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S U M M A R Y
Volcanic tremor is an important precursor to explosive eruptions and is ubiquitous across most
silicic volcanic systems. Oscillations can persist for days and occur in a remarkably narrow
frequency band (i.e. 0.5–7 Hz). The recently proposed magma-wagging model of Jellinek &
Bercovici provides a basic explanation for the emergence and frequency evolution of tremor
that is consistent with observations of many active silicic and andesitic volcanic systems. This
model builds on work suggesting that the magma column rising in the volcanic conduit is
surrounded by a permeable vesicular annulus of sheared bubbles. The magma-wagging model
stipulates that the magma column rattles within the spring like foam of the annulus, and
predicts oscillations at the range of observed tremor frequencies for a wide variety of volcanic
environments. However, the viscous resistance of the magma column attenuates the oscillations
and thus a forcing mechanism is required. Here we provide further development of the magma-
wagging model and demonstrate that it implicitly has the requisite forcing to excite wagging
behaviour. In particular, the extended model allows for gas flux through the annulus, which
interacts with the wagging displacements and induces a Bernoulli effect that amplifies the
oscillations. This effect leads to an instability involving growing oscillations at the lower end
of the tremor frequency spectrum, and that drives the system against viscous damping of the
wagging magma column. The fully non-linear model displays tremor oscillations associated
with pulses in gas flux, analogous to observations of audible ‘chugging’. These oscillations
also occur in clusters or envelopes that are consistent with observations of sporadic tremor
envelopes. The wagging model further accurately predicts that seismic signals on opposite
sides of a volcano are out of phase by approximately half a wagging or tremor period. Finally,
peaks in gas flux occur at the end of the growing instability several tens of seconds after the
largest tremors, which is consistent with observations of a 30- to 50-s lag between major tremor
activity and maximum gas release. The extended magma-wagging model, thus, predicts tremor
frequency and its evolution before and during an eruption, as well as a driving mechanism to
keep the tremor excited for long periods.

Key words: Physics of magma and magma bodies; Explosive volcanism; Magma migra-
tion and fragmentation; Eruption mechanisms and flow emplacement; Volcano monitoring;
Volcanic hazards and risks.

1 I N T RO D U C T I O N

The appearance of low-frequency tremor prior to explosive erup-
tions of silicic volcanoes is an important precursor for volcanolog-
ical hazards. Volcanic tremor typically emerges well before an

∗ Now at: 23 Macdonnell Road, Apartment 202, Midlevels, Hong Kong SAR.

eruption with frequencies in the range of 0.5–2 Hz, while during
eruptions its frequency spectrum broadens to 5–7 Hz (Neuberg
2000; Konstantinou & Schlindwein 2003; McNutt 2005; McNutt
& Nishimura 2008; Jellinek & Bercovici 2011; Chouet & Matoza
2013).

As critical as volcanic tremor is to hazard mitigation, its cause
remains enigmatic. A successful model for volcanic tremor must
explain its excitation, longevity and the evolution of its frequency
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spectrum up to and including an eruption. Previous models have
suggested that tremor can be caused by mechanical coupling of
ascending magma to the conduit walls (Denlinger & Hoblitt 1999;
Goto 1999); unsteady stirring in a gas-rich magma (Chouet 1996;
Garcés et al. 1998; Hellweg 2000); and the interaction of ascending
magma with volcanic conduit constrictions (Julian 1994) and wall
cracks (Chouet 1996; Kumagai & Chouet 1999; Rust et al. 2008).
The evolution of the frequency spectrum might be associated with
changes in gas content, bubble size distribution, bubble nucleation
depth and the conduit height and diameter (Chouet et al. 1997;
Garcés et al. 1998; Sherburn et al. 1999; Neuberg 2000; Hagerty
et al. 2000). Moreover, the geometry of conduit wall cracks (Hurst
& Sherburn 1993; Neuberg 2000), and the depth of the brittle failure
zone in the magma column (Goto 1999; Neuberg et al. 2006; Tuffen
et al. 2008), may change the surface signal of oscillations. However,
a limitation for these models is that the structure and constitution
of the magma-conduit system is unlikely to be the same across
volcanic environments or to be preserved during an eruption. In
addition to variations in volcano size, differences in conduit erosion
(Bryan & Sherburn 2003; McNutt & Nishimura 2008) and magma
degassing (Sparks 2003) would, according to standard models, lead
to large variations in the tremor frequency, which are not observed.

Recently we proposed a model for tremors based on the idea
of oscillations of the entire magma column, termed the ‘magma-
wagging’ model (Jellinek & Bercovici 2011). The model builds
on observations and modelling that suggest that, in silicic systems,
magma rises as a relatively stiff column surrounded by a gas-rich
annulus (Okumura et al. 2006, 2008; Gonnermann & Manga 2007).
In particular, shearing near the conduit causes bubbles entrained in
the rising magma to stretch, coalesce and become inter-connected,
thereby forming a vesicular, permeable and nearly shear-stress-free
jacket surrounding the magma column (Eichelberger et al. 1986;
Sparks 2003; Bluth & Rose 2004; Gonnermann & Manga 2007;
Okumura et al. 2006, 2008). Analyses of pumice from effusive
and explosive eruptions (Klug & Cashman 1996; Wright et al.
2009) demonstrate the development of elongated bubbles within
the annulus that form a permeable tube-like matrix with porosity
φo of 30–90 per cent. Thus gas can ascend relative to the magma
column near the conduit wall (Eichelberger et al. 1986; Sparks
2003), as evident in gas rings rising at the edges of volcanic vents
(Stasiuk et al. 1996; Bluth & Rose 2004; Sahetapy-Engel & Harris
2009). The depth H0 over which the plug and annulus geometry is
appropriate depends on the amount and solubility of volcanic gas
(primarily H2O), but is typically of order 1 km (Collier et al. 2006;
Gonnermann & Manga 2007).

The magma-wagging model stipulates that volcanic tremor is
a consequence of the magma column rattling or wagging inside
the bubble-rich annulus. Specifically, lateral displacements of the
column from its central resting position compress or dilate the an-
nulus, which acts as a semi-permeable springy foam that restores
the magma column to its resting state. The column’s inertia causes
an over-shoot of this resting position, leading to a ‘wagging’ oscilla-
tion, whose impulse is imparted to the conduit walls to cause tremor.
Jellinek & Bercovici (2011) demonstrated that this model predicted
tremor oscillations in the range of observed frequencies; the model
also explains the rise in frequency, sometimes indicated by gliding
spectral lines (Neuberg 2000; Hotovec et al. 2013), and spectrum
broadening in the eruptive phase, in terms of a narrowing and even-
tual fragmentation of the annulus during magma ascent. However,
Jellinek & Bercovici (2011) also inferred that the viscous resistance
of the magma column to bending would attenuate the oscillations
over minutes and thus an unspecified driving mechanism was nec-

essary to excite the wagging oscillations. In this paper we demon-
strate that, in fact, the same magma-wagging model implicitly has
the requisite driving mechanism to excite the oscillations, and can
explain other longer period behaviour, such as bursts of tremor en-
velopes (Johnson & Lees 2000; McNutt & Nishimura 2008; Lees
et al. 2008; Zobin 2011). In particular, Jellinek & Bercovici (2011)
focussed on an impermeable foam annulus model to predict the nat-
ural tremor frequency. However, the foam model does not permit
gas flux through the annulus and thus cannot account for forcing or
instabilities. A more complete permeable annulus model allows for
a driving mechanism arising from the interaction of the gas flux and
wagging. This interaction leads to a Bernoulli effect—wherein an
increase (or decrease) in gas velocity induces a decrease (increase)
in pressure—that amplifies the oscillation at moderate frequencies.
More specifically, while the gas spring force in the annulus acts
to restore the displaced magma column to its resting position, the
pinching (or dilation) of the annulus causes an increase (or decrease)
in the gas velocity that induces a pressure drop (or rise) that drives
the displacement further. The competition between the gas spring
force and the Bernoulli effect are critical components of the full
magma-wagging mechanism. Therefore, we revisit and expand the
development of the magma-wagging model, examine the predicted
small- and large-amplitude oscillations and show that this basic
model accounts for both natural tremors and a forcing mechanism
self-consistently.

2 T H E C Y L I N D R I C A L F OA M A N N U LU S
M O D E L R E V I S I T E D

To identify the key physics of the wagging oscillation, Jellinek
& Bercovici (2011) analysed the idealized case of an impermeable
foam annulus composed of unconnected compressible bubbles. This
model predicts a free-oscillation frequency, but does not account for
gas flux through the annulus, which potentially forces the oscilla-
tions. Nevertheless, here we summarize the foam annulus formula-
tion to illustrate the basic concepts of the model before developing
the more complete model.

We assume bubbles in the magma, and in particular foam in
the annulus, move with the rising magma (which is reasonable for
silicic magmas; Gonnermann & Manga 2007), and thus we affix
the reference frame to the magma column. We assume the inner
column of magma of radius Rm is cylindrically axisymmetric and
initially at rest and centerd inside the cylindrical conduit of radius
Rc (Fig. 1). The resting width of the gap between the conduit wall
and the inner column is L = Rc − Rm (see also discussion of the
non-linear Cartesian model in Section 4). We assume that lateral
displacement of the column is only in the x–z plane; thus, when
a vertical segment of the magma column at height z is displaced
to the right by an amount u(z), the maximum annular gap width is
L + u on the left, and the minimum gap width is L − u on the right
(see Fig. 1).

The net pressure force of the foam annulus exerted on a vertical
segment of the magma column determines the oscillation restoring
force. Since the foam acts like a compressible ideal gas, the pressure
variations depend on how the volume of a parcel of foam is squeezed
by the displacement of the magma column to the right (or left), for
which we must determine the location of the magma column’s
cylindrical surface. In a polar coordinate system centred on the axis
of the conduit cylinder, the magma column’s cylindrical surface is
given by

(rm cos θ − u)2 + (rm sin θ )2 = R2
m, (1)
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Figure 1. Sketch of the cylindrical annulus for the magma-wagging volcanic
tremor model. The column is assumed to have a free surface at the top and
is coupled viscously to the magma system below. The simpler impermeable
foam annulus model (Section 2) has zero gas flux through the annulus, thus
the input gas speed W0 = 0 and the indicated vertical flow is neglected.
The permeable annulus model (Section 3) accounts for gas flux wherein
W0 �= 0 and the pinching or dilation of the annulus by bending of the
magma column causes either faster or slower flow, respectively, as indicated.
Variables displayed in the diagram are discussed in the accompanying text.

where rm is the radial distance from the axis of the conduit to the
magma column’s vertical surface, and θ is the angle relative to the
line of displacement (see Fig. 1). Assuming small displacements
such that u � Rm, leads to

rm(θ, z) = Rm + u(z) cos θ. (2)

The volume of a segment of foam in the annulus from θ to θ + dθ

and of vertical height dz is

V = dzdθ

∫ Rc

rm

rdr = 1

2
dzdθ

(
R2

c − R2
m − 2u Rm cos θ

)
, (3)

while the undisturbed volume of this segment is V0 = 1
2 dzdθ (R2

c −
R2

m); hence the volume of the segment can be written as

V = V0

(
1 − u

U
cos θ

)
, where U = R2

c − R2
m

2Rm
, (4)

and we note that U ≈ L in the limit of L � Rm. The gas volume
Vg is only a portion of the segment’s volume, but it can be inferred
by assuming that the magma volume is conserved since magma is
largely incompressible; this implies that V − Vg = V0 − Vg0, where
Vg0 is the unperturbed gas volume, which leads to

Vg = V0

(
φ0 − u

U
cos θ

)
, (5)

where φ0 = Vg0/V0 is the unperturbed gas volume fraction. The gas
pressure is then found using the ideal gas law

P = (M0/mg)RT

Vg
≈ ρ0C2

(
1 + u

φ0U
cos θ

)
, (6)

where we again assume infinitesimal displacements smaller than
the gap width such that u � U; here M0 is the mass of gas in the
segment, which is conserved, ρ0 = M0/(φ0V0) is the undisturbed
gas density, R is the gas constant, T is temperature, mg is the molar
mass of the gas and C = √RT/mg is the isothermal gas sound
speed (temperature is assumed to be constant since it is buffered by
the relatively high heat capacity of the magma; e.g. see Bercovici &
Michaut 2010). The traction (force/area) of the gas pressure pushing
on the magma column in the direction of displacement is

− P x̂ · n̂ ≈ −P

(
cos θ − u

Rm
sin2 θ

)
, (7)

where x̂ and n̂ are the unit vectors in the direction of displacement
and normal to the magma column’s surface, respectively. Integrating
this traction completely around the annulus (i.e. for 0 ≤ θ ≤ 2π )
gives the net pressure force on a vertical segment of the magma
column of thickness dz:

Fp = −dz

∫ 2π

0
P(θ )x̂ · n̂rm(θ )dθ = −dzρ0C2 π Rm

φ0U
u. (8)

The resistance force due to viscous bending of the column is given
by the difference in shear tractions between the top and bottom of a
column segment of height dz, that is,

Fb = [τxz]
z+dz
z π R2

m, (9)

where τ xz is the shear stress resisting the magma column bending to
the left or right. We neglect elastic behaviour of the column because
the Maxwell relaxation time for rhyolitic magmas with viscosities
in the range of 105–109 Pa s and shear moduli in the corresponding
range of 1010–1011 Pa (Bagdassarov et al. 1994) will be less than
10−1–10−2 s, which is shorter than the timescale of oscillations con-
sidered here; elastic effects can become significant at the highest
tremor frequencies but the magma will still be predominantly vis-
cous. At any given point in the column we can approximate (for
small displacement) the stress as

τxz = μm
∂2u

∂z∂t
, (10)

where μm is the magma’s dynamic viscosity.
Considering both gas pressure and viscous bending forces, New-

ton’s second law for the segment of the magma column requires
that

ρmπ R2
mdz

∂2u

∂t2
= −dzρ0C2 π Rm

φ0U
u + [τxz]

z+dz
z π R2

m, (11)

which, in the limit of small dz, and using (10), becomes

∂2u

∂t2
= −ω2

0u + νm
∂3u

∂z2∂t
, (12)

where

ω2
0 = ρ0C2

φ0ρm RmU
= 2ρ0C2

φ0ρm(R2
c − R2

m)
and νm = μm/ρm (13)

are the natural oscillation frequency and kinematic viscosity of
magma, respectively.

The predicted angular frequency ω0 depends on various prop-
erties, the most poorly constrained of which is related to conduit
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geometry, that is, on Rc and Rm, all other factors in the relation for
ω0 in (13) being well characterized by observations or experiments.
However, since ω0 ∼ (R2

c − R2
m)−1/2, the dependence on geometry

is weak. In particular, if 10 ≤ Rc ≤ 100 m and 0.5 ≤ Rm/Rc < 1
(and using C = 700 m s−1, ρm/ρ0 = 100 and ρm = 2500 kg m−3 for
eruptions in which the gas is primarily water at about 1000 K, but
neglecting the effects of gravity, which are considered later in Sec-
tion 4), then the frequency of oscillations ranges from about 0.1 Hz
to 5 Hz well within the range of known volcanic tremors (Jellinek
& Bercovici 2011).

However, in general these oscillations are damped by viscous
resistance to bending in the magma column, and their frequency and
growth (or decay) rate depend on magma viscosity also. Assuming
u ∼ eikz + st, where k is wavenumber and s the growth rate, we arrive
at a dispersion relation:

s = −νmk2/2 ±
√

(νmk2/2)2 − ω2
0. (14)

Oscillations occur if k <
√

2ω0/νm. Thus, as discussed in Jellinek
& Bercovici (2011), with typical silicic magma properties, the os-
cillation wavelength 2π/k must exceed approximately 100 m for
the oscillation to occur. However, the fundamental wagging mode
(i.e. in which the entire magma column waves with a fixed base
and a freely moving top, as illustrated in Fig. 1) corresponds to a
wavelength of approximately 4H0 where H0 is the magma column
height, which is typically of order 1000 m; therefore, the oscillation
should occur.

The oscillation is damped at a rate νmk2/2, or

νm

2

(
π

2H0

)2

≈ 5 × 10−3 s−1 (15)

for the fundamental mode with H0 = 1 km. Since tremors are sus-
tained for hours or days, the oscillations would necessarily need to
be excited by some forcing mechanism to overcome this damping.
The foam model does not predict such forcing. However, as shown
below, gas flux through a permeable annulus induces a natural insta-
bility that counters viscous damping and helps excite the wagging
oscillation.

3 P E R M E A B L E C Y L I N D R I C A L
A N N U LU S M O D E L

Gas flow through the annulus provides a driving mechanism for the
oscillations through a Bernoulli effect, which applies to both com-
pressible and incompressible gases. In particular, while squeezing
of the annulus and increasing gas pressure imposes a restoring force
for the column oscillations, the same constriction causes gas veloc-
ity to increase by a nozzle effect. This increase in velocity on the
pinched side of the annulus causes a pressure drop which draws
the column displacement further in the same direction. In contrast,
dilation of the annulus acts to rarify gas, thus lowering its pressure
and opposing column displacement; yet, at the same time, the drop
in gas velocity through the dilated annulus acts to increase pres-
sure, which drives column displacement. This competition between
gas compression/expansion and the Bernoulli effect during magma
column displacement determines whether oscillations are excited
or die away.

To allow for gas flux in the annulus, we revise the model so that
the annulus is an interconnected pore space with finite permeability
(again, see Fig. 1, but for the case with W0 �= 0), caused by the
shearing of bubbles into tubes near the conduit wall (as implied
by observations and microstructural analysis of tube pumice; e.g.

Wright et al. 2006). Gas flow in the annulus is driven both by gas
injected from below, as well as by pressure variations arising from
lateral displacement of the magma column and squeezing of the
annulus. As with the foam model above, we assume for simplicity
that variables (gas density, porosity, velocity, etc.) are independent
of radial distance r from the centre of the conduit, that any variability
in azimuthal angle θ is only caused by the horizontal displacement
of the magma column, and that tubular bubbles in the annulus do
not ascend relative to the magma column.

3.1 Equations of motion for the permeable annulus

3.1.1 Mass conservation

As with the foam annulus model, the motion of the magma column
squeezes or dilates the pores, which in turn affects the gas density;
however, in this case the gas can escape. We assume that the pores are
drawn out primarily into vertical tubes, thus flow is predominantly
in the vertical direction z. Conservation of mass for gas in a segment
of the annulus from θ to θ + dθ , from z to z + dz and r = rm(θ ) to
r = Rc requires

dθdz
∂

∂t

∫ Rc

rm

ρφrdr = −dθdz
∂

∂z

∫ Rc

rm

ρφwrdr, (16)

where ρ is gas density, φ is porosity or gas volume fraction and
w is the vertical velocity of gas relative to the magma. Assuming
variables are functions of z and t but uniform across r, this relation
leads to

∂ρϕ

∂t
+ ∂ρϕw

∂z
= 0, (17)

where

ϕ = φ
(

1 − u

U
cos θ

)
(18)

accounts for compression/dilation of the annulus segment by motion
of the magma column (i.e. because rm in the above integral limits is
both z and t dependent).

We next use conservation of mass in the matrix surrounding
the gas (i.e. the walls of the pores or tubes) to infer how porosity
φ is affected by the motion of the central magma column. First,
we state that the magma column rises at a constant velocity and
that the coordinate system is fixed to this magma column. We also
assume the magma matrix in the porous annulus remains fixed to the
magma column. Finally, we assume that any wedge in a vertical slice
of the porous annulus, that is, between θ and θ + dθ and between
z and z + dz, is uniformly squeezed (or dilated) by the horizontal
deflection of the magma column. The mass of magma in this piece
of porous annulus is conserved hence∫ Rc

rm

ρm(1 − φ)rdr =
∫ Rc

Rm

ρm(1 − φ0)rdr, (19)

where φ0 is the porosity of the undisturbed annulus. Since we as-
sume φ remains uniform across r even when being squeezed (or
equivalently that φ represents the average porosity across r), then

φ = 1 − R2
c − R2

m

R2
c − r 2

m

(1 − φ0). (20)

Again using rm = Rm + u cos θ , then to first order in u

φ = φ0 − (1 − φ0)
u

U
cos θ and ϕ = φ0 − u

U
cos θ, (21)
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which, once the gas velocity w is specified through momentum
conservation, can be substituted into (17) to infer how density ρ

changes with u and θ .

3.1.2 Momentum conservation

The conservation of momentum for vertical motion of gas in the
pores or tubes in a segment of the annulus can be derived similarly
to the above development for the mass of gas, and leads to

∂

∂t

∫ Rc

rm

ρφwrdr = − ∂

∂z

∫ Rc

rm

φ(ρw2 + P)rdr − φPrm
∂rm

∂z

−
∫ Rc

rm

(
φρg − P

∂φ

∂z
+ cw

)
rdr. (22)

The term on the left of (22) is the rate of change of gas momentum in
the annulus at a height z; the first term on the right accounts for the
change in momentum flux and the vertical pressure gradient at z; the
second term on the right (proportional to ∂rm/∂z) is due to pressure
acting vertically on the sloping surface of the magma column; and
the last term on the right combines the effects of gravity, pressure
acting on gradients in porosity and the inter-phase drag (where c is
the coefficient of drag by the pore walls on the gas; see Bercovici &
Michaut 2010). The drag force is only proportional to w because the
coordinate system is fixed to the uniform-velocity magma reference
frame. The shear traction from the conduit wall is neglected since
it is already assumed to be effectively eliminated by the alignment
and inter-connection of high-gas-fraction pores in the annulus.

With (17), the gas momentum relation (22) leads to the standard
two-phase relation (see Bercovici & Michaut 2010):

ρφ

(
∂w

∂t
+ w

∂w

∂z

)
= −φC2 ∂ρ

∂z
− cw − ρφg. (23)

Because the coordinate system is fixed to the magma column and
matrix, magma velocity does not appear; however, there are still
forces exerted on the magma pore walls by pressure, drag and
gravity. Since the matrix vertical velocity is assumed constant and
uniform, the force balance on the matrix is

0 = −(1 − φ)C2 ∂ρ

∂z
+ cw − ρm(1 − φ)g, (24)

where ρm is magma density (same as in the magma column), the
gas and matrix pressures are assumed to be equal, and the drag of
gas on magma in the pores/tubes is equal and opposite to the drag
of magma on gas. Eqs (23) and (24) can be added to obtain

ρφ

(
∂w

∂t
+ w

∂w

∂z

)
= −C2 ∂ρ

∂z
− ρ̄g, (25)

where ρ̄ = (1 − φ)ρm + φρ. Alternatively one can take a weighted
difference between (23) and (24) to eliminate the pressure gradient
and obtain

ρφ(1 − φ)

(
∂w

∂t
+ w

∂w

∂z

)
= −cw + φ(1 − φ)(ρm − ρ)g. (26)

Eq. (25) shows how gas is driven by vertical pressure gradients but
against the weight of the entire mixture (i.e. not just the weight of
the gas, but also the weight of matrix, which is dragging down on
the gas). Eq. (26) shows how gas is equivalently driven by buoyancy
(gas weight relative to matrix weight) but is retarded by drag. Both
equations are equivalent, however, one expresses pressure gradients
explicitly but the drag is in terms of matrix weight; while the other
expresses drag explicitly but pressure gradients are in terms of gas

buoyancy. Eqs (17), (21) and (25) are sufficient to solve for gas
density ρ and velocity w as functions of displacement u.

3.2 Equation of motion for the magma column

As with the foam annulus model, Newton’s second law on a vertical
segment of thickness dz of the magma column is

ρmπ R2
mdz

∂2u

∂t2
= −dzC2

∫ 2π

0
ρ x̂ · n̂rmdθ + dzμm

∂3u

∂z2∂t
π R2

m,

(27)

where we have again assumed the gas pressure is C2ρ. As with
the foam model, we write rm = Rm + u cos θ and x̂ · n̂ = cos θ −
(u/Rm) sin2 θ , thus to first order in u/Rm the momentum equation
for the column becomes

∂2u

∂t2
= − C2

ρmπ R2
m

∫ 2π

0
ρ (Rm cos θ + u cos(2θ )) dθ + νm

∂3u

∂z2∂t
,

(28)

where as before νm = μm/ρm is the magma kinematic viscosity.
If gas density and thus pressure were uniform around the annulus,
the integral term on the right-hand side of (28) would be zero,
hence there would be no restoring force on the column to sustain an
oscillation.

3.3 Dimensionless governing equations

Eqs (17), (21), (25) and (28), comprise the governing equations for
gas density ρ, volume fraction φ, velocity w and, finally, magma
column displacement u. We non-dimensionalize these equations by
selecting U for the length scale, U/C for a timescale and ρ0 as a
density scale (i.e. ρ0U3 for mass scale). In this case we define (u,
z) = U(u′, z′), t = U/Ct ′, w = Cw′ and ρ = ρ0ρ

′ and the governing
equations become (after dropping the primes)

∂ρϕ

∂t
+ ∂ρϕw

∂z
= 0, (29)

ρφ

(
∂w

∂t
+ w

∂w

∂z

)
= −∂ρ

∂z
− γ (β(1 − φ) + ρφ), (30)

∂2u

∂t2
= − 2λ

βπ

2π∫
0

ρ (cos θ + 2λu cos(2θ )) dθ + η
∂3u

∂z2∂t
, (31)

where

ϕ = φ0 − u cos θ and φ = φ0 − (1 − φ0)u cos θ (32)

and we introduce the dimensionless numbers

γ = gU

C2
, β = ρm

ρ0
, η = νm

CU
and λ = U

2Rm
. (33)

Here, γ represents the ratio of hydrostatic and gas pressures, β is the
ratio of magma and gas densities, η expresses the importance of vis-
cous damping in the magma column relative to the gas spring force
in the annulus and λ is a measure of the annulus thickness relative
to the magma column width. In addition, we impose an injection
gas velocity that is dimensionally W0, which non-dimensionally we
refer to as the gas injection Mach number M = W0/C.
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3.4 Linear oscillations and stability

Jellinek & Bercovici (2011, Supplementary Information) explored
small amplitude oscillations to the permeable annulus problem to
infer whether the fundamental tremor frequency was affected by gas
flux in the annulus. They concluded that the fundamental frequency
was unaffected even up to large gas injection velocities. Here we
explore the full range of oscillations including one that is unstable
and associated with the Bernoulli forcing mechanism. The original
analysis of Jellinek & Bercovici (2011) allowed for the steady-state
gas density to vary with height, but assumed that, over the domain
length, the variation is small, as argued by Bercovici & Michaut
(2010). However this only leads to constant background density
and velocity with a small buoyancy effect on the perturbations, and
little effect on the important oscillations and instabilities; thus the
results differ little from assuming zero gravity in the first place.
Moreover, whether the variations in background density are smaller
than the perturbations themselves is arguable (Michaut et al. 2013)
and depends on the domain height; thus it is simpler and self-
consistent to assume g = γ = 0 for the linear stability analysis,
which we do here.

To linearize the equations, we assume that the gas volume fraction
or porosity is perturbed by the infinitesimal displacement of the
column such that u = εu1, where ε � 1 (which we have in fact
assumed intrinsically anyway by using small displacements) and
thus

φ = φ0 − (1 − φ0)εu1 cos θ and ϕ = φ0 − εu1 cos θ. (34)

The gas flow and density with small perturbations to the steady state
are expressed as

w = M + εw1 cos θ and ρ = 1 + ερ1 cos θ. (35)

Substituting (34) and (35) into (29)–(31), we obtain to O(ε)(
∂

∂t
+ M ∂

∂z

)
(φ0ρ1 − u1) + φ0

∂w1

∂z
= 0, (36)

φ0

(
∂

∂t
+ M ∂

∂z

)
w1 + ∂ρ1

∂z
= 0, (37)

∂2u1

∂t2
= −φ0α

2ρ1 + η
∂3u1

∂z2∂t
, (38)

where α2 = 2λ/(φ0β). Finally, stipulating that u1, w1 and ρ1 all go
as eikz + st, we arrive at the characteristic equation

s2 + φ0α
2(s + ikM)2

k2 + φ0(s + ikM)2
+ ηk2s = 0. (39)

3.4.1 Some asymptotic dispersion relations

The characteristic eq. (39) is a fourth-order complex polynomial
for the growth rate s, and thus has four possible roots that are, in
general, algebraically cumbersome. However we can extract some
important asymptotic relations from (39).

In the long-wavelength limit of k → 0 we obtain from (39)
s = ±iα, which dimensionally implies a free-oscillation frequency
of

ω0 = αC
U

=
√

2λ

φ0β

C
U

=
√

2ρ0C2

φ0ρm(R2
c − R2

m)
, (40)

which is the same as (13) for the foam-annulus model, with an
angular frequency that corresponds to the 1 Hz tremor oscillation.

In the short-wavelength limit of k → ∞ we can infer two pos-
sible solutions to (39). In one case, we assume that s grows with
k and we write s = ik�, that is, the perturbation is wave-like with
dimensionless speed �; this leads to

k2�2 + φ0α
2(� + M)2

1 − φ0(� + M)2
− iηk3� = 0. (41)

For large η this leads to � = iηk or s = −k2η, and thus strong
damping from viscous bending of the magma column (over short
wavelengths), as expected. For η → 0 and assuming that �  M
(i.e. the wave is comparable to a sound wave) we obtain

� ≈ ±
√

1

φ0
+ α2

k2
≈ ±

√
1

φ0
. (42)

Dimensionally this corresponds to a perturbation wave speed
C� ≈ C/

√
φ0, which represents high frequency (small wavelength)

disturbances propagating as sound waves in the annulus; however,
these waves travel slightly faster than the normal gas sound speed,
due to the higher effective compressibility imposed by the magma
pore walls in the annulus (see Bercovici & Michaut 2010).

In the other case for large k, we assume s does not increase with
k and this leads to

s ≈ φ0α
2M2

η(1 − φ0M2)k2
, (43)

which corresponds to a growing perturbation with a weak (or non-
existent) oscillation (assuming M < 1). This case corresponds to
the one unstable branch of possible solutions that is associated with
the Bernoulli driving effect and the resulting instability; indeed, the
Bernoulli effect is manifest in the dependence of the growth rate
on the square of the gas injection speed M2, since the dynamic
pressure from gas flow goes as ρw2, and the magnitude of w is
dictated by M. However, in general the maximum growth rate of
the instability occurs at moderate wave-numbers and has a finite
oscillation frequency (see Section 3.4.2).

3.4.2 General dispersion relation

The general dispersion relation results from solutions to the fourth-
order complex polynomial from (39). Typical values for dimension-
less parameters are 0.1 < M < 0.5, 0.01 < λ < 0.1 (corresponding
to a 10–100 m diameter magma column and a 1-m-wide annular
gap), and 5 < η < 50 (corresponding to 106 < μm < 107 Pa s). The
solutions for all four roots to (39) are shown in Fig. 2 for some
sample characteristic parameter values.

As discussed in Section 3.4.1, for long wavelengths (as k → 0) the
system has a high-frequency oscillation at a dimensionless angular
frequency of

√
2λ/(φ0β) which corresponds to the 1 Hz tremor [see

(40) and black curves in Fig. 2] and is identical to that predicted
by the closed foam annulus model. For smaller wavelengths (higher
k) these oscillations propagate like sound waves as anticipated by
(42).

3.4.3 Unstable, growing oscillations

The dispersion curves for the linear system display two sets of
low-frequency oscillations (Fig. 2, blue curves). One of these low-
frequency oscillations is unstable [i.e. has a positive growth rate, as
also predicted in the high k limit in (43)], and has a peak growth rate
at a finite wavelength, and thus a selected fastest growing mode. The
positive growth rate curve is a strong function of the injection Mach
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Figure 2. Non-dimensional dispersion curves for oscillation frequency and associated growth rate versus wavenumber for perturbations in the permeable
annulus model (applicable to either cylindrical or Cartesian models). The dimensionalizing length scale is U ≈ L = Rc − Rm ≈ 1–10 m, and the dimensionalizing
rate scale for both frequency and growth rate is C/L ≈ 70–700 s−1. Thus curves with large absolute dimensionless frequencies of around 0.05 (black curves)
correlate to the high-frequency oscillation between a few to a few tens of Hz for low wavenumbers as predicted by (40), although at high wavenumbers they
correspond to sound waves, as predicted by (42). Blue curves correspond to lower frequency oscillations that dimensionally are a few tenths to a few Hz, and one
of which show a positive growth-rate instability, predicted by (43). Curves with positive frequencies represent upward propagating oscillations, and negative
frequencies imply downward propagation; the solid and dashed curves indicate modes with equal and opposite frequencies. The maximum dimensionless
growth rates are approximately 10−3–10−2, which correspond to growth rates between 0.1–10 s−1. The wavelength of the fundamental mode 4H corresponds
to a dimensionless wave number of πL/(2H) ≈ 10−3–10−2, which are the smallest wavenumbers displayed. The dimensionless wavenumbers of the fastest
growing modes occur around k = 0.02–0.07, which corresponds to dimensional wavelengths of approximately 90–3000 m. Results are shown for various
parameters as indicated, and for all cases φ0 = 0.7, β = 100 and γ = 0.

number M, and moderately weak function of η and λ (Fig. 3).
Indeed the instability does not occur unless M > 0 and grows
more rapidly for faster gas injection (Fig. 4), again as predicted by
(43). An increase in magma column viscosity has little effect on
the peak growth-rate of the instability, but shifts the wavenumber
of the least stable mode to slightly smaller values (i.e. to longer
wavelengths). Widening of the annular gap increases the growth-
rate of the instability slightly and moves the least stable mode to
higher wavenumbers (shorter wavelengths). The strong dependence
of the instability onM indicates that it is driven by a Bernoulli effect
induced by flow of gas through annulus. This instability therefore
provides a driving force that keeps the magma column oscillating
despite viscous resistance of the magma itself.

3.4.4 Surface signature of linear oscillations

The solutions for u, ρ1 and w1 in the linear system can be used to
infer a time-series for oscillations in displacement at the surface of
the magma column z = H, where H = H0/U ≈ H0/L is the dimen-
sionless column height. For a given wavenumber k the displacement
at the top is given by

u(H, t) =
4∑

j=1

u j e
s j t , (44)

where sj represents the j-th root of (39). The initial conditions at
t = 0 are that at z = H, perturbations u1, ρ1 and w1 are zero but that
∂u1/∂t = v0 (i.e. an initial perturbing velocity). Eqs (36) and (37)
can then be used to express gas density and velocity perturbations
as functions of u, and the four initial conditions then lead to

4∑
j=1

(
1, s j ,

� j

φ0�
2
j − k2

,
� 2

j

φ0�
2
j − k2

)
u j = (0, v0, 0, 0), (45)

where � j = is j − kM; this 4 × 4 linear system can be solved
for the amplitudes u j from which the time-series of surface dis-
placement (44) can be inferred. As a linear mock-up of possible
oscillations, we superpose the displacements for two wavenum-
bers, namely for (a) the longest wavelength fundamental mode
k = π/(2H) which corresponds to the slowest decay of the high-
frequency oscillations, and (b) the k for the fastest growing oscil-
lation which will dominate the system after some time. This su-
perposition captures the initial dominant high-frequency oscillation
(comparable to the 1 Hz tremor) and then the subsequent growth
of the most unstable long-period mode (Fig. 5). For moderate M,
the high-frequency oscillations will ring for some time (depending
on η) before exponential growth of the low-frequency oscillations
becomes significant; but as M is increased, the instability happens
faster before many of the high-frequency oscillations can occur
(Fig. 5).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/195/2/1001/644398 by Biblio Planets user on 06 April 2020



1008 D. Bercovici et al.

Figure 3. Dimensionless growth rate Re(s) versus wavenumber for the unstable oscillation, for a range ofM and selected λ and η. See Fig. 2 for dimensionalizing
scales.

Figure 4. Growth rate, wavenumber and angular frequency for the least stable mode (i.e. the maximum Re(s), as shown by the peaks in the curves in Fig. 3)
versus M and some select λ and η. Also shown are the time lags τ between oscillations in displacement and both gas density and vertical velocity; see Section
3.4.5.

3.4.5 Magma-column response to gas-flux

The linearized model can also be used to infer the response of
the magma column to gas-flux during the fastest growing unstable
oscillations. Considering only the least stable mode, the surface
displacement of the magma column (44) can be expressed as

u1(H, t) = Re(umesm t ) = U sin(ωm(t − t0))eσm t , (46)

where um and sm are u j and sj for the least stable mode of the unsta-
ble oscillation (i.e. at which Re(s) is a maximum) and σ m = Re(sm)
and ωm = −Im(sm). Moreover, t0 is a sufficiently large time (such
that the least-stable mode is dominant) at which the surface dis-

placement passes through zero [i.e. u(H, t0) = 0]; this requires
that U = −Re(um)/ sin(ωmt0) = Im(um)/ cos(ωmt0). Pulses in gas
density or velocity are related to displacement generically as

�(H ) = Re(Gumesm t )

= GU sin(ωm(t − t0 − τ ))eσm t , whereG = Geiωm τ , (47)

where � represents either perturbations in density ρ or velocity w at
the surface, G is the response operator, G is the response amplitude
and τ is the time lag between the surface displacement and gas
pulses. Eqs (36) and (37) with the normal mode analysis can be
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Figure 5. Oscillations in displacement u of the magma column at the column top z = H, as predicted by the linear stability analysis (see Section 3.4.4). The
oscillations are the superposition of only two modes, the fundamental mode with wavenumber k = π/(2H) and the least stable mode, as shown in Figs 3 and
4. Each mode is initiated with a velocity at z = H of v0 = 10−3sin (kH), consistent with the non-linear numerical experiments. Figures shown are for various
values of M, λ and η as indicated. Cases with M = 0.1 use a dimensionless domain height of H = 1000. However, because the density discontinuity or
choking point in the non-linear solutions occurs at Hc = 543 for M = 0.5 [see (62) and immediately subsequent discussion], the non-linear solutions in these
cases use H = 500; and hence we use the same H for the corresponding linear cases shown here. All frames have the same values of φ0 = 0.7, β = 100 and
γ = 0.

used to show that pulses in gas density and vertical velocity at the
surface have response operators

Gρ = (sm + ikmM)2

k2
m + φ0(sm + ikmM)2

, (48a)

Gw = −ikm(sm + ikmM)

φ0(k2
m + φ0(sm + ikmM)2)

, (48b)

respectively, where km is the wavenumber of the least stable mode;
using (47), each response is associated with time lags τρ and τw for
density and velocity pulses, respectively.

The time lags are perhaps most informative about the magma-
column response (Fig. 4). In particular, the velocity time lag is
generally negative, while that for density is positive; this means
a gas velocity pulse arrives at the surface a time τw before the

associated peak in column displacement, while the density pulses
arrives a time τ ρ after the displacement peak. The dimensionless
time lag is a modest function of magma viscosity, but a strong
function of injection flux M, being large for small M and dropping
rapidly for larger M. Assuming a length scale U ≈ L = Rc − Rm

≈ 1 m, sound speed C = 700 m s−1, then the dimensional time lag
goes from nearly zero at large M to about 3–7 min (depending on
η) for gas density pulses, and 25–50 s for gas velocity pulses, at
low M.

Given the Bernoulli effect, the gas velocity pulses provide the
main driving force for column displacement. As the velocity pulse
propagates through one side of the annulus, it induces a low-pressure
that pulls the column to the same side; but the column’s viscosity
causes a delayed response and thus the displacement lags behind
the velocity pulse. With larger injection flux, represented by M,
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the forcing is stronger, hence the response more immediate and the
lag smaller. The gas density also responds to the Bernoulli effect
by becoming low where the velocity pulse propagates (given the
associated drop in pressure), and thus a positive pulse in gas density
only comes in the wake of the column’s displacement, that is, as
gas reaccumulates behind the constricted annulus; hence the density
pulse slowly lags the column’s displacement.

These time lags, however, have more to do with the timing of
bursts in tremor activity than in lags between tremor and gas pulses
(which are discussed below in Section 5.3). In particular, the unsta-
ble growth in column displacement is relatively slow with low ac-
celeration (i.e. long period and slow growth rates), and hence small
induced ground motion, unrelated to the higher-frequency tremor.
However the unstable column displacement eventually closes the
annulus at various points, which cuts off the gas flux and the driving
force for oscillations in that vertical plane (see non-linear model
results, Section 4); in this case the leading gas velocity pulse is the
last big puff of gas before closure, and the lagging density pulse is
the subsequent build up of gas that likely leads to the instability and
motion starting again in a different plane.

4 N O N - L I N E A R C A RT E S I A N M O D E L
A N D F I N I T E A M P L I T U D E A NA LY S I S

To examine the growth of the unstable oscillation in the permeable
annulus at finite amplitude we compose a modified set of equations
for numerical analysis. In particular since the oscillation is assumed
to stay in the x–z plane (in the plane of original ‘wagging’) we
use a 2-D model, which allows us to relax the small displacement
assumption required in the cylindrical model.

4.1 Governing equations

The development of the 2-D model follows the same logic as the
cylindrical one, thus we develop the governing equations here only
briefly. We consider conservation laws for material in the annulus,
but treat the annulus now as two separate 2-D permeable vertical
channels on either side of the magma column (Fig. 6). The magma
column has width 2Rm (as in the cylindrical model) and at any given
height z, the side channels have a gap width given by Li = L ± u(z,
t), where L = Rc − Rm is the static gap width, u is again the
displacement of the column, positive if to the right (in the positive
x direction). The subscript i = 1 indicates the left channel and i = 2
is for the right channel; thus if u > 0 the left channel is wider at
that height (i.e. with width L + u), and the right one equivalently
narrower (see Fig. 6).

4.1.1 Mass conservation in the permeable side channels

Conservation of mass in a given channel segment between z and
z + dz and between the magma column’s vertical surface at
x = Rc − Li and the conduit wall at x = Rc requires

dz
∂

∂t

∫ Rc

Rc−Li

ρiφi dx = −dz
∂

∂z

∫ Rc

Rc−Li

ρiφiwi dx, (49)

where ρ i, φi and wi are as previously defined but for the left (i = 1)
and right (i = 2) channels. Assuming variables are uniform across
x, this relation leads to

∂ρiϕi

∂t
+ ∂ρiϕiwi

∂z
= 0, (50)

Figure 6. Sketch of 2-D non-linear model of volcanic tremor. See also
Fig. 1.

where now

ϕi = φi

(
1 ± u

L

)
. (51)

Mass conservation of the magma component of the annulus also
requires∫ Rc

Rc−Li

ρm(1 − φi )dx =
∫ Rc

Rc−L
ρm(1 − φ0)dx, (52)

where φ0 is the undisturbed porosity and ρm is again magma density;
this eventually yields

φi = φ0 ± u/L

1 ± u/L
and thus ϕi = φ0 ± u/L . (53)

Although the expressions for φi and ϕi are similar to those for
the linearized cylindrical model, they are not restricted to small
displacements of the magma column.

4.1.2 Momentum conservation in the side channels

Momentum conservation for the permeable mixture in the side chan-
nels is developed identically to that for the annulus in the cylindrical
model, and leads to

ρiφi

(
∂wi

∂t
+ wi

∂wi

∂z

)
= −C2 ∂ρi

∂z
− ρ̄i g, (54)

where we have assumed, as with the cylindrical model, that there is
no vertical variation in the matrix velocity.
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4.1.3 Momentum conservation of the magma column

Newton’s Second Law for the magma column in 2-D is similar again
to the cylindrical model but leads to a slightly simpler version

∂2u

∂t2
= − C2

2ρm Rm
(ρ2 − ρ1) + νm

∂3u

∂z2∂t
(55)

because the magma column in 2-D is a rectangle of width 2Rm. The
second term on the right-hand side of (55) represents the pressure
difference between the right and left gaps at a given height z.

4.1.4 Dimensionless governing equations

We non-dimensionalize length by L = Rc − Rm (which is similar to
that in the cylindrical model since U ≈ L in the limit of small gap
width; see Section 2), time by L/C, and density by the gas density
at the point of injection ρ0. In this case, the dimensionless version
of the governing equations, (50), (54) and (55), are

∂ρiϕi

∂t
+ ∂ρiϕiwi

∂z
= 0, (56)

ρiφi

(
∂wi

∂t
+ wi

∂wi

∂z

)
= −∂ρi

∂z
− γ (ρiφi + β(1 − φi )), (57)

∂2u

∂t2
= − λ

β
(ρ2 − ρ1) + η

∂3u

∂z2∂t
, (58)

where

φi = φ0 ± u

1 ± u
and ϕi = φ0 ± u (59)

and we are left with a similar set of dimensionless parameters

γ = gL

C2
, β = ρm

ρ0
, η = νm

CL
and λ = L

2Rm
. (60)

As in the cylindrical model, we impose an input velocity W0, which
non-dimensionally is the gas injection Mach number M = W0/C.
As noted above, one minor difference between the Cartesian and
cylindrical models is that length is non-dimensionalized by L in-
stead of U [see (33)]. However, given the definition of U from (4),
U = L(1 + λ), using the current definition of λ above; since we
expect λ � 1, then U ≈ L. Therefore, λ, γ and η are approximately
the same as in the cylindrical model.

4.1.5 Note on Cartesian linear analysis

The linear wave and stability analysis of the Cartesian model can
be done similarly to the cylindrical model by assuming a small
displacement u = εu1 and expanding other dependent variables
similarly to (34) and (35)—except instead of cos θ dependence
there are relations for the right and left channels. The final resulting
characteristic relation for the growth rate s is identical to (39) and
hence the linear analysis is identical to that presented in Section 3.4.

4.2 Non-linear steady-state analytic solutions

Non-linear solutions for the steady-state ‘non-wagging’ case pro-
vide both an important bench-mark for the full non-linear solutions,
and also dictate the domain of non-linear calculations. In particular,
these solutions are singular at a finite height z, which is the choking
level for an expanding gas, that is, the point at which the gas ve-
locity reaches the effective sound speed and the density develops a

discontinuity or a shock. The steady-state versions of (56) and (57)
for u = 0 are the same in both annular channels, and they combine
to yield

∂ρ

∂z
= −γ

ρφ0 + β(1 − φ0)

1 − φ0M2/ρ2
, (61)

where we have used the boundary condition that ρ = 1 and w = M
at z = 0, and thus, because of (56) in steady state, that w = M/ρ.
According to (61), the density gradient becomes singular at ρ =
M√

φ0, which is the choking point or shock (see Vergniolle &
Jaupart 1986; Kozono & Koyaguchi 2009a,b; Bercovici & Michaut
2010). At the choking point, the gas speed is w = M/ρ = 1/

√
φ0;

this is dimensionally C/
√

φ0, which is slightly in excess of the gas
sound speed, given the extra compressibility imposed by the matrix
[see also (42)]. The general solution to (61) is given by the implicit
solution

z(ρ) = φ2
0M2

γβ2(1 − φ0)2

[
log

(
ρφ0 + β(1 − φ0)

ρφ0 + ρβ(1 − φ0)

)

− β(1−φ0)(1−ρ)

φ0ρ

]
+log

(
φ0 + β(1 − φ0)

ρφ0 + β(1 − φ0)

) 1
φ0γ

. (62)

The height of the choking point occurs at Hc = z(M√
φ0), and we

define this singularity as the upper limit of our domain.

4.3 Numerical experiments

4.3.1 Solution method

The coupled non-linear equations for motion in the annular channels
and magma column (56)–(58) are solved numerically using finite
differences in which the gas velocities in the annular channels wi are
on a staggered grid relative to densities ρ i and column displacement
u. Advection terms are treated with upwind differencing (which is
second-order accurate on the staggered grid), while divergence and
diffusion are treated with centred difference (i.e. again second-order
accurate). Time integration uses a semi-implicit Crank–Nicolson
scheme and a Courant-Friedrichs-Lewy (CFL) time step condition
based on the gas velocity wi (Roache 1976). The magma column
momentum eq. (58) is separated into two first-order differential
equations in time by introducing the lateral magma column velocity
v and the equation ∂u

∂t = v.
The bottom boundary conditions are u = v = 0, ρ i = 1 and

wi = M at z = 0. The top of the domain at z = H is open and
arbitrary since it must be located below the choking point such thus
H < Hc (see Section 4.2). Strictly speaking only (58) requires a
second boundary condition at z = H, since it is a forced diffusion
equation for v; and for this we choose ∂v

∂z = 0 at z = H assuming
there are no stresses or forces driving the column for z > H. Because
wi is on the staggered grid, its last value is at z = H + �z/2,
where �z is the grid spacing; solution of (57) at this point thus
requires an estimate of the gas density ρ i at the super-domain point
z = H + �z. Because the super-domain-point point approaches the
choking point and a density discontinuity, simple extrapolations of
density to this level (either linear, quadratic or even cubic) are too
imprecise and introduce errors and numerical instabilities. Hence
the density is assumed to obey (61) at the super-domain point;
that is, this equation is used to extrapolate density that is at least
consistent with the known steady-state analytic solution.

At time t = 0 the gas velocity and density are initiated with
the non-linear analytic solutions for u = 0, but the magma lateral
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velocity is perturbed with the fundamental mode or quarter-wave
v = εsin (π z/(2H)) (i.e. with a wavelength of 4H) where ε � 1
(typically we set ε = 10−3).

The numerical solutions are bench-marked against the linear sta-
bility in the limit γ → 0, as well as the non-linear steady-state
solution (62); solutions are found to be accurate for at least 50
gridpoints, although the final solutions never involve less than 100
points. Given the semi-implicit time integration, the maximum al-
lowable time step obeys the CFL condition, but this is further re-
duced by a factor that is typically 10−2–10−4 to ensure convergence
of solutions.

Table 1. Table of dimensionless pa-
rameters for the linear and non-linear
models.

Parameter Definition Value (s)

γ gL/C2 2 × 10−5

β ρm/ρ0 100
M W0/C 0.1–0.5
λ L/(2Rm) 0.01–0.1
η νm/(LC) 5–50
H zmax/L 500–1000

4.3.2 Results

We explore numerical solutions with the same approach for the
linear cases, that is, to determine the forcing and growth of the
‘wagging’ instability for various parameter choices. In particular,
we examine the sensitivity of solutions to different injection ve-
locities or Mach numbers M, each for different gap aspect ratios
λ = L/(2Rm) and magma dimensionless viscosities η = νm/(CL).
Parameter values are displayed in Table 1.

The numerical solutions qualitatively match the linear stabil-
ity results even for γ �= 0. The magma column initially oscillates
with small amplitude oscillation with a dimensionless frequency
of approximately 10−2, which dimensionally is near the 1 Hz os-
cillation (given that we use L = 1−10 m and C = 700 m s−1).
Depending on the parameter choice this oscillation damps either
slowly or moderately fast (though rarely entirely) and gives way
to an oscillation with a lower frequency of around 10−3 (i.e. a
few tenths of a Hz) and a growth rate of comparable value (see
Figs 7 and 8, each of which provide a URL link to movies that
better display the time-dependent behaviour; other sample figures
are shown in the Appendix). The non-linear cases also verify
the time lag between the unstable, long-period gas flux and dis-
placement oscillations, which is most pronounced for cases with

Figure 7. Snapshots of non-linear solutions (a–c) for λ = 0.1, M = 0.1, η = 5 (which are also indicated in frame (d)). The far left and right panels in each
frame show dimensionless gas velocity for the left and right annular chambers, respectively; the next inward frames show dimensionless gas density in the
corresponding chambers; and the centre frame shows displacement of the magma column. Dashed lines in the left frames are the non-linear steady-state analytic
solution [see (61) in Section 4.2]. Frame (d) shows the displacement of the magma column at the top (u(H)) as a function of time, similar to the linear cases in
Fig. 5. The scales for ρr and wr are the same as for the ρl and wl. For all cases β = 100 and γ = 2 × 10−5 as listed in Table 1. An avi-format movie of this
case is given in the Supporting Information. Also, see Fig. 2 for dimensionalizing scales.
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Figure 8. Same as Fig. 7 but for a higher magma column viscosity with η = 50. An avi-format movie of this case is given in the Supporting Information.

low gas injection rate M, as predicted in the linear analysis (see
Section 3.4.5).

The numerical cases show the initial high-frequency wagging
oscillation [best seen in the time-series of u(H) and the on-line
movies] followed by the unstable low-frequency oscillation, which
grows in amplitude until the maximum allowed displacement of
u = φ0 (at which point the annulus or channel gas volume fraction
drops to zero) is reached. At the maximum displacement the annulus
is effectively closed at various vertical levels and the gas flux is shut
off. Although the model does not track the evolution of the system
beyond this point, there are two likely scenarios that follow. One
possibility is that the closed annulus is reconstructed by continued
ascent of the magma column, at which point the oscillation cycle
starts again. Alternatively, since the non-linear model is only in one
vertical plane, the oscillation might proceed in a different vertical
plane that does not have a pinched annulus. This latter scenario
would best be modelled by fully 3-D motion of the magma column
that would allow effective nutation, wobble and helical motion in
the wagging oscillation, although this is beyond the scope of this
study. Nevertheless, these results suggest that after the growth of
the lower-frequency oscillation, the cycle would likely begin again
either with a rebuilt annulus or (perhaps more likely) in a different
vertical plan (or with 3-D motion).

However, it should be noted that because of various simplifying
assumptions, the non-linear model may not mitigate or saturate
the nearly exponential growth of the low-frequency oscillation, as
is usually expected of non-linear systems. As mentioned above,

3-D motion is suppressed, but if allowed it could possibly ease
exponential growth with another degree of freedom.

5 D I S C U S S I O N A N D I N T E R P R E TAT I O N

The magma-wagging model with degassing-tremor interactions
provides several testable predictions beyond the basic tremor fre-
quency itself. The wagging characteristics, non-linear and unstable
response and the correspondence with degassing flux lead to added
features in the oscillatory behaviour that are possibly evident in
seismic, acoustic and gas-emission measurements.

5.1 Spatio-temporal wagging correlation

The basic magma-wagging model proposed by Jellinek & Bercovici
(2011) not only predicts the typical 1 Hz (i.e. 0.5–7 Hz) tremor os-
cillation, but the implicit wagging motion suggests that ground
motion surrounding a volcano should be spatially and temporally
correlated. That is, magma column displacement to one side will
induce initial compressive ground motion in that direction, and ten-
sile motion on the opposite side; a half an oscillation period later the
sign of ground motion on either side will reverse. Thus the ground
motion on opposite sides of a magma-wagging volcanic system
should be well correlated after adjusting for a time lag compara-
ble to half the wagging or tremor period. Indeed, analysis of data
from seismometers on nearly opposite sides of Redoubt Volcano
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Figure 9. Comparison of tremor recorded on 2009 February 5 at Redoubt Volcano prior to the explosive eruption that began on 2009 March 22. Time-series data
(top left) are from from two single-vertical-component seismometers located north (blue time-series from station RDN) and south (red time-series from station
RSO) of the volcano summit (station locations indicated bottom right). Raw time-series have been instrument-corrected (M. Haney, personal communication,
2013; Haney et al. 2012) and bandpass filtered between 1 and 5 Hz (top right). Amplitudes for the time-series and spectral data are normalized to the maximum
values for the sake of comparison. The unbiased cross-correlation function (blue curve, bottom left) gives a positive correlation between the RDN and RSO
signals with a time lag of about 0.55 s (with a range of 0.47–0.61 s at the half-width) with a >95 per cent confidence (dashed lines), calculated following the
approach of Saar & Manga (2004) and Jellinek et al. (2004). This time lag is comparable to approximately half the period of the dominant signal (of order 1 s)
displayed in the power-spectra (top right). Data collected by the Alaska Volcano Observatory (AVO) and retrieved from Incorporated Research Institutions for
Seismology (IRIS) archives.

prior to its 2009 March eruption displays the predicted behaviour;
that is, the cross-correlation of signals from the seismometers is
maximized for a time lag of approximately half the dominant oscil-
lation period (Fig. 9). This time lag might be influenced by shallow
seismic velocity heterogeneity around the volcanic edifice, as well
as imprecise knowledge of the location of the magma column; thus
more extensive analysis is clearly warranted. Nevertheless, this case
gives an intriguing example of an important first-order prediction
of magma-wagging, that is, spatio-temporal correlation of tremor
signals around volcanoes.

5.2 Sporadic tremor envelopes

The linear analysis of the extended magma-wagging model (in-
cluding annular gas flux) predicts essentially two oscillatory modes
(each has an upward and downward propagating component, thus
there are really four modes for any given wavelength; see Fig. 2).

One mode is associated with the high-frequency 1 Hz oscillation
that is slowly decaying, with the slowest decay occurring for the
fundamental wavenumber k0 = π/(2H), where H is the column
height. The other mode is of lower frequency (of order 0.1 Hz) but
is unstable and has a maximum positive growth rate at a given k
(which depends on system properties). The superposition of these
two modes leads to a high-frequency oscillation riding atop a long-
period, growing oscillation (Fig. 5).

The full model system, however, is fourth-order non-linear, with
third- and second-order non-linearities also present; see (56)–(58)
where (57) has the highest order non-linearity. Non-linear interac-
tions between oscillations of a given frequency lead to cascading
of energy to higher harmonics (e.g. Fig. 10, bottom), and given
the presence of both odd and even non-linearities, all harmonics
(both even and odd) are excited. The addition of harmonic and
other modes leads to beating envelopes of high-frequency oscilla-
tions (e.g. see surface displacement oscillations in Figs 7 and 8,
and A1–A6, frame d). An illustrative example, selected to allow
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Figure 10. Time-series and power-spectrum for surface displacement for a case with λ = 0.5,M = 0.1 and η = 1 to allow longer sampling of oscillations
and their beating envelope. The power-spectrum is from a Fourier analysis of the time-series with the background growth removed; power is in terms of U2(ω)
where U(ω) is the discrete Fourier transform of u(H), and ω is the discrete angular frequency.

more envelope development, shows a power-spectrum with emerg-
ing secondary frequencies only tens of per cent different from the
peak frequency (Fig. 10); the superposition of these close frequen-
cies induces the envelope structure (i.e. the envelope frequency itself
is proportional to the difference in frequencies between the super-
posed oscillations). With the growing low-frequency mode, only a
few envelopes appear before the displacement grows and reaches
its maximum value (i.e. u ≤ φ0L), at which point the oscillations
stop until they can potentially restart (see discussion at the end of
Section 4.3.2).

This nonlinear behaviour leads to sporadic bursts of tremors, in
which oscillation envelopes go unstable and cease for finite intervals
of time (until, in principle, the annulus is rebuilt and the wagging
oscillations start again). These sporadic envelopes are potentially
seen in tremor data measured in both seismic and acoustic data
(Figs 9 and 11). In particular, many time-series display sequences
of growing envelopes or bursts of tremor that cease for intervals
of no less than tens of seconds (see also Chouet & Matoza 2013,
fig. 33); this minimum interval time is indeed comparable to the
growth time for unstable low-frequency modes, which would be the
minimum time between bursts predicted by the model.

5.3 Gas flux and tremor correlation

The magma-wagging model with gas-flux forcing predicts various
correlations between tremor and pulses in gas flux. Observations
show that short-period pulses in gas flux are nearly synchronous
with tremors as audible ‘chugging’ (Benoit & McNutt 1997; John-
son & Lees 2000). Longer-period signals of average tremor ampli-
tude and gas flux (Fig. 12) appear to show a significant lag between
gas pulses and tremor, wherein large pulses in flux follow tremor
activity by nearly a minute (Nadeau et al. 2011).

The non-linear magma-wagging results afford the best exam-
ples of both short- and long-period responses, as seen at the sur-
face (Fig. 13). First, during peak higher-frequency wagging activ-
ity (analogous to tremor), the oscillations in column displacement
are synchronous with density oscillations, since they provide the
restoring force for the column wagging; for example, column dis-
placement and squeezing of the annulus causes gas compression
and increased pressure, which drives the column back in the op-
posite direction. Thus tremor associated with acceleration of the
column will be synchronous with pulses of gas density arriving at
the surface (see Fig. 13, comparing surface gas density to column
displacement).

Long-period signals, however, would show a different behaviour.
The biggest pulse in gas flux would be associated with the large
increase in gas velocity at the end of the long-period growing os-
cillation. This pulse arrives after the largest tremor amplitudes (i.e.
higher-frequency wagging oscillations) have occurred and begun to
taper off (see Fig. 13, comparing surface gas velocity to either den-
sity or column displacement). The time lag between the gas pulse
and the peak tremor activity is of order of the instability growth rate,
dimensionally of order tens of seconds up to a minute. This lag is
comparable to the lag observed in long-period field measurements
(Fig. 12).

5.4 Gas flux forcing without magma extrusion

Finally, although the proposed driving mechanism for the wagging
system is associated with gas flux and a Bernoulli effect in the
permeable annulus, it does not necessarily mean that active erup-
tions and magma motion are needed to drive the oscillations. Pro-
vided there is some permeable pathway associated with the annulus,
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Figure 11. Time-series and power-spectrum for two volcanic events (Karymsky in 1997 and Sangay in 1998) showing sequences of growing, beating envelopes
(after Johnson & Lees 2000).

Figure 12. Time-series for both 10-s averaged tremor amplitude, and SO2 vent gas emission rate (in kg s−1) for Fuego volcano in 2009 (a); the top and bottom
abscissa are offset by 32 s to compensate for overall lag. Evolution of the time lag between tremor and gas flux (b), where larger diamonds indicate correlation
between time-series larger than 0.65 (after Nadeau et al. 2011).

gas flux from a deeper source could continue to drive the oscillation
with or without magma ascent. Indeed, the typically lower gas ve-
locities during stagnant-magma degassing would allow for longer
periods of free tremor oscillations before the instability occurs. If
the cessation in magma ascent causes the annulus to collapse and

the foamy magma to compact, then gas being squeezed out of the
annulus could also drive the oscillation, although this would be a
transient effect (and possibly fairly brief, since the timescale for
collapse is of order νm/(gH0) where H0 is the initial column height
of order 1 km).
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Figure 13. Time-series for surface displacement u, as well as gas density and velocity for the right annular channel ρr = ρ2 and wr = w2, respectively, at the
conduit top z = H. The case shown is the same as that in Fig. 7, with λ = 0.1,M = 0.1 and η = 5. These time-series display the lag between peak tremor
activity (at around dimensionless time t = 700) and the maximum gas flux at the end (t ≈ 4000). Dimensionally this lag is several to several tens of seconds,
depending on the annular gap width, similar to the time lag observations in Fig. 12.

6 S U M M A RY A N D C O N C LU S I O N

We have presented an extended magma-wagging model for tremor
and related oscillations in silicic volcanoes, primarily to address the
tremor forcing mechanism and the relation between tremor and gas
venting. The magma-wagging oscillation is due to the free motion
of a magma column inside an annulus of foamy magma; since the
annulus develops by shearing against the conduit wall, its bubbles
are stretched and interconnected, and it thus contains a permeable
magma matrix through which gas preferentially flows. The extended
wagging model thus allows for the interaction between annular gas
flow and the lateral motion of the magma column. In particular,
the model demonstrates that gas flow through the annulus induces
a Bernoulli effect wherein column displacement that pinches the
annulus will cause higher gas velocity and hence lower pressures,
which thus amplify the displacement to further pinch the annulus.
This feedback drives an oscillatory instability, and thus a natural
forcing mechanism for wagging motion.

The free wagging oscillation without forcing has a moderately
high frequency, dimensionally between 1 and 10 Hz, characteristic
of tremor, but slowly damps due to viscous bending of the magma
column. The wagging oscillation is also predicted to induce ground
motion on opposite sides of a volcano that are out of phase by ap-
proximately half a wagging or tremor period. Moreover, non-linear
interactions cause higher frequencies to develop from the funda-
mental wagging frequency, and these combine to produce beating
envelopes of tremors.

The forced and unstable oscillation frequency is dimensionally
0.1–1 Hz, with a growth timescale of tens of seconds to a minute.

The instability is thus likely to grow over several seconds to minutes
to a peak displacement, at which point the annulus is effectively
collapsed in the plane of wagging motion. With continued magma
ascent and/or gas venting, the wagging motion and instability would
re-start either in another plane, or with 3-D motion or after the
annulus is re-established. The net effect of both oscillatory modes
leads to sporadic bursts of tremor envelopes that go unstable, cease
and restart with a timescale dictated by the instability growth rate
(tens of seconds).

The high-frequency tremor oscillations themselves are also as-
sociated with gas density and pressure perturbations at the surface,
which thus lead to degassing pulses synchronous with ground mo-
tion. Moreover, the long-period instability is punctuated by a large
degassing flux that lags, by a several tens of seconds, after the peak
tremor amplitudes.

In total, these model predictions correlate well with observations
of time lags between seismic signals on opposite sides of a volcano,
sporadic envelopes of tremor, audible degassing or ‘chugging’ coin-
cident with tremor (Johnson & Lees 2000) and large time lags (i.e.
nearly minute long) between peak tremor activity and the largest
pulses in gas flux (Nadeau et al. 2011).

Nevertheless, a more sophisticated numerical model of the
magma-wagging system is warranted for future studies. The model
as it stands now only allows for 2-D motion in a plane, and thus
does not account explicitly for re-starting the wagging motion after
it goes unstable once. A model that allows fully 3-D motion of the
gas and magma column, including, for example, azimuthal gas flow,
helical motion of the column and compaction of the whole mixture
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(e.g. see Michaut et al. 2013) would possibly allow more devel-
oped evolution of the oscillatory behaviour. However, the driving
mechanism for the magma-wagging oscillation and the interaction
between wagging and gas flux, are shown to arise naturally from
the model, whose results remain consistent with the short-period
oscillatory behaviour in silicic volcanic systems.
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A P P E N D I X : A D D I T I O NA L N O N - L I N E A R
2 - D R E S U LT S

The non-linear results of the 2-D magma-wagging model with
annular channel gas flux are discussed in Section 4.3.2. Figs 7
and 8 display results for a moderate gap-width aspect-ratio
λ = L/(2Rm) = 0.1, low gas injection Mach number M =
W0/C = 0.1 and two different dimensionless magma viscosities
η = νm/(CL) = 5 and 50. Here, for completeness, we display two
more cases for the same values of λ and η, but a larger injection flux
M = 0.5 (Figs A1 and A2). In addition, we show four more cases
for a narrower gap aspect λ = 0.01, and the same combinations of
η = 5 or 50 and M = 0.1 or 0.5 (Figs A3–A6).

Figure A1. Same as Fig. 7 but for a higher gas injection velocity M = 0.5. An avi-format movie of this case is given in the Supporting Information.
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Figure A2. Same as Fig. 7 but for both a higher gas injection velocity M = 0.5 and magma column viscosity η = 50. An avi-format movie of this case is
given in the Supporting Information.

Figure A3. Same as Fig. 7 but for a narrow gap aspect ratio λ = 0.01. An avi-format movie of this case is given in the Supporting Information.
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Figure A4. Same as Fig. 7 but for a narrow gap aspect ratio λ = 0.01 and larger magma column viscosity η = 50. An avi-format movie of this case is given in
the Supporting Information.

Figure A5. Same as Fig. 7 but for a narrow gap aspect ratio λ = 0.01 and larger gas injection velocity with M = 0.5. An avi-format movie of this case is
given in the Supporting Information.
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Figure A6. Same as Fig. 7 but for a narrow gap aspect ratio λ = 0.01 and both larger magma column viscosity with η = 50 and gas injection velocity with
M = 0.5. An avi-format movie of this case is given in the Supporting Information.

S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Movies S1–S8. Animations of the numerical solutions displayed
in Figures 7, 8 and A1–A6 (http://gji.oxfordjournals.org/lookup/
suppl/doi:10.1093/gji/ggt277/-/DC1).

Please note: Oxford University Press is not responsible for
the content or functionality of any supporting materials sup-
plied by the authors. Any queries (other than missing mate-
rial) should be directed to the corresponding author for the
article.
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