.

M. E. Wallace and D. H. Green, An experimental determination of primary carbonatite magma 553 composition, Nature, vol.335, pp.343-346, 1988.

T. Yoshino, D. Yamazaki, and K. Mibe, Well-wetted olivine grain boundaries in partially molten 555 peridotite in the asthenosphere, Earth Planet. Sci. Lett, vol.283, pp.167-173, 2009.

T. Yoshino, M. Laumonier, E. Mcisaac, and T. Katsura, , p.557, 2010.

, carbonatite melt-bearing peridotites at high pressures: implications for melt distribution and melt 558 fraction in the upper mantle, Earth Planet. Sci. Lett, vol.285, pp.593-602

W. Zhu, G. A. Gaetani, F. Fusseis, L. G. Montési, and F. De-carlo, , p.560, 2011.

, Molten Rocks: Three-Dimensional Melt Distribution in Mantle Peridotite, Science, vol.332, pp.88-91