P. Alt-epping, C. Tournassat, P. Rasouli, C. I. Steefel, K. U. Mayer et al., Benchmark reactive transport simulations of a column experiment in compacted bentonite with multispecies diffusion and explicit treatment of electrostatic effects, Comput. Geosci, vol.19, pp.535-550, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01192890

A. Barton and N. Wilde, Dissolution rates of polycrystalline samples of gypsum and orthorhombic forms of calcium sulphate by a rotating disc method, Trans. Faraday Soc, vol.67, pp.3590-3597, 1971.

L. Chen, Q. Kang, Q. Tang, B. A. Robinson, Y. L. He et al., Pore-scale simulation of multicomponent multiphase reactive transport w ith dissolution and precipitation, Int. J. Heat Mass Transf, vol.85, pp.935-949, 2015.

J. Christoffersen and M. R. Christoffersen, The kinetics of dissolution of calcium sulphate dihydrate in water, J. Cryst. Growth, vol.35, issue.76, pp.90247-90252, 1976.

J. Colombani, Measurement of the pure dissolution rate constant of a mineral in water, Geochim. Cosmochim. Acta, vol.72, pp.5634-5640, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00432693

J. Colombani and J. Bert, Holographic interferometry study of the dissolution and diffusion of gypsum in water, Geochim. Cosmochim. Acta, vol.71, pp.1913-1920, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00432680

C. F. Colón, E. H. Oelkers, and J. Schott, Experimental investigation of the effect of dissolution on sandstone permeability, porosity, and reactive surface area, Geochim. Cosmochim. Acta, vol.68, pp.805-817, 2004.

B. De-baere, S. Molins, K. U. Mayer, and R. François, Determination of mineral dissolution regimes using flow-through time-resolved analysis (FT-TRA) and numerical simulation, Chem. Geol, vol.430, pp.1-12, 2016.

D. P. Gregory and A. C. Riddiford, Transport to the surface of a rotating disc, J. Chem. Soc. N/A, pp.3756-3764, 1956.

M. E. Hodson, Does reactive surface area depend on grain size? Results from ph 3, 25 c far-from-equilibrium flow-through dissolution experiments on anorthite and biotite, Geochim. Cosmochim. Acta, vol.70, pp.1655-1667, 2006.

A. A. Jeschke and W. Dreybrodt, Dissolution rates of minerals and their relation to F. Dutka, et al, Chemical Geology, vol.540, p.119459, 2002.

, Geochim. Cosmochim. Acta, vol.66, issue.02, pp.893-894

A. A. Jeschke, K. Vosbeck, and W. Dreybrodt, Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics, Geochim. Cosmochim. Acta, vol.65, pp.27-34, 2001.

Q. Kang, I. N. Tsimpanogiannis, D. Zhang, and P. C. Lichtner, Numerical modeling of pore-scale phenomena during CO2 sequestration in oceanic sediments, Fuel Process. Technol, vol.86, pp.1351-1370, 2005.

P. Kondratiuk, H. Tredak, V. Upadhyay, A. J. Ladd, and P. Szymczak, Instabilities and finger formation in replacement fronts driven by an oversaturated solution, J. Geophys. Res. Solid Earth, vol.122, pp.5972-5991, 2017.

G. Landrot, J. B. Ajo-franklin, L. Yang, S. Cabrini, and C. I. Steefel, Measurement of accessible reactive surface area in a sandstone, with application to CO2 mineralization, Chem. Geol, pp.113-125, 2012.

A. C. Lasaga, Transition state theory, Kinetics of Geochemical Processes, vol.8, pp.135-169, 1981.

A. C. Lasaga, Chemical kinetics of water-rock interactions, J. Geophys. Res. Solid, vol.89, pp.4009-4025, 1984.

A. L. Lebedev, Kinetics of gypsum dissolution in water, Geochem. Int, vol.53, pp.811-824, 2015.

P. C. Lichtner and Q. Kang, Upscaling pore-scale reactive transport equations using a multiscale continuum formulation, Water Resour. Res, vol.43, 2007.

M. M. Mbogoro, M. E. Snowden, M. A. Edwards, M. Peruffo, and P. R. Unwin, Intrinsic kinetics of gypsum and calcium sulfate anhydrite dissolution: surface selective studies under hydrodynamic control and the effect of additives, J. Phys. Chem. C, vol.115, pp.10147-10154, 2011.

S. Molins, C. Soulaine, N. I. Prasianakis, A. Abbasi, P. Poncet et al., Simulation of mineral dissolution at the pore scale with evolving solid-fluid interfaces: review of approaches and benchmark problem set, Comput. Geosci, issue.89, pp.90010-90016, 2020.
URL : https://hal.archives-ouvertes.fr/hal-01998494

S. Molins, D. Trebotich, C. I. Steefel, and C. Shen, An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation, Water Resour. Res, vol.48, 2012.

S. Molins, D. Trebotich, L. Yang, J. B. Ajo-franklin, T. J. Ligocki et al., Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments, Environ. Sci. Technol, vol.48, pp.7453-7460, 2014.

C. Noiriel, L. Luquot, B. Madé, L. Raimbault, P. Gouze et al., Changes in reactive surface area during limestone dissolution: an experimental and modelling study, Chem. Geol, vol.265, pp.160-170, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00445274

T. D. Oliveira, M. J. Blunt, and B. Bijeljic, Modelling of multispecies reactive transport on pore-space images, Adv. Water Resour, vol.127, pp.192-208, 2019.

L. Onsager and R. M. Fuoss, Irreversible processes in electrolytes. Diffusion, conductance and viscous flow in arbitrary mixtures of strong electrolytes, J. Phys. Chem, vol.36, pp.2689-2778, 1931.

P. Ortoleva, J. Chadam, E. Merino, and A. Sen, Geochemical self-organization II: the reactive-infiltration instability, Am. J. Sci, vol.287, pp.1008-1040, 1987.

F. Osselin, A. Budek, O. Cybulski, P. Kondratiuk, P. Garstecki et al., Microfluidic observation of the onset of reactive infiltration instability in an analog fracture, Geophys. Res. Lett, vol.43, pp.6907-6915, 2016.

E. A. Pachon-rodriguez and J. Colombani, Pure dissolution kinetics of anhydrite and gypsum in inhibiting aqueous salt solutions, AIChE J, vol.59, pp.1622-1626, 2013.

J. L. Palandri and Y. K. Kharaka, A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling, Technical Report. US Geological Survey, 2004.

D. L. Parkhurst and C. A. Appelo, Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Technical Report. U.S. Geological Survey, 2013.

J. P. Pereira-nunes, M. J. Blunt, and B. Bijeljic, Pore-scale simulation of carbonate dissolution in micro-ct images, J. Geophys. Res. Solid Earth, vol.121, pp.558-576, 2016.

M. A. Raines and T. A. Dewers, Mixed transport/reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst, Chem. Geol, vol.140, pp.29-48, 1997.

J. D. Rimstidt, S. L. Brantley, and A. A. Olsen, Systematic review of forsterite dissolution rate data, Geochim. Cosmochim. Acta, vol.99, pp.159-178, 2012.

C. Soulaine, S. Roman, A. Kovscek, and H. A. Tchelepi, Mineral dissolution and wormholing from a pore-scale perspective, J. Fluid Mech, vol.827, pp.457-483, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01692768

V. Starchenko and A. J. Ladd, The development of wormholes in laboratory scale fractures: perspectives from three-dimensional simulations, Water Resour. Res, vol.54, pp.7946-7959, 2018.

V. Starchenko, C. J. Marra, and A. J. Ladd, Three-dimensional simulations of fracture dissolution, J. Geophys. Res. Solid Earth, vol.121, pp.6421-6444, 2016.

C. I. Steefel, C. A. Appelo, B. Arora, D. Jacques, T. Kalbacher et al., Reactive transport codes for subsurface environmental simulation, Comput. Geosci, vol.19, pp.445-478, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01223868

P. Szymczak and A. J. Ladd, Reactive infiltration instabilities in rocks. Fracture dissolution, J. Fluid Mech, vol.702, pp.239-264, 2012.

P. Szymczak and A. J. Ladd, Reactive infiltration instabilities in rocks. Part 2. Dissolution of a porous matrix, J. Fluid Mech, vol.738, pp.591-630, 2014.

D. Trebotich, M. F. Adams, S. Molins, C. I. Steefel, and C. Shen, High-resolution simulation of pore-scale reactive transport processes associated with carbon sequestration, Comput. Sci. Eng, vol.16, pp.22-31, 2014.

V. K. Upadhyay, P. Szymczak, and A. J. Ladd, Initial conditions or emergence: what determines dissolution patterns in rough fractures?, J. Geophys. Res. Solid Earth, vol.120, pp.6102-6121, 2015.

M. T. Vu and P. M. Adler, Application of level-set method for deposition in three-dimensional reconstructed porous media, Phys. Rev. E, vol.89, p.53301, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01196394

F. Dutka, Chemical Geology, vol.540, p.119459, 2020.