C. Orbe, In addition to the CCMI and NCAR data we obtained MERRA U , V and T from the assimilated (ASM) (not analysis) collections, located on the NASA machines maintained by the NASA Center for Climate Simulation (NCCS). The ERA-I and JRA-55 U , V , T and ? fields were downloaded from the Research Data Archive at the National Center for Atmospheric Research, CCMI specified-dynamics simulations Data availability. The majority of the data of CCMI phase 1 used in this study can be obtained through the British Atmospheric Data Centre (BADC) archive, p.10, 2012.

D. Pj, . Bj, . Vj, . Md, A. Nla et al., CO performed the analysis of the CCMI simulations. CO, DP, DWW and HY conceived of the analysis and provided significant guidance on the paper and figures presented, SB performed the CCMI simulations in support of the CCMI phase 1 and provided constructive feedback on the paper. References Abalos, vol.120, pp.7534-7554, 2015.

H. Akiyoshi, T. Nakamura, T. Miyasaka, M. Shiotani, and M. Suzuki, A nudged chemistry-climate model simulation of chemical constituent distribution at northern high latitude stratosphere observed by SMILES and MLS during the 2009/2010 stratospheric sudden warming, J. Geophys. Res, vol.121, pp.1361-1380, 2016.

A. Arakawa and W. H. Schubert, Interactions of cumulus cloud ensemble with the large-scale environment. Part I, J. Atmos. Sci, vol.20, pp.671-701, 1974.

E. A. Barnes, N. Parazoo, C. Orbe, and A. S. Denning, Isentropic transport and the seasonal cycle amplitude of CO 2, J. Geophys. Res, vol.121, pp.8106-8124, 2016.

P. Bechtold, E. Bazile, F. Guichard, P. Mascart, and E. Richard, A mass-flux convection scheme for regional and global models, Q. J. Roy. Meteor. Soc, vol.127, pp.869-886, 2001.

E. M. Bednarz, A. C. Maycock, N. L. Abraham, P. Braesicke, O. Dessens et al., Future Arctic ozone recovery: the importance of chemistry and dynamics, Atmos. Chem. Phys, vol.16, pp.12159-12176, 2016.

P. Bougeault, A simple parameterization of the large-scale effects of cumulus convection, Mon. Weather Rev, vol.113, pp.2108-2121, 1985.

B. Bregman, E. Meijer, and R. Scheele, Key aspects of stratospheric tracer modeling using assimilated winds, Atmos. Chem. Phys, vol.6, pp.4529-4543, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00296046

M. P. Chipperfield, New version of the TOMCAT/SLIMCAT offline chemical transport model: Intercomparison of stratospheric tracer experiments, Q. J. Roy. Meteor. Soc, vol.132, pp.1179-1203, 2006.

A. Chrysanthou, A. C. Maycock, M. P. Chipperfield, S. Dhomse, H. Garny et al., The effect of atmospheric nudging on the stratospheric residual circulation in chemistry-climate models, Atmos. Chem. Phys, vol.19, pp.11559-11586, 2019.

P. Colarco, A. Da-silva, M. Chin, and T. Diehl, Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and groundbased aerosol optical depth, J. Geophys. Res, vol.115, p.14207, 2010.

N. A. Davis and S. M. Davis, Reconciling Hadley cell expansion trend estimates in reanalyses, Geophys. Res. Lett, vol.45, pp.11439-11446, 2018.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli et al., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc, vol.137, pp.553-597, 2011.

M. Deushi and K. Shibata, Development of a Meteorological Research Institute Chemistry-Climate Model version 2 for the Study of Tropospheric and Stratospheric Chemistry, Pap. Meteorol. Geophys, vol.62, pp.1-46, 2011.

S. Dietmüller, R. Eichinger, H. Garny, T. Birner, H. Boenisch et al., Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models, Atmos. Chem. Phys, vol.18, pp.6699-6720, 2018.

L. J. Donner, B. L. Wyman, R. S. Hemler, L. W. Horowitz, Y. Ming et al., The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3, J. Climate, vol.24, pp.3484-3519, 2011.

H. Douville, Stratospheric polar vortex influence on Northern Hemisphere winter climate variability, Geophys. Res. Lett, vol.36, p.18703, 2009.

J. L. Dufresne, M. A. Foujols, S. Denvil, A. Caubel, O. Marti et al., Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, vol.40, pp.2123-2165, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00794170

, European Centre for Medium-Range Weather Forecasts: ERA-Interim Project, Monthly Means, 2012.

V. Eyring, M. P. Chipperfield, M. A. Giorgetta, D. E. Kinnison, E. Manzini et al., Overview of the new CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal report, SPARC Newslett, vol.30, pp.20-26, 2008.

V. Eyring, J. F. Lamarque, P. Hess, F. Arfeuille, K. Bowman et al., Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) community simulations in support of upcoming ozone and climate assessments, SPARC Newslett, vol.40, pp.48-66, 2013.

W. Feng, M. P. Chipperfield, S. Dhomse, B. M. Monge-sanz, X. Yang et al., Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model, Atmos. Chem. Phys, vol.11, pp.5783-5803, 2011.

R. Gelaro, W. Mccarty, M. J. Suárez, R. Todling, A. Molod et al., The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, vol.30, pp.5419-5454, 2017.

E. P. Gerber and E. Manzini, The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6: assessing the stratosphere-troposphere system, Geosci. Model Dev, vol.9, pp.3413-3425, 2016.

J. Guth, B. Josse, V. Marécal, M. Joly, and P. Hamer, First implementation of secondary inorganic aerosols in the MOCAGE version R2.15.0 chemistry transport model, Geosci. Model Dev, vol.9, pp.137-160, 2016.
URL : https://hal.archives-ouvertes.fr/meteo-02482412

T. M. Hall and R. A. Plumb, Age as a diagnostic of stratospheric transport, J. Geophys. Res, vol.99, pp.1059-1070, 1994.

T. M. Hall, D. W. Waugh, K. A. Boering, and R. A. Plumb, Evaluation of transport in stratospheric models, J. Geophys. Res, vol.104, pp.18815-18839, 1999.

S. C. Hardiman, N. Butchart, F. M. O'connor, and S. T. Rumbold, The Met Office HadGEM3-ES chemistryclimate model: evaluation of stratospheric dynamics and its impact on ozone, Geosci. Model Dev, vol.10, pp.1209-1232, 2017.

H. T. Hewitt, D. Copsey, I. D. Culverwell, C. M. Harris, R. S. Hill et al., Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system, Geosci. Model Dev, vol.4, pp.223-253, 2011.

M. Holzer and T. M. Hall, Transit-time and tracer-age distributions in geophysical flows, J. Atmos. Sci, vol.57, pp.3539-3558, 2000.

U. Htap and . Ltrap, Air Pollution Studies No. 16: Interim report prepared by the Task Force on Hemispheric Transport of Air Pollution acting within the framework of the Convention on Long-Range Transboundary Air Pollution, United Nations, 2007.

K. Imai, N. Manago, C. Mitsuda, Y. Naito, E. Nishimoto et al., Validation of ozone data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES), J. Geophys. Res, vol.118, pp.5750-5769, 2013.

J. Meteorological-agency/japan, JRA-55: Japanese 55-year Reanalysis, Monthly Means and Variances. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, 2013.

C. Orbe, CCMI specified-dynamics simulations

P. Jöckel, H. Tost, A. Pozzer, M. Kunze, O. Kirner et al., Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51, Geosci. Model Dev, J. Geophys. Res, vol.9, p.24103, 2004.

B. Josse, P. Simon, and V. H. Peuch, Rn-222 global simulations with the multiscale CTM MOCAGE, Tellus B, vol.56, pp.339-356, 2004.

D. E. Kinnison, , 2019.

R. Kistler, E. Kalnay, W. Collins, S. Saha, G. White et al., The NCEP/NCAR 50-year reanalysis: Monthly means CD-ROM and documentation, B. Am. Meteorol. Soc, vol.82, pp.247-267, 2001.

S. Kobayashi, Y. Ota, Y. Harada, A. Ebita, M. Moriya et al., The JRA-55 reanalysis: General specifications and basic characteristics, J. Meteorol. Soc. Jpn. Ser. II, vol.93, pp.5-48, 2015.

A. Kunz, L. L. Pan, P. Konopka, D. E. Kinnison, and S. Tilmes, Chemical and dynamical discontinuity at the extratropical tropopause based on START08 and WACCM analyses, J. Geophys. Res, vol.116, p.24302, 2011.

J. Lamarque, D. T. Shindell, B. Josse, P. J. Young, I. Cionni et al., The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics, Geosci. Model Dev, vol.6, pp.179-206, 2013.

B. Legras, I. Pisso, G. Berthet, and F. Lefèvre, Variability of the Lagrangian turbulent diffusion in the lower stratosphere, Atmos. Chem. Phys, vol.5, pp.1605-1622, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00328391

M. Lin, A. M. Fiore, L. W. Horowitz, O. R. Cooper, V. Naik et al., Transport of Asian ozone pollution into surface air over the western United States in spring, J. Geophys. Res, vol.117, 2012.

M. Lin, L. W. Horowitz, S. J. Oltmans, A. M. Fiore, F. et al., Tropospheric ozone trends at Mauna Loa Observatory tied to decadal climate variability, Nat. Geosci, vol.7, pp.136-143, 2014.

M. Lin, A. M. Fiore, L. W. Horowitz, A. O. Langford, S. J. Oltmans et al., Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions, Nat. Commun, vol.6, p.7105, 2015.

M. Lin, L. W. Horowitz, O. R. Cooper, D. Tarasick, S. Conley et al., Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America, Geophys. Res. Lett, vol.42, 2015.

M. Marchand, P. Keckhut, S. Lefebvre, C. Claud, D. Cugnet et al., Dynamical amplification of the stratospheric solar response simulated with the chemistry-climate model LMDz-REPROBUS, J. Atmos. Sol.-Terr. Phys, pp.147-160, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00650612

P. Martineau, S-RIP: Zonal-mean dynamical variables of global atmospheric reanalyses on pressure levels, S-RIP: Zonalmean dynamical variables of global atmospheric reanalyses on pressure levels, Centre for Environmental Data Analysis, 2017.

P. Martineau, J. S. Wright, N. Zhu, and M. Fujiwara, Zonal-mean data set of global atmospheric reanalyses on pressure levels, Earth Syst. Sci. Data, vol.10, 1925.

C. Mclandress, D. A. Plummer, and T. G. Shepherd, Technical Note: A simple procedure for removing temporal discontinuities in ERA-Interim upper stratospheric temperatures for use in nudged chemistry-climate model simulations, Atmos, Chem. Phys, vol.14, pp.1547-1555, 2014.

E. W. Meijer, B. Bregman, A. Segers, and P. F. Van-velthoven, The influence of data assimilation on the age of air calculated with a global chemistry-transport model using ECMWF wind fields, Geophys. Res. Lett, vol.31, p.23114, 2004.

B. Monge-sanz, M. P. Chipperfield, A. Simmons, and S. Uppala, Mean age of air and transport in a CTM: Comparison of different ECMWF analyses, Geophys. Res. Lett, vol.34, p.4801, 2007.

B. M. Monge-sanz, M. P. Chipperfield, D. P. Dee, A. J. Simmons, and S. M. Uppala, Improvements in the stratospheric transport achieved by a CTM with ECMWF (re)analyses: Identifying effects and remaining challenges, Q. J. Roy. Meteor. Soc, vol.139, pp.654-673, 2012.

B. M. Monge-sanz, M. P. Chipperfield, A. Untch, J. Morcrette, A. Rap et al., On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing, Atmos. Chem. Phys, vol.13, pp.9641-9660, 2013.

S. Moorthi and M. J. Suarez, Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models, Mon. Weather Rev, vol.120, pp.978-1002, 1992.

O. Morgenstern, P. Braesicke, F. M. O'connor, A. C. Bushell, C. E. Johnson et al., Evaluation of the new UKCA climate-composition model -Part 1: The stratosphere, Geosci. Model Dev, vol.2, pp.43-57, 2009.

O. Morgenstern, M. I. Hegglin, E. Rozanov, F. M. O'connor, N. L. Abraham et al., Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI), Geosci. Model Dev, vol.10, pp.639-671, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01488608

T. E. Nordeng, Extended versions of the convection parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics, ECMWF Tech. Memo, vol.206, 1994.

C. Orbe, D. W. Waugh, H. Yang, J. F. Lamarque, S. Tilmes et al., Tropospheric transport differences between models using the same large-scale meteorological fields, Geophys. Res. Lett, vol.44, pp.1068-1078, 2017.

C. Orbe, L. D. Oman, S. E. Strahan, D. W. Waugh, S. Pawson et al., Large-Scale Atmospheric Transport in GEOS Replay Simulations, J. Adv. Model Earth. Sy, vol.9, pp.2545-2560, 2017.

C. Orbe, H. Yang, D. W. Waugh, G. Zeng, O. Morgenstern et al., Large-scale tropospheric transport in the Chemistry-Climate Model Initiative (CCMI) simulations, Atmos, Chem. Phys, vol.18, pp.7217-7235, 2018.

D. M. Pan and D. A. Randall, A cumulus parameterization with a prognostic closure, Q. J. Roy. Meteor. Soc, vol.124, pp.949-981, 1988.

P. K. Patra, S. Houweling, M. Krol, P. Bousquet, D. Belikov et al., TransCom model simulations of CH 4 and related species: linking transport, surface flux and chemical loss with CH 4 variability in the troposphere and lower stratosphere, Atmos. Chem. Phys, vol.11, pp.12813-12837, 2011.

S. Pawson, I. Stajner, S. R. Kawa, H. Hayashi, W. W. Tan et al., Stratospheric transport using 6-hr averaged winds from a data assimilation system, J. Geophys. Res, vol.112, p.23103, 2007.

M. M. Rienecker, M. J. Suarez, R. Todling, J. Bacmeister, L. Takacs et al., The GEOS-5 Data, vol.27, pp.1-118, 2008.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister et al., MERRA: NASA's modern-era retrospective analysis for research and applications, J. Climate, vol.24, pp.3624-3648, 2011.

M. R. Schoeberl, A. R. Douglass, Z. Zhu, and S. Pawson, A comparison of the lower stratospheric age spectra derived from a general circulation model and two data assimilation systems, J. Geophys. Res, vol.108, p.4113, 2003.

J. F. Scinocca, N. A. Mcfarlane, M. Lazare, J. Li, D. Plummer et al., Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere, Q. J. Roy. Meteor. Soc, vol.8, pp.878-888, 2008.

D. Z. Stockwell and M. P. Chipperfield, A tropospheric chemical transport model: development and validation of the model transport schemes, Q. J. Roy. Meteor. Soc, vol.125, pp.1747-1783, 1999.

S. Strahan, A. Douglass, and S. Steenrod, Chemical and dynamical impacts of stratospheric sudden warmings on arctic ozone variability, J. Geophys. Res.-Atmos, vol.121, pp.11836-11851, 2016.

S. E. Strahan, B. N. Duncan, and P. Hoor, Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model, Atmos, Chem. Phys, vol.7, pp.2435-2445, 2007.

S. A. Strode, B. N. Duncan, E. A. Yegorova, J. Kouatchou, J. R. Ziemke et al., Implications of carbon monoxide bias for methane lifetime and atmospheric composition in chemistry climate models, Atmos. Chem. Phys, vol.15, pp.11789-11805, 2015.

S. Szopa, Y. Balkanski, M. Schulz, S. Bekki, D. Cugnet et al., Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100, Clim. Dynam, vol.40, pp.2223-2250, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00723730

K. E. Taylor, R. J. Stouffer, and G. A. Meehl, An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc, vol.93, pp.485-498, 2012.

M. Tiedtke, A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Weather Rev, vol.117, pp.1179-1800, 1989.

S. Yukimoto, Meteorological research institute earth system model version 1 (MRI-ESM1): model description, Meteorological Research Institute, 2011.

H. Yoshimura and S. Yukimoto, Development of a Simple Coupler (Scup) for Earth System Modeling, Pap. Meteorol. Geophys, vol.59, pp.19-29, 2008.

D. N. Walters, K. D. Williams, I. A. Boutle, A. C. Bushell, J. M. Edwards et al., CCMI specified-dynamics simulations

A. Salcedo, M. E. Brooks, D. Copsey, P. D. Earnshaw, S. C. Hardiman et al., The Met Office Unified Model, vol.7, pp.361-386, 2014.

S. Watanabe, T. Hajima, K. Sudo, T. Nagashima, T. Takemura et al., MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, vol.4, pp.845-872, 2011.

D. W. Waugh, T. M. Hall, W. J. Randel, P. J. Rasch, B. A. Boville et al., Three-dimensional simulations of long-lived tracers using winds from MACCM2, J. Geophys. Res, vol.102, pp.21493-21513, 1997.

D. W. Waugh, A. M. Crotwell, E. J. Dlugokencky, G. S. Dutton, J. W. Elkins et al., Tropospheric SF 6 : Age of air from the Northern Hemisphere midlatitude surface, J. Geophys. Res.-Atmos, vol.118, pp.11429-11441, 2013.