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Volcanic tremors and magma wagging: gas [Bux interactions
and forcing mechanism

David Bercovicit A. Mark Jellinek? Chloé Michaut® Diana C. Romah
and Robert Morse

SUMMARY o
\olcanic tremor is an important precursor to explosive eruptions and is ubiquitous across ngst
silicic volcanic systems. Oscillations can persist for days and occur in a remarkably narr@&
frequency band (i.e. 0.5-7 Hz). The recently proposed magma-wagging model of Jellinel=&
Bercovici provides a basic explanation for the emergence and frequency evolution of trerﬁr
that is consistent with observations of many active silicic and andesitic volcanic systems. TRis
model builds on work suggesting that the magma column rising in the volcanic conduitgsz
surrounded by a permeable vesicular annulus of sheared bubbles. The magma-wagging nieklel
stipulates that the magma column rattles within the spring like foam of the annulus, agg
predicts oscillations at the range of observed tremor frequencies for a wide variety of volcaiﬁ;

environments. However, the viscous resistance of the magma column attenuates the oscillaﬁ@s
and thus a forcing mechanism is required. Here we provide further development of the magm%—

wagging model and demonstrate that it implicitly has the requisite forcing to excite waggggh
behaviour. In particular, the extended model allows for gas ux through the annulus, whi@:
interacts with the wagging displacements and induces a Bernoulli effect that ampli es r%?
oscillations. This effect leads to an instability involving growing oscillations at the lower e _E
of the tremor frequency spectrum, and that drives the system against viscous damping o
wagging magma column. The fully non-linear model displays tremor oscillations associated
with pulses in gas ux, analogous to observations of audible ‘chugging’. These oscillatio
also occur in clusters or envelopes that are consistent with observations of sporadic tre
envelopes. The wagging model further accurately predicts that seismic signals on opp
sides of a volcano are out of phase by approximately half a wagging or tremor period. Fina
peaks in gas ux occur at the end of the growing instability several tens of seconds after th;é
largest tremors, which is consistent with observations of a 30- to 50-s lag between major tremgr
activity and maximum gas release. The extended magma-wagging model, thus, predicts trensor
frequency and its evolution before and during an eruption, as well as a driving mechanism @

keep the tremor excited for long periods.

udy

Key words: Physics of magma and magma bodies; Explosive volcanism; Magma migra§
tion and fragmentation; Eruption mechanisms and ow emplacement; Volcano monitoring®
Volcanic hazards and risks.

eruption with frequencies in the range of 0.5-2 Hz, while during
eruptions its frequency spectrum broadens to 5-7Hz (Neuberg
The appearance of low-frequency tremor prior to explosive erup- 2000; Konstantinou & Schlindwein 2003; McNutt 2005; McNutt
tions of silicic volcanoes is an important precursor for volcanolog- & Nishimura 2008; Jellinek & Bercovici 2011; Chouet & Matoza
ical hazards. Volcanic tremor typically emerges well before an 2013).

As critical as volcanic tremor is to hazard mitigation, its cause
remains enigmatic. A successful model for volcanic tremor must
explain its excitation, longevity and the evolution of its frequency

1 INTRODUCTION

1001
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spectrum up to and including an eruption. Previous models have essary to excite the wagging oscillations. In this paper we demon-
suggested that tremor can be caused by mechanical coupling ofstrate that, in fact, the same magma-wagging model implicitly has
ascending magma to the conduit walls (Denlinger & Hoblitt 1999; the requisite driving mechanism to excite the oscillations, and can
Goto 1999); unsteady stirring in a gas-rich magma (Chouet 1996; explain other longer period behaviour, such as bursts of tremor en-
Garcset al. 1998; Hellweg 2000); and the interaction of ascending velopes (Johnson & Lees 2000; McNutt & Nishimura 2008; Lees
magma with volcanic conduit constrictions (Julian 1994) and wall et al.2008; Zobin 2011). In particular, Jellinek & Bercovici (2011)
cracks (Chouet 1996; Kumagai & Chouet 1999; Retsal. 2008). focussed on an impermeable foam annulus model to predict the nat-
The evolution of the frequency spectrum might be associated with ural tremor frequency. However, the foam model does not permit
changes in gas content, bubble size distribution, bubble nucleationgas ux through the annulus and thus cannot account for forcing or
depth and the conduit height and diameter (Chateal. 1997; instabilities. A more complete permeable annulus model allows for
Gareset al. 1998; Sherburret al. 1999; Neuberg 2000; Hagerty  a driving mechanism arising from the interaction of the gas ux and
et al. 2000). Moreover, the geometry of conduit wall cracks (Hurst wagging. This interaction leads to a Bernoulli effect—wherein an
& Sherburn 1993; Neuberg 2000), and the depth of the brittle failure increase (or decrease) in gas velocity induces a decrease (increase)
zone in the magma column (Goto 1999; Neuletrgl. 2006; Tuffen in pressure—that ampli es the oscillation at moderate frequencies.
et al.2008), may change the surface signal of oscillations. However, More speci cally, while the gas spring force in the annulus acts
a limitation for these models is that the structure and constitution to restore the displaced magma column to its resting position, the
of the magma-conduit system is unlikely to be the same across pinching (or dilation) of the annulus causes an increase (or decrease)
volcanic environments or to be preserved during an eruption. In in the gas velocity that induces a pressure drop (or rise) that drives
addition to variations in volcano size, differences in conduit erosion the displacement further. The competition between the gas spring
(Bryan & Sherburn 2003; McNutt & Nishimura 2008) and magma force and the Bernoulli effect are critical components of the full
degassing (Sparks 2003) would, according to standard models, leadnagma-wagging mechanism. Therefore, we revisit and expand the
to large variations in the tremor frequency, which are not observed. development of the magma-wagging model, examine the predicted
Recently we proposed a model for tremors based on the ideasmall- and large-amplitude oscillations and show that this basic
of oscillations of the entire magma column, termed the ‘magma- model accounts for both natural tremors and a forcing mechanism
wagging’ model (Jellinek & Bercovici 2011). The model builds self-consistently.
on observations and modelling that suggest that, in silicic systems,
magma rises as a relatively stiff column surrounded by a gas-rich
annulus (Okumurat al.2006, 2008; Gonnermann & Manga2007). 2 THE CYLINDRICAL FOAM ANNULUS
In particular, shearing near the conduit causes bubbles entrained iMODEL REVISITED

the rising magma to s_tretch, coalesce and become inter-conne(:ted.l.0 identify the key physics of the wagging oscillation, Jellinek
thereby forming a vesicular, permeable and nearly shear-stress-free& Bercovici (2011) analysed the idealized case of an impermeable

jSackeli s;gg;ngiln?htgeRmagrr;?)oczlucr;nn (Eichelbeggeal. 19862;007' foam annulus composed of unconnected compressible bubbles. This
parks » U 0se » Sonnermann anga " model predicts a free-oscillation frequency, but does not account for

Ok(l;mur?et' al 2006.’ 2008:<)|. Anzl)g,eshof puT;(;%.fr\snvm effulslve gas ux through the annulus, which potentially forces the oscilla-
and explosive eruptions (Klug ashman ; Wrightal. tions. Nevertheless, here we summarize the foam annulus formula-

t2h009) delmoTstrta;e the developr;entt gf tle_llt()ngat(taq bu_ttart]ales W't_ltq'ntion to illustrate the basic concepts of the model before developing
e annulus that form a permeable tube-like matrix with porosity "\ complete model.

of 30-90 per cent. Thus gas can ascend relative to the magma We assume bubbles in the magma, and in particular foam in
column near the (_:ondun_wall _(E_lchelberger al. 1986; Spa_rks the annulus, move with the rising magma (which is reasonable for
2003)_, as evident in gas rings rising at the edges of volcanic vz_ents silicic magmas; Gonnermann & Manga 2007), and thus we af x
(Stasiuket al. 1996; Bluth & Rose 2004; Sahetapy-Engel & Harn.s the reference frame to the magma column. We assume the inner
2009). 1_'hte ddeptIH dover V;’:'Ch the plug 3nd ?anlgtlus fgeolmet_ry 'S column of magma of radiuR is cylindrically axisymmetric and
appropriate gepends on the amount and solubliity of voicanic gas initially at rest and centerd inside the cylindrical conduit of radius

(C[;)rimarily H O()g; kl\)/IUt Is tyggc(;lly of order 1 km (Collieet al. 2006; R (Fig. 1). The resting width of the gap between the conduit wall
onnermann anga ): and the inner column is = R S R (see also discussion of the

The magma-wagging model stipulates that volcanic _tren?or. 'S hon-linear Cartesian model in Section 4). We assume that lateral
a consequence of the magma column rattling or wagging inside displacement of the column is only in thez plane; thus, when

th? bub?le-n(_:th ann;JIuIs. Stp_)e(:l call_)t/_, lateral d'SplaceEF?tstﬁf the a vertical segment of the magma column at heigig displaced
coumn fromHis central resting position compress or diate the an- 4, y,q right by an amouni(z), the maximum annular gap width is

nulus, which acts as a semi-permeable springy foam that restores . |, on the left. and the minimum gap widthlisS u on the right
the magma column to its resting state. The column’s inertia causes(See Fig. 1) '

an over-shoot of this resting position, leading to a ‘wagging’ oscilla- The net pressure force of the foam annulus exerted on a vertical

SIOIT.’ wf;tg;e;mpubel |;6nl1§)a;ted o thte iog?#'ttvfﬁusm gatjse t(;,eTOdr' segment of the magma column determines the oscillation restoring
¢ etiine _I:artc_ovml_ ( th ) emopsga € d? IS Mo e_'i)lf]e Ic Z Iforce. Since the foam acts like a compressible ideal gas, the pressure
remor oscifiations In the range of observed frequencies, the Moael, . jaions depend on how the volume of a parcel of foam is squeezed

also explgins the rise in frequency, sometimes indicated by gliding by the displacement of the magma column to the right (or left), for
spectral lines (Neuberg 2000; Hotovetal. 2013), and spectrum which we must determine the location of the magma column’s

broadening in the eruptive phase, in terms of a narrowing and even'cylindrical surface. In a polar coordinate system centred on the axis

tuall fragmentatlop .Of the annulgs during magmalascent. Hiowever, of the conduit cylinder, the magma column’s cylindrical surface is
Jellinek & Bercovici (2011) also inferred that the viscous resistance given by

of the magma column to bending would attenuate the oscillations
over minutes and thus an unspeci ed driving mechanism was nec-(r cos Su) + (r sin ) = R, Q)

020z 11dy 90 UO Jasn sjaueld oliqig Aq 86Er¥9/TO0T/Z/SETAYENSHR-0]a1LIe/IB/W0d"dNod1Wapee)/:SdNy WOy PapEojUMOd
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L+u

wherer is the radial distance from the axis of the conduit to the
magma column’s vertical surface, ands the angle relative to the

line of displacement (see Fig. 1). Assuming small displacements small displacement) the stress as

suchthau R ,leadsto

r(,z2=R +u(2cos.

@

The volume of a segment of foam in the annulus froto + d
and of vertical height dlis

V = dzd

1 . .
rdr = Edzd R SR S2uR cos , 3)

while the undisturbed volume of this segmen¥is= -dzd (R S
R ); hence the volume of the segment can be written as
R SR

2R’
and we note that) L inthelimitof L R . The gas volume
V is only a portion of the segment’s volume, but it can be inferred

, WhereU =

V=V 135003 4)

by assuming that the magma volume is conserved since magma is

largely incompressible; this impliesthdS V = V SV , where
V is the unperturbed gas volume, which leads to
. u
V =V S —cos
U

®)
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where =V /V isthe unperturbed gas volume fraction. The gas
pressure is then found using the ideal gas law

(M/m)RT

P=
\%

u
CcC 1+ ¥ cos |, (6)

where we again assume in nitesimal displacements smaller than
the gap width such that  U; hereM is the mass of gas in the
segment, which is conserved, = M /( V) is the undisturbed

gas densityR is the gas constant,is temperaturen is the molar

mass of the gas an@= RT/m is the isothermal gas sound
speed (temperature is assumed to be constant since it is buffered by
the relatively high heat capacity of the magma; e.g. see Bercovici & -
Michaut 2010). The traction (force/area) of the gas pressure pushlng S
on the magma column in the direction of displacement is

SPx-A S , )
whereX andf are the unit vectors in the direction of displacement
and normal to the magma column’s surface, respectively. Integrating

:sdny wouy papeojum

this traction completely around the annulus (i.e. for0 2 ) ;%'
gives the net pressure force on a vertical segment of the magmag
column of thicknessd )
3 < R %

F =Sdz P()x-fAr ()d =Sdz C—Uu. 8) 183
(@]

o

The resistance force due to viscous bending of the columnis glven
by the difference in shear tractions between the top and bottom of as
column segment of heightzgthat is,

F=[1 R ©)

where isthe shear stress resisting the magma column bending to 5
the left or right. We neglect elastic behaviour of the column because
the Maxwell relaxation time for rhyolitic magmas with viscosities
in the range of 13-10 Pas and shear moduli in the corresponding
range of 10 —-1C Pa (Bagdassarost al. 1994) will be less than

10 -10 s, whichis shorter than the timescale of oscillations con-
sidered here; elastic effects can become signi cant at the highest
tremor frequencies but the magma will still be predominantly vis-
cous. At any given point in the column we can approximate (for

6E7Y9/T00T/2/S6TAvRNSqR-Bjone/IlBy

u

= —, 10
h— (10)
wherep is the magma’s dynamic viscosity.

Considering both gas pressure and viscous bending forces, New-&

. D
ton’s second law for the segment of the magma column requires
that =

R (o)
u_ .
Rdz—=Sdz C—u+[ ] R, 1 2
N
which, in the limit of small &, and using (10), becomes §
u_ u
— =S u+ , 12
t z t (12)
where
C 2 C
= = and =u/ 13
R U R3R) H (13)

are the natural oscillation frequency and kinematic viscosity of
magma, respectively.

The predicted angular frequency depends on various prop-
erties, the most poorly constrained of which is related to conduit
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geometry, that is, oR andR , all other factors in the relation for

in (13) being well characterized by observations or experiments.
However, since (R SR) ,the dependence on geometry
is weak. In particular, if 10 R 100mand 05 R/R <1
(andusingC= 700ms , / =100and = 2500kgm for
eruptions in which the gas is primarily water at about 1000 K, but
neglecting the effects of gravity, which are considered later in Sec-
tion 4), then the frequency of oscillations ranges from about 0.1 Hz
to 5Hz well within the range of known volcanic tremors (Jellinek
& Bercovici 2011).

However, in general these oscillations are damped by viscous

Wright et al. 2006). Gas ow in the annulus is driven both by gas
injected from below, as well as by pressure variations arising from
lateral displacement of the magma column and squeezing of the
annulus. As with the foam model above, we assume for simplicity
that variables (gas density, porosity, velocity, etc.) are independent
of radial distance from the centre of the conduit, that any variability

in azimuthal angle is only caused by the horizontal displacement
of the magma column, and that tubular bubbles in the annulus do
not ascend relative to the magma column.

resistance to bending in the magma column, and their frequency and3 1 Equations of motion for the permeable annulus

growth (or decay) rate depend on magma viscosity also. Assuming
u e , wherek is wavenumber andlthe growth rate, we arrive
at a dispersion relation:
s=S k/2+ ( k/2) S (14)
Oscillations occurik < 2 [ . Thus, as discussed in Jellinek
& Bercovici (2011), with typical silicic magma properties, the os-
cillation wavelength 2 k must exceed approximately 100 m for
the oscillation to occur. However, the fundamental wagging mode
(i.e. in which the entire magma column waves with a xed base
and a freely moving top, as illustrated in Fig. 1) corresponds to a
wavelength of approximatelyH! whereH is the magma column
height, which is typically of order 1000 m; therefore, the oscillation
should occur.

The oscillation is damped at a ratek /2, or

5x10 s

2 2H (15)

for the fundamental mode witH = 1 km. Since tremors are sus-
tained for hours or days, the oscillations would necessarily need to
be excited by some forcing mechanism to overcome this damping.
The foam model does not predict such forcing. However, as shown
below, gas ux through a permeable annulus induces a natural insta-
bility that counters viscous damping and helps excite the wagging
oscillation.

3 PERMEABLE CYLINDRICAL
ANNULUS MODEL

Gas ow through the annulus provides a driving mechanism for the
oscillations through a Bernoulli effect, which applies to both com-

3.1.1 Mass conservation

As with the foam annulus model, the motion of the magma column
squeezes or dilates the pores, which in turn affects the gas density;

however, in this case the gas can escape. We assume that the pores are

drawn out primarily into vertical tubes, thus ow is predominantly
in the vertical directiorz. Conservation of mass for gas in a segment
of the annulus from to +d ,fromztoz+ dzandr=r ( )to
r= R requires
d dz—t rar =Sd dz—Z w rdr, (16)
where is gas density, is porosity or gas volume fraction and
w is the vertical velocity of gas relative to the magma. Assuming
variables are functions afandt but uniform across, this relation
leads to

w

-+ :0’
t z

(17)
where

<~ U
= 1S ¥ cos (18)
accounts for compression/dilation of the annulus segment by motion
of the magma column (i.e. becausein the above integral limits is
bothz andt dependent).

We next use conservation of mass in the matrix surrounding
the gas (i.e. the walls of the pores or tubes) to infer how porosity

is affected by the motion of the central magma column. First,
we state that the magma column rises at a constant velocity and
that the coordinate system is xed to this magma column. We also
assume the magma matrix in the porous annulus remains xed to the

pressible and incompressible gases. In particular, while squeezingmagma column. Finally, we assume that any wedge in a vertical slice
of the annulus and increasing gas pressure imposes a restoring forc%f the porous annulus, that is, betweeand + d and between

for the column oscillations, the same constriction causes gas veloc-

z andz + dz, is uniformly squeezed (or dilated) by the horizontal

ity to increase by a nozzle effect. This increase in velocity on the 4 action of the magma column. The mass of magma in this piece
pinched side of the annulus causes a pressure drop which draws porous annulus is conserved hence

the column displacement further in the same direction. In contrast,
dilation of the annulus acts to rarify gas, thus lowering its pressure

and opposing column displacement; yet, at the same time, the drop

in gas velocity through the dilated annulus acts to increase pres-
sure, which drives column displacement. This competition between
gas compression/expansion and the Bernoulli effect during magma
column displacement determines whether oscillations are excited
or die away.

To allow for gas ux in the annulus, we revise the model so that
the annulus is an interconnected pore space with nite permeability
(again, see Fig. 1, but for the case witi = 0), caused by the
shearing of bubbles into tubes near the conduit wall (as implied
by observations and microstructural analysis of tube pumice; e.g.

18 rdr = (1S rdr, (19)
where s the porosity of the undisturbed annulus. Since we as-
sume remains uniform across even when being squeezed (or

equivalently that represents the average porosity acmsthen

.RSR ,_ .
=1S ———(1S ). 20
=&, (15 ) (20)
Againusingr = R + ucos ,thento rstorderinu
Y u - u
= 1 — = — 21
S(1S )U cos and SUcos, (21)
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which, once the gas velocity is speci ed through momentum  buoyancy. Egs (17), (21) and (25) are suf cient to solve for gas
conservation, can be substituted into (17) to infer how density  density and velocityw as functions of displacement
changes withuand .

31.2 Momentum conservation 3.2 Equation of motion for the magma column

As with the foam annulus model, Newton'’s second law on a vertical

The conservation of momentum for vertical motion of gas in the . .
segment of thicknesszaf the magma column is

pores or tubes in a segment of the annulus can be derived similarly
to the above development for the mass of gas, and leads to u . o u
RdzT:SdzC x-nrd+dzu? R,

< = r
< w rdr —S—Z (w + P)drsS Pr - 27)

where we have again assumed the gas pressute isAs with
S gS P—+cw rdr. (22) the foam model, we write = R + ucos andX-fi= cos S
z (u/ R )sin ,thusto rst order inu/R the momentum equation
The term on the left of (22) is the rate of change of gas momentum in for the column becomes
the annulus at a heiglat the rst term on the right accounts for the c u
change in momentum ux and the vertical pressure gradienthe R (R cos +ucos(2))d + IS
second term on the right (proportional to / z) is due to pressure
acting vertically on the sloping surface of the magma column; and (28)
the last term on the right combines the effects of gravity, pressure
acting on gradients in porosity and the inter-phase drag (whisre
the coef cient of drag by the pore walls on the gas; see Bercovici &
Michaut 2010). The drag force is only proportionaltdecause the
coordinate system is xed to the uniform-velocity magma reference
frame. The shear traction from the conduit wall is neglected since
it is already assumed to be effectively eliminated by the alignment
and inter-connection of high-gas-fraction pores in the annulus.
With (17), the gas momentum relation (22) leads to the standar
two-phase relation (see Bercovici & Michaut 2010): Eqgs (17), (21), (25) and (28), comprise the governing equations for
w w 5 5 _ gas density , volume fraction , velocity w and, nally, magma
—+tw— =5 C - ScwsS 0. (23) column displacement. We non-dimensionalize these equations by
selectingU for the length scalel)/ C for a timescale and as a
Because the coordinate system is xed to the magma column anddensity scale (i.e. U for mass scale). In this case we de ng (
matrix, magma velocity does not appear; however, there are still z) = U(u,z),t = U/Ct,w= Qw and = and the governing
forces exerted on the magma pore walls by pressure, drag andequations become (after dropping the primes)
gravity. Since the matrix vertical velocity is assumed constant and
uniform, the force balance on the matrix is -+ =0, (29)

u -~
— =8
t

peoe//:sdny wouy papeojumoq

where as before = p / is the magma kinematic viscosity.
If gas density and thus pressure were uniform around the annulus,
the integral term on the right-hand side of (28) would be zero,

hence there would be no restoring force on the column to sustain anc
oscillation.

0"l

d 3.3 Dimensionless governing equations

6EY79/T00T/2/S6TAYRASR-0]01e/1[B/W0oD

0=5@1Ss )07+ cawS (1S )g, (24)
w - - .
where  is magma density (same as in the magma column), the —+w— =S —S ( (S )+ ) (30)
gas and matrix pressures are assumed to be equal, and the drag of
gas on magma in the pores/tubes is equal and opposite to the drag
of magma on gas. Egs (23) and (24) can be added to obtain u
- = é
w w = - _ t
—+w— =SC—S 25
t TV z g (25)

(cos + 2 ucos(2))d + ?u (31)

where = (1§ ) + . Alternatively one can take a weighted Where

difference between (23) and (24) to eliminate the pressure gradient _

€ Sucos and = S (1S )ucos (32)
and obtain

0202 [udy 90 uo Jasn s1aue

and we introduce the dimensionless numbers
= E’ = —, = — and = L
Eq. (25) shows how gas is driven by vertical pressure gradients but ¢ @ 2R
against the weight of the entire mixture (i.e. not just the weight of Here, represents the ratio of hydrostatic and gas pressuisshe
the gas, but also the weight of matrix, which is dragging down on ratio of magma and gas densitiegxpresses the importance of vis-
the gas). Eg. (26) shows how gas is equivalently driven by buoyancy cous damping in the magma column relative to the gas spring force
(gas weight relative to matrix weight) but is retarded by drag. Both in the annulus and is a measure of the annulus thickness relative
equations are equivalent, however, one expresses pressure gradients the magma column width. In addition, we impose an injection
explicitly but the drag is in terms of matrix weight; while the other gas velocity that is dimensionalliy , which non-dimensionally we
expresses drag explicitly but pressure gradients are in terms of gagefer to as the gas injection Mach numidér= W /C.

15 ) Yiw -saw+ 13 ) S )9 (26
t z (33)
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3.4 Linear oscillations and stability In the short-wavelength limit ok we can infer two pos-
sible solutions to (39). In one case, we assume stgabws with

k and we writes = ik , that is, the perturbation is wave-like with
dimensionless speed; this leads to

Jellinek & Bercovici (2011, Supplementary Information) explored

small amplitude oscillations to the permeable annulus problem to
infer whether the fundamental tremor frequency was affected by gas
ux in the annulus. They concluded that the fundamental frequency . (+M)

was unaffected even up to large gas injection velocities. Here we 1S ( +M) sik =0 (41)
explore the full range of oscillations including one that is unstable ) . =
and associated with the Bernoulli forcing mechanism. The original For large this leadsto = i kors=Sk , and thus strong

analysis of Jellinek & Bercovici (2011) allowed for the steady-state 9@mPing from viscous bending of the magma column (over short
gas density to vary with height, but assumed that, over the domain vyavelengths),_as expected. For 0 and assuming that_ M
length, the variation is small, as argued by Bercovici & Michaut (i.e. the wave is comparable to a sound wave) we obtain

(2010). However this only leads to constant background density - 1

and velocity with a small buoyancy effect on the perturbations, and +  —+ — + (42)

little effect on the important oscillations and instabilities; thus the k

results differ little from assuming zero gravity in the rst place. Dimensionally this corresponds to a perturbation wave speed
Moreover, whether the variations in background density are smaller ¢ C ~,which represents high frequency (small wavelength)
than the perturbations themselves is arguable (Micagak 2013) disturbances propagating as sound waves in the annulus; however,
and depends on the domain height; thus it is simpler and self- these waves travel slightly faster than the normal gas sound speed,
consistent to assumg= = 0O for the linear stability analysis,  due to the higher effective compressibility imposed by the magma
which we do here. pore walls in the annulus (see Bercovici & Michaut 2010).

To linearize the equations, we assume that the gas volume fraction  |n the other case for large we assums does not increase with
or porosity is perturbed by the in nitesimal displacement of the k and this leads to

column such thati = u , where 1 (which we have in fact M
assumed intrinsically anyway by using small displacements) ands ———— | (43)
thus as M )k

- 3% )ucos and = & U cos. (34) which corresponds to a growing perturbation with a weak (or non-

existent) oscillation (assuming < 1). This case corresponds to
The gas ow and density with small perturbations to the steady state the one unstable branch of possible solutions that is associated with

are expressed as the Bernoulli driving effect and the resulting instability; indeed, the
W=M+ w cos and =1+  cos. (35) Bernoulli effect is manifes’F i_n the dependenc_e of the grovvth_ rate
on the square of the gas injection spe&dd, since the dynamic
Substituting (34) and (35) into (29)—(31), we obtairQp ) pressure from gas ow goes aw , and the magnitude of is
. W dictated byM . However, in general the maximum growth rate of
= M - ( Su)+ — " 0, (36) the instability occurs at moderate wave-numbers and has a nite

oscillation frequency (see Section 3.4.2).

—+M— w+ — =0, (37) ) . .
t z z 3.4.2 General dispersion relation

U U The general dispersion relation results from solutions to the fourth-
— =85 + , (38) order complex polynomial from (39). Typical values for dimension-

t z t less parametersarel)< M < 0.5,0.01< < 0.1 (corresponding
where =2/ ( ). Finally, stipulating thatt ,w and all go to a 10-100 m diameter magma column and a 1-m-wide annular
ase ,we arrive at the characteristic equation gap), and 5 < 50 (correspondingto i< p < 10 Pas). The

(s+ ikM) solutions for all four roots to (39) are shown in Fig. 2 for some
s+ ———— 4+ ks=0. (39) sample characteristic parameter values.

ki+ (s+ikM) As discussed in Section 3.4.1, for long wavelength& (as0) the

system has a high-frequency oscillation at a dimensionless angular
frequencyof 2/ () which corresponds to the 1 Hz tremor [see
(40) and black curves in Fig. 2] and is identical to that predicted
The characteristic eq. (39) is a fourth-order complex polynomial by the closed foam annulus model. For smaller wavelengths (higher
for the growth rates, and thus has four possible roots that are, in k) these oscillations propagate like sound waves as anticipated by
general, algebraically cumbersome. However we can extract some(42).
important asymptotic relations from (39).

In the long-wavelength limit ok 0 we obtain from (39) ] o
s=+ i , which dimensionally implies a free-oscillation frequency 3-4-3 Unstable, growing oscillations

3.4.1 Some asymptotic dispersion relations

of The dispersion curves for the linear system display two sets of
c 2 C 2 C low-frequency oscillations (Fig. 2, blue curves). One of these low-
=U°- U = W (40) frequency oscillations is unstable [i.e. has a positive growth rate, as

also predicted in the higklimitin (43)], and has a peak growth rate
which is the same as (13) for the foam-annulus model, with an ata nite wavelength, and thus a selected fastest growing mode. The
angular frequency that corresponds to the 1 Hz tremor oscillation. positive growth rate curve is a strong function of the injection Mach
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numberM , and moderately weak function of and (Fig. 3).
Indeed the instability does not occur unlegs > 0 and grows
more rapidly for faster gas injection (Fig. 4), again as predicted by
(43). An increase in magma column viscosity has little effect on
the peak growth-rate of the instability, but shifts the wavenumber
of the least stable mode to slightly smaller values (i.e. to longer
wavelengths). Widening of the annular gap increases the growth-
rate of the instability slightly and moves the least stable mode to

higher wavenumbers (shorter wavelengths). The strong dependence

ofthe instability orM indicates thatiitis driven by a Bernoulli effect
induced by ow of gas through annulus. This instability therefore
provides a driving force that keeps the magma column oscillating
despite viscous resistance of the magma itself.

3.4.4 Surface signature of linear oscillations

The solutions fou, andw in the linear system can be used to
infer a time-series for oscillations in displacement at the surface of
the magma columa= H, whereH=H /U H /L is the dimen-
sionless column height. For a given wavenunittiie displacement

at the top is given by

u(H,t) = ue , (44)

Volcanic tremors and magma wagging 1007
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wheres represents thgth root of (39). The initial conditions at
t= Oarethatar = H, perturbationsi, andw are zero but that

u/ t= v (i.e.an initial perturbing velocity). Egs (36) and (37)
can then be used to express gas density and velocity perturbatio
as functions ofi, and the four initial conditions then lead to

1s, Sk gk u =(0v,0,0), (45)

where = is S kM ; this 4 x 4 linear system can be solved
for the amplitudess from which the time-series of surface dis-
placement (44) can be inferred. As a linear mock-up of possible
oscillations, we superpose the displacements for two wavenum-
bers, namely for (a) the longest wavelength fundamental mode
k= [/ (2H) which corresponds to the slowest decay of the high-
frequency oscillations, and (b) thefor the fastest growing oscil-
lation which will dominate the system after some time. This su-
perposition captures the initial dominant high-frequency oscillation
(comparable to the 1 Hz tremor) and then the subsequent growth
of the most unstable long-period mode (Fig. 5). For modevate

the high-frequency oscillations will ring for some time (depending
on ) before exponential growth of the low-frequency oscillations
becomes signi cant; but a¢l is increased, the instability happens
faster before many of the high-frequency oscillations can occur
(Fig. 5).
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3.4.5 Magma-column response to gas- ux placement passes through zero [éH, t ) = 0]; this requires
thatU =S Reu )/ sin( t)= Im(u )/ cos( t). Pulses in gas

The linearized model can also be used to infer the response of . . - .
density or velocity are related to displacement generically as

the magma column to gas- ux during the fastest growing unstable
oscillations. Considering only the least stable mode, the surface
displacement of the magma column (44) can be expressed as

Uu(H,t)= Re e )=Usin( tSt)e , (46)

(H) = ReGu e )

GUsin( (tSt S )e ,whereG= Ge , (47)
whereu ands areu ands for the least stable mode of the unsta- where represents either perturbations in densityr velocityw at

ble oscillation (i.e. at which Reg)is a maximum) and = Re{s ) the surfaceG is the response operat@,is the response amplitude
and =S Im(s ). Moreovert is a suf ciently large time (such and is the time lag between the surface displacement and gas

that the least-stable mode is dominant) at which the surface dis- pulses. Eqs (36) and (37) with the normal mode analysis can be
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used to show that pulses in gas density and vertical velocity at the associated peak in column displacement, while the density pulses&
surface have response operators arrives a time  after the displacement peak. The dimensionless &
. time lag is a modest function of magma viscosity, but a strong =

G = (s +1k M) (48a) function of injection uxM , being large for smaM and droppin S
Tk + (s +ikM)’ | » being larg pping S

rapidly for largerM . Assuming alength scald L= R SR

- . 1 m, sound spee@= 700 m s , then the dimensional time lag
Stk (s + 'k_ M) , (48b) goes from nearly zero at larg¢ to about 3—7 min (depending on

k + (s +ik M)) ) for gas density pulses, and 25-50 s for gas velocity pulses, at

respectively, wher& is the wavenumber of the least stable mode; low M .

using (47), each response is associated with time lagaid ~ for Given the Bernoulli effect, the gas velocity pulses provide the

density and velocity pulses, respectively. main driving force for column displacement. As the velocity pulse

The time lags are perhaps most informative about the magma- propagates through one side of the annulus, itinduces a low-pressure

column response (Fig. 4). In particular, the velocity time lag is that pulls the column to the same side; but the column’s viscosity

generally negative, while that for density is positive; this means causes a delayed response and thus the displacement lags behind

a gas velocity pulse arrives at the surface a timebefore the the velocity pulse. With larger injection ux, represented My,

G =
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the forcing is stronger, hence the response more immediate and the
lag smaller. The gas density also responds to the Bernoulli effect
by becoming low where the velocity pulse propagates (given the
associated drop in pressure), and thus a positive pulse in gas density
only comes in the wake of the column’s displacement, that is, as
gas reaccumulates behind the constricted annulus; hence the density
pulse slowly lags the column’s displacement.

These time lags, however, have more to do with the timing of
bursts in tremor activity than in lags between tremor and gas pulses
(which are discussed below in Section 5.3). In particular, the unsta-
ble growth in column displacement is relatively slow with low ac-
celeration (i.e. long period and slow growth rates), and hence small
induced ground motion, unrelated to the higher-frequency tremor.
However the unstable column displacement eventually closes the
annulus at various points, which cuts off the gas ux and the driving
force for oscillations in that vertical plane (see non-linear model
results, Section 4); in this case the leading gas velocity pulse is the
last big puff of gas before closure, and the lagging density pulse is
the subsequent build up of gas that likely leads to the instability and
motion starting again in a different plane.

4 NON-LINEAR CARTESIAN MODEL
AND FINITE AMPLITUDE ANALYSIS

To examine the growth of the unstable oscillation in the permeable
annulus at nite amplitude we compose a modi ed set of equations
for numerical analysis. In particular since the oscillation is assumed
to stay in thex—z plane (in the plane of original ‘wagging’) we
use a 2-D model, which allows us to relax the small displacement
assumption required in the cylindrical model.

where now

4.1 Governing equations

= 1+ (51)

| c

The development of the 2-D model follows the same logic as the
cylindrical one, thus we develop the governing equations here only Mass conservation of the magma component of the annulus also
brie y. We consider conservation laws for material in the annulus, requires
but treat the annulus now as two separate 2-D permeable vertical
channels on either side of the magma column (Fig. 6). The magma

column haswidthR (as in the cylindrical model) and at any given

heightz, the side channels have a gap width giverLby L = u(z, ) ) ) ) ) )
t), whereL = R $ R is the static gap widthyu is again the where isthe undisturbed porosity and is again magma density;

displacement of the column, positive if to the right (in the positive this eventually yields

(1S Hdx= (1S )dx, (52)

x direction). The subscript= 1 indicates the left channel and 2 full

is for the right channel; thus if > O the left channel is wider at =T ol andthus = =+ u/L. (53)
that height (i.e. with width_ + u), and the right one equivalently B

narrower (see Fig. 6). Although the expressions for and are similar to those for

the linearized cylindrical model, they are not restricted to small
displacements of the magma column.
4.1.1 Mass conservation in the permeable side channels

Conservation of mass in a given channel segment betwesrd

z + dz and between the magma column’s vertical surface at L .
x= R § L and the conduit wall at= R requires 4.1.2 Momentum conservation in the side channels

Momentum conservation for the permeable mixture in the side chan-
dz— dx=8 dz—Z w dx, (49) nels is developed identically to that for the annulus in the cylindrical

t model, and leads to

where , andw are as previously de ned but for the left£ 1) W W
and right ( = 2) channels. Assuming variables are uniform across —+w— =SC—S g, (54)
X, this relation leads to t z z
w where we have assumed, as with the cylindrical model, that there is

t + 7 =0, (50) no vertical variation in the matrix velocity.
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4.1.3 Momentum conservation of the magma column discontinuity or a shock. The steady-state versions of (56) and (57)
, . L . foru= 0 are the same in both annular channels, and they combine
Newton’s Second Law for the magma columnin 2-D is similar again to vield
to the cylindrical model but leads to a slightly simpler version y 3
. + (1S 0)

u - C = u —=S —— (61)
— =S S )+ 55

n > R ( ) _— (55) z 1S M/

. . . where we have used the boundary condition thatl andw = M
because the magma column in 2-D is a rectangle of wiith Zhe atz= 0, and thus, because of (56) in steady state,what M /

second term on the right-hand side of (55) represents the pressure . : . .
difference between the right and left gaps at a given height According to (61), the density gradient becomes singular at

M, which is the choking point or shock (see Vergniolle &

Jaupart 1986; Kozono & Koyaguchi 2009a,b; Bercovici & Michaut
4.1.4 Dimensionless governing equations 2010). Atthe choking point, the gas speediis M/ =1 5
. ) ) - o this is dimensionally&/ , which is slightly in excess of the gas 2
We n_on-dlmerlsm_nallze Iength y= R S R (W_h'(_:h is similar to sound speed, given the extra compressibility imposed by the matrix =
that in the cylindrical model sincg L in the limit of small gap 156 4150 (42)]. The general solution to (61) is given by the implicit S
width; see Section 2), time by/ C, and density by the gas density solution 3
at the point of injection . In this case, the dimensionless version =
of the governing equations, (50), (54) and (55), are M + (18 ) 3
2( )= . log - -
W @as ) + (@1s ) =
—* = 0, (56) @
. (1S Has ) @as )y — >
S +1 < 62 S
9 THas ) © 8
Miw™ o255 ( o+ s ) (57) 3
t z z ' The height of the choking point occursidt = z(M ), and we &
de ne this singularity as the upper limit of our domain. 5
(@]

u_ < = u

—S=5( 8 )+ . (58) 3
t z t . . Q.
4.3 Numerical experiments 5
where =
(@]
+ . =)
_ 1+_ u and - sy (59) 4.3.1 Solution method ;—
=u _ o _ ) The coupled non-linear equations for motion in the annular channels 2
and we are left with a similar set of dimensionless parameters and magma column (56)—(58) are solved numerically using nite &
gL L differences in which the gas velocities in the annular charwmedse s
=c T T a and = 5R (60) on a staggered grid relative to densitiesnd column displacement g
) o ) . ] ) u. Advection terms are treated with upwind differencing (which is =5
As in the cylindrical model, we impose an input velodity;, which second-order accurate on the staggered grid), while divergence and2

non-dimensionally is the gas injection Mach number= W /C.

As noted above, one minor difference between the Cartesian and
cylindrical models is that length is non-dimensionalizedLbin-
stead ofU [see (33)]. However, given the de nition & from (4),

U= L@+ ), using the current de nition of above; since we
expect 1,thenU L. Therefore,, and are approximately

the same as in the cylindrical model.

diffusion are treated with centred difference (i.e. again second-order
accurate). Time integration uses a semi-implicit Crank—Nicolson
scheme and a Courant-Friedrichs-Lewy (CFL) time step conditio
based on the gas velocity (Roache 1976). The magma column
momentum eq. (58) is separated into two rst-order differential
equations in time by introducing the lateral magma column velocity

6EVY9/

v and the equatior- = v.
The bottom boundary conditions ate= v = 0, = 1 and
4.1.5 Note on Cartesian linear analysis w = M atz= 0. The top of the domain @& = H is open and

arbitrary since it must be located below the choking point such thus
The linear wave and Stablllty analySiS of the Cartesian model can H< H (See Section 42) Str|ct|y Speaking 0n|y (58) requires a
be done similarly to the cylindrical model by assuming a small second boundary condition at= H, since it is a forced diffusion
displacemenu = u and expanding other dependent variables equation forv; and for this we choose- = 0 atz = H assuming
similarly to (34) and (35)—except instead of coslependence  there are no stresses or forces driving the columa foH. Because
there are relations for the right and left channels. The nal resulting y is on the staggered grid, its last value iszat H + 2/2,
characteristic relation for the growth rageés identical to (39) and where zis the gnd Spacing; solution of (57) at this point thus
hence the linear analySiS is identical to that presented in Section 3.4.requires an estimate of the gas densitﬁt the super-domain point
z= H+ z Because the super-domain-point point approaches the
choking point and a density discontinuity, simple extrapolations of
density to this level (either linear, quadratic or even cubic) are too
Non-linear solutions for the steady-state ‘non-wagging’ case pro- imprecise and introduce errors and numerical instabilities. Hence
vide both an important bench-mark for the full non-linear solutions, the density is assumed to obey (61) at the super-domain point;
and also dictate the domain of non-linear calculations. In particular, that is, this equation is used to extrapolate density that is at least
these solutions are singular at a nite heightvhich is the choking consistent with the known steady-state analytic solution.
level for an expanding gas, that is, the point at which the gas ve- At time t = 0 the gas velocity and density are initiated with
locity reaches the effective sound speed and the density develops @he non-linear analytic solutions for= 0, but the magma lateral
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velocity is perturbed with the fundamental mode or quarter-wave 4.3.2 Results

v = sin( z/(2H)) (i.e. with a wavelength of ¥) where 1
(typically we set = 10 ).

The numerical solutions are bench-marked against the linear sta-

bility in the limit 0, as well as the non-linear steady-state

solution (62); solutions are found to be accurate for at least 50

gridpoints, although the nal solutions never involve less than 100
points. Given the semi-implicit time integration, the maximum al-
lowable time step obeys the CFL condition, but this is further re-
duced by a factor that is typically 10-1G to ensure convergence
of solutions.
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We explore numerical solutions with the same approach for the
linear cases, that is, to determine the forcing and growth of the
‘wagging’ instability for various parameter choices. In particular,
we examine the sensitivity of solutions to different injection ve-
locities or Mach number , each for different gap aspect ratios

= L/ (2R ) and magma dimensionless viscosities  /(CL).
Parameter values are displayed in Table 1.

The numerical solutions qualitatively match the linear stabil-
ity results even for = 0. The magma column initially oscillates
with small amplitude oscillation with a dimensionless frequency
of approximately 10 , which dimensionally is near the 1 Hz os-
cillation (given that we usd. = 1S10m andC= 700ms ).
Depending on the parameter choice this oscillation damps either
slowly or moderately fast (though rarely entirely) and gives way
to an oscillation with a lower frequency of around iQ(i.e. a
few tenths of a Hz) and a growth rate of comparable value (see
Figs 7 and 8, each of which provide a URL link to movies that
better display the time-dependent behaviour; other sample gures
are shown in the Appendix). The non-linear cases also verify
the time lag between the unstable, long-period gas ux and dis-
placement oscillations, which is most pronounced for cases with
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low gas injection rateM , as predicted in the linear analysis (see 3-D motion is suppressed, but if allowed it could possibly ease S
Section 3.4.5). exponential growth with another degree of freedom. 2
The numerical cases show the initial high-frequency wagging t)
oscillation [best seen in the time-series \gH) and the on-line 2

movies] followed by the unstable low-frequency oscillation, which 5 DISCUSSION AND INTERPRETATION

grows in amplitude until the maximum allowed displacement of ) . ) ) .
u=  (atwhich point the annulus or channel gas volume fraction |"€ Magma-wagging model with degassing-tremor interaction
drops to zero) is reached. At the maximum displacement the annulusProvides several testable predictions beyond the basic tremor fr he
is effectively closed at various vertical levels and the gas ux is shut 94€NcY itself. The wagging characteristics, non-linear and unstable 3
off. Although the model does not track the evolution of the system "€SPONse and the correspondence with degassing ux lead to added-
beyond this point, there are two likely scenarios that follow. One features in the oscillatory behaviour that are possibly evident in
possibility is that the closed annulus is reconstructed by continued S€ISMIC, acoustic and gas-emission measurements.

ascent of the magma column, at which point the oscillation cycle

star_ts again. Alternativ_ely,_since_the non-Iinea_r mod_el is only in_one 5.1 Spatio-temporal wagging correlation

vertical plane, the oscillation might proceed in a different vertical

plane that does not have a pinched annulus. This latter scenariol he basic magma-wagging model proposed by Jellinek & Bercovici
would best be modelled by fully 3-D motion of the magma column (2011) not only predicts the typical 1 Hz (i.e. 0.5-7 Hz) tremor os-
that would allow effective nutation, wobble and helical motion in cillation, but the implicit wagging motion suggests that ground
the wagging oscillation, although this is beyond the scope of this motion surrounding a volcano should be spatially and temporally
study. Nevertheless, these results suggest that after the growth otorrelated. That is, magma column displacement to one side will
the lower-frequency oscillation, the cycle would likely begin again induce initial compressive ground motion in that direction, and ten-
either with a rebuilt annulus or (perhaps more likely) in a different sile motion on the opposite side; a half an oscillation period later the
vertical plan (or with 3-D motion). sign of ground motion on either side will reverse. Thus the ground

However, it should be noted that because of various simplifying motion on opposite sides of a magma-wagging volcanic system
assumptions, the non-linear model may not mitigate or saturate should be well correlated after adjusting for a time lag compara-
the nearly exponential growth of the low-frequency oscillation, as ble to half the wagging or tremor period. Indeed, analysis of data
is usually expected of non-linear systems. As mentioned above, from seismometers on nearly opposite sides of Redoubt Volcano
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prior to its 2009 March eruption displays the predicted behaviour; One mode is associated with the high-frequency 1 Hz oscillation
that is, the cross-correlation of signals from the seismometers isthat is slowly decaying, with the slowest decay occurring for the
maximized for a time lag of approximately half the dominant oscil- fundamental wavenumbér = / (2H), whereH is the column
lation period (Fig. 9). This time lag might be in uenced by shallow height. The other mode is of lower frequency (of order 0.1 Hz) but
seismic velocity heterogeneity around the volcanic edi ce, as well is unstable and has a maximum positive growth rate at a diven
as imprecise knowledge of the location of the magma column; thus (which depends on system properties). The superposition of these
more extensive analysis is clearly warranted. Nevertheless, this caséwo modes leads to a high-frequency oscillation riding atop a long-
gives an intriguing example of an important rst-order prediction period, growing oscillation (Fig. 5).

of magma-wagging, that is, spatio-temporal correlation of tremor  The full model system, however, is fourth-order non-linear, with
signals around volcanoes. third- and second-order non-linearities also present; see (56)—(58)
where (57) has the highest order non-linearity. Non-linear interac-
tions between oscillations of a given frequency lead to cascading
of energy to higher harmonics (e.g. Fig. 10, bottom), and given
the presence of both odd and even non-linearities, all harmonics
The linear analysis of the extended magma-wagging model (in- (both even and odd) are excited. The addition of harmonic and
cluding annular gas ux) predicts essentially two oscillatory modes other modes leads to beating envelopes of high-frequency oscilla-
(each has an upward and downward propagating component, thudions (e.g. see surface displacement oscillations in Figs 7 and 8,
there are really four modes for any given wavelength; see Fig. 2). and A1-A6, frame d). An illustrative example, selected to allow

5.2 Sporadic tremor envelopes
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more envelope development, shows a power-spectrum with emerg- The non-linear magma-wagging results afford the best exam-
ing secondary frequencies only tens of per cent different from the ples of both short- and long-period responses, as seen at the sur
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@]
peak frequency (Fig. 10); the superposition of these close frequen-face (Fig. 13). First, during peak higher-frequency wagging activ- :.:;
ciesinduces the envelope structure (i.e. the envelope frequency itselfity (analogous to tremor), the oscillations in column displacement aQ
is proportional to the difference in frequencies between the super- are synchronous with density oscillations, since they provide the g
posed oscillations). With the growing low-frequency mode, only a restoring force for the column wagging; for example, column dis- 2
few envelopes appear before the displacement grows and reacheplacement and squeezing of the annulus causes gas compressio@
its maximum value (i.eu L), at which point the oscillations  and increased pressure, which drives the column back in the op- &
stop until they can potentially restart (see discussion at the end of posite direction. Thus tremor associated with acceleration of th 2

Section 4.3.2). column will be synchronous with pulses of gas density arriving at
This nonlinear behaviour leads to sporadic bursts of tremors, in the surface (see Fig. 13, comparing surface gas density to colum
which oscillation envelopes go unstable and cease for nite intervals displacement).
of time (until, in principle, the annulus is rebuilt and the wagging Long-period signals, however, would show a different behaviour.
oscillations start again). These sporadic envelopes are potentiallyThe biggest pulse in gas ux would be associated with the large
seen in tremor data measured in both seismic and acoustic datancrease in gas velocity at the end of the long-period growing os-
(Figs 9 and 11). In particular, many time-series display sequencescillation. This pulse arrives after the largest tremor amplitudes (i.e.
of growing envelopes or bursts of tremor that cease for intervals higher-frequency wagging oscillations) have occurred and begun to
of no less than tens of seconds (see also Chouet & Matoza 2013 taper off (see Fig. 13, comparing surface gas velocity to either den-
g. 33); this minimum interval time is indeed comparable to the sity or column displacement). The time lag between the gas pulse
growth time for unstable low-frequency modes, which would be the and the peak tremor activity is of order of the instability growth rate,
minimum time between bursts predicted by the model. dimensionally of order tens of seconds up to a minute. This lag is
comparable to the lag observed in long-period eld measurements
(Fig. 12).
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5.3 Gas Bux and tremor correlation

The magma-wagging model with gas- ux forcing predicts various
correlations between tremor and pulses in gas ux. Observations
show that short-period pulses in gas ux are nearly synchronous
with tremors as audible ‘chugging’ (Benoit & McNutt 1997; John-  Finally, although the proposed driving mechanism for the wagging
son & Lees 2000). Longer-period signals of average tremor ampli- system is associated with gas ux and a Bernoulli effect in the
tude and gas ux (Fig. 12) appear to show a signi cant lag between permeable annulus, it does not necessarily mean that active erup-
gas pulses and tremor, wherein large pulses in ux follow tremor tions and magma motion are needed to drive the oscillations. Pro-
activity by nearly a minute (Nadeaat al. 2011). vided there is some permeable pathway associated with the annulus,

5.4 Gas Rux forcing without magma extrusion
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gas ux from a deeper source could continue to drive the oscillation the foamy magma to compact, then gas being squeezed out of the
with or without magma ascent. Indeed, the typically lower gas ve- annulus could also drive the oscillation, although this would be a
locities during stagnant-magma degassing would allow for longer transient effect (and possibly fairly brief, since the timescale for
periods of free tremor oscillations before the instability occurs. If collapse is of order /(gH ) whereH is the initial column height

the cessation in magma ascent causes the annulus to collapse anof order 1 km).
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