M. M. Walsh and D. R. Lowe, Modes of accumulation of carbonaceous matter in the early Archaean: a petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup, Geologic Evolution of the, vol.329, pp.115-132, 1999.

M. A. Van-zuilen, M. Chaussidon, C. Rollion-bard, and B. Marty, Carbonaceous cherts of the Barberton greenstone belt, South Africa: isotopic, chemical and structural characteristics of individual microstructures, Geochimica et Cosmochimica Acta, vol.71, pp.655-669, 2007.

M. D. Brasier, D. Wacey, and N. Mcloughlin, Taphonomy in temporally unique settings: an environmental traverse in search of the earliest life on Earth, Taphonomy: Process and Bias Through Time, vol.32, 2011.

M. A. Van-zuilen, The significance of carbonaceous matter to understanding life processes on early Earth, pp.945-963, 2018.

F. Westall, Implications of in situ calcification for photosynthesis in a ?3.3 Ga-old microbial biofilm from the Barberton Greenstone Belt, South Africa. Earth and Planetary Science Letters, vol.310, pp.468-479, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00619448

D. Gourier, Extraterrestrial organic matter preserved in 3.33 Ga sediments from, Geochimica et Cosmochimica Acta, vol.258, pp.207-225
URL : https://hal.archives-ouvertes.fr/insu-02139075

E. J. Javaux, Challenges in evidencing the earliest traces of life, Nature, vol.572, pp.451-460, 2019.

C. P. Marshall, Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia, Precambrian Research, vol.155, pp.1-23, 2007.

K. Lepot, Texture-specific isotopic compositions in 3.4 Gyr old organic matter support selective preservation in cell-like structures, Geochimica et Cosmochimica Acta, vol.112, pp.66-86, 2013.

F. Greco, B. Cavalazzi, A. Hofmann, and K. Hickman-lewis, Raman spectroscopy in palaeontology: a case study from Archaean biostructures, Bollettino della Società Paleontologica Italiana, vol.57, pp.59-74

M. T. Rosing, 13C-depleted carbon microparticles in>3700-Ma sea-floor sedimentary rocks from west Greenland, Science, vol.283, pp.674-676, 1999.

N. V. Grassineau, P. W. Appel, C. M. Fowler, and E. G. Nisbet, Distinguishing biological from hydrothermal signatures via sulphur and carbon isotopes in Archaean mineralizations at 3.8 and 2.7 Ga, Mineral Deposits and Earth Evolution, vol.248, pp.195-212, 2005.

J. Duda, Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archean biomass -the "hydrothermal pump hypothesis, Biogeosciences, vol.15, pp.1535-1548, 2018.

J. W. Schopf, An anaerobic ~3400 Ma shallow-water microbial consortium: Presumptive evidence of Earth's Paleoarchean anoxic atmosphere, Precambrian Research, vol.299, pp.309-318, 2017.

M. Schidlowski, Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept, Precambrian Research, vol.106, pp.117-134, 2001.

A. Vieth and H. Wilkes, Stable isotopes in understanding origin and degradation processes of petroleum, Handbook of Hydrocarbon and Lipid Microbiology, pp.97-111, 2009.

J. R. Havig, T. L. Hamilton, A. Bachan, and L. R. Kump, Sulfur and carbon isotopic evidence for metabolic pathway evolution and a four-stepped Earth system progression across the Archean and Paleoproterozoic, Earth-Science Reviews, vol.174, pp.1-21, 2017.

T. M. Mccollum and J. S. Seewald, Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions, Earth and Planetary Science Letters, vol.243, pp.74-84, 2006.

R. J. Williams, Chemical selection of elements by cells. Coordination Chemistry Reviews 216-217, pp.583-595, 2001.

J. J. Frausto-da-silva and R. J. Williams, The biological chemistry of the elements, p.600, 2001.

R. J. Williams and J. J. Fraústo-da-silva, Evolution was chemically constrained, Journal of Theoretical Biology, vol.220, pp.323-343, 2003.

M. C. Sforna, Evidence for arsenic metabolism and cycling by organisms 2.7 billion years ago, Nature Geoscience, vol.7, pp.811-815, 2016.

E. K. Moore, B. I. Jelen, D. Giovannelli, H. Raanan, and P. G. Falkowski, Metal availability and the expanding network of microbial metabolisms in the Archaean eon, Nature Geoscience, vol.10, pp.629-636, 2017.

S. Schultze-lam, D. Fortin, B. S. Davis, and T. J. Beveridge, Mineralization of bacterial surfaces, Chemical Geology, vol.132, pp.171-181, 1993.

F. Orange, J. Disnar, F. Westall, D. Prieur, and P. Baillif, Metal cation binding by the hyperthermophilic microorganism, Archaea Methanocaldococcus jannaschii, and its effects on silicification, Palaeontology, vol.54, pp.953-964, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00616553

R. Lobinski, J. S. Becker, H. Haraguchi, and B. Sarkar, Metallomics: Guidelines for terminology and critical evaluation of analytical chemistry approaches (IUPAC Technical Report), Pure and Applied Chemistry, vol.82, pp.493-504, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01564529

R. A. Wogelius, Science, vol.333, pp.1622-1626, 2011.

N. P. Edwards, Leaf metallome preserved over 50 million years, Metallomics, vol.6, pp.774-782, 2014.

L. J. Liermann, E. M. Hausrath, A. D. Anbar, and S. L. Brantley, Assimilatory and dissimilatory processes of microorganisms affecting metals in the environment, Journal of Analytical Atomic Spectrometry, vol.22, pp.867-877, 2007.

V. Cameron, C. H. House, and S. L. Brantley, A first analysis of metallome biosignatures of hyperthermophilic archaea, Article ID, vol.789278, 2012.

F. Westall, Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context, Geology, vol.43, pp.615-618, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01167397

F. Westall, A hydrothermal-sedimentary context for the origin for life, Astrobiology, vol.18, pp.259-293, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01740060

K. Hickman-lewis, Mechanistic morphogenesis of organo-sedimentary structures growing under geochemically stressed conditions: keystone to the interpretation of some Archaean stromatolites? Geosciences, vol.9, p.359, 2019.

A. Hofmann and R. Bolhar, The origin of carbonaceous cherts in the Barberton Greenstone Belt and their significance for the study of early life in mid-Archaean rocks, Astrobiology, vol.7, pp.355-388, 2007.

E. G. Nisbet and C. M. Fowler, The hydrothermal imprint on life: did heat-shock proteins, metalloproteins and photosynthesis begin around hydrothermal vents?, vol.118, pp.239-251, 1996.

E. A. Gaucher, J. T. Kratzer, and R. N. Randall, Deep Phylogeny-How a Tree Can Help Characterize Early Life on Earth, Cold Spring Harbor Perspectives Biology, vol.2, p.2238, 2010.

E. G. Nisbet and C. M. Fowler, Archaean metabolic evolution of microbial mats, Proceedings of the Royal Society of London B, vol.266, pp.2375-2382, 1999.

K. Hickman-lewis, F. Westall, and B. Cavalazzi, Trace of Early Life in the Barberton Greenstone Belt, Earth's Oldest Rocks, pp.1029-1058, 2018.

N. H. Sleep, Geological and geochemical constraints on the origin and evolution of life, Astrobiology, vol.18, pp.1199-1219, 2018.

N. T. Arndt and E. G. Nisbet, Processes on the young Earth and the habitats of early life, Annual Review of Earth and Planetary Sciences, vol.40, pp.521-549, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00683529

A. L. Zerkle, C. H. House, and S. L. Brantley, Biogeochemical signatures through time as inferred from whole microbial genomes, American Journal of Science, vol.305, pp.467-502, 2005.

K. L. French, Reappraisal of hydrocarbon biomarkers in Archean rocks, Proceedings of the National Academy of Sciences USA, vol.112, pp.5915-5920, 2015.

S. Schultze-lam, F. G. Ferris, K. Konhauser, and R. G. Wiese, In situ silicification of an Icelandic hot spring microbial mat: implications for microfossil formation, Canadian Journal of Earth Sciences, vol.32, pp.2021-2026, 1995.

B. Gourcerol, P. C. Thurston, D. J. Kontak, and O. Co?te-mantha, Interpretations and implications of LA ICP-MS analysis of chert for the origin of geochemical signatures in banded iron formations (BIFs) from the Meadowbank gold deposit, Chemical Geology, vol.410, pp.89-107, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02283944

R. Bolhar, A. Hofmann, M. Siahi, Y. Feng, and C. Delvigne, A trace element and Pb isotopic investigation into the provenance and deposition of stromatolitic carbonates, ironstones and associated shales of the ~3.0 Ga Pongola Supergroup, Kaapvaal Craton, Geochimica et Cosmochimica Acta, vol.158, pp.57-78, 2015.

C. Jeandel and E. H. Oelkers, The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles, Chemical Geology, vol.395, pp.50-66, 2015.

M. M. Walsh, Microfossils and possible microfossils from the Early Archean Onverwacht Group, Precambrian Research, vol.54, pp.271-293, 1992.

L. Margulis, B. D. Grosovsky, J. F. Stolz, E. J. Gong-collins, and S. Lenk, Distinctive microbial structures and the pre-Phanerozoic fossil record, Precambrian Research, vol.20, pp.443-477, 1983.

S. K. Juniper, P. Martineu, J. Sarrazin, and Y. Gélinas, Microbial-mineral floc associated with nascent hydrothermal activity on CoAxial Segment, Juan de Fuca Ridge, Geophysical Research Letters, vol.22, pp.179-182, 1995.

D. Wacey, M. Saunders, C. Kong, A. T. Brasier, and M. D. Brasier, 46 Ga Apex chert 'microfossils' reinterpreted as mineral artefacts produced during phyllosilicate exfoliation, Gondwana Research, vol.36, pp.296-313, 2016.

B. Rasmussen and R. Buick, Oily old ores: evidence for hydrothermal petroleum generation in an Archean volcanogenic massive sulfide deposit, Geology, vol.28, pp.731-734, 2000.

D. Wacey, M. Fisk, M. Saunders, K. Eiloart, and C. Kong, Critical testing of potential cellular structures within microtubes in 145 Ma volcanic glass from the Argo Abyssal Plain, Chemical Geology, vol.466, pp.575-587, 2017.

G. Proskurowski, Abiogenic hydrocarbon production at the geosphere-biosphere interface via serpentinization reactions, Handbook of Hydrocarbon and Lipid Microbiology, pp.215-231, 2009.

Y. Kouketsu, A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width, Island Arc, vol.23, pp.33-50, 2014.

S. Sorieul, . Alfaurt, . Ph, L. Daudin, L. Serani et al., Ph Aifira: an ion beam facility for multidisciplinary research, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Material and Atoms, vol.332, pp.68-73, 2014.

N. M. Halden, J. L. Campbell, and W. J. Teesdale, PIXE microanalysis in mineralogy and petrology, Canadian Mineralogist, vol.33, pp.293-302, 1995.

J. L. Campbell, W. J. Teesdale, and N. M. Halden, Theory, practice and application of PIXE microanalysis and SPM element mapping, Canadian Mineralogist, vol.33, pp.279-292, 1995.

C. Heim, Assessing the utility of trace and rare earth elements as biosignatures in microbial iron oxyhydroxides, Frontiers in Earth Science, vol.3, 2015.

D. Wacey, M. R. Kilburn, M. Saunders, J. Cliff, and M. D. Brasier, Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia, Nature Geoscience, vol.4, pp.698-702, 2011.

J. Marin-carbonne, Sulfur isotope's signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sulfate reduction, Geobiology, vol.2018, pp.1-18, 2018.

R. E. Rickaby, Goldilocks and the three inorganic equilibria: how Earth's chemistry and life coevolve to be nearly in tune, Philosophical Transactions of the Royal Society A, vol.373, p.20140188, 2015.

C. P. Marshall, Imaging of vanadium in microfossils: a new potential biosignature, Astrobiology, vol.17, pp.1069-1076, 2017.

D. Gregorio, B. T. Sharp, and T. G. , The structure and distribution of carbon in the 3.5 Ga Apex chert: implications for the biogenicity of Earth's oldest putative microfossils, American Mineralogist, vol.91, pp.784-789, 2006.

M. A. Saito, D. M. Sigman, and F. M. Morel, The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary, Inorganica Chimica Acta, vol.356, pp.308-318, 2003.

C. L. Dupont, S. Yang, B. Palenik, and P. E. Bourne, Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.17822-17827, 2006.

E. K. Moore, Geological and Chemical Factors that Impacted the Biological Utilization of Cobalt in the Archean Eon, Journal of Geophysical Research, vol.123, p.4067, 2018.

M. A. Saito, J. W. Moffett, S. W. Chisholm, and J. B. Waterbury, Cobalt limitation and uptake in Prochlorococcus, Limnology and Oceanography, vol.47, pp.1629-1636, 2002.

S. Wang, Variations in Metal Tolerance and Accumulation in Three Hydroponically Cultivated Varieties of Salix integra Treated with Lead, PLoS ONE, vol.9, p.108568, 2014.

P. S. De-oliveira-martins, N. F. De-almeida, and S. G. Leite, Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system, Brazilian Journal of Microbiology, vol.39, pp.780-786, 2008.

G. E. Leventhal, M. Ackerman, and K. T. Schiessl, Why microbes secrete molecules to modify their environment: the case of ironchelating siderophores, Journal of the Royal Society Interface, vol.16, 2019.

E. S. Boyd and J. W. Peters, New insights into the evolutionary history of biological nitrogen fixation, Frontiers and Microbiology, vol.4, p.201, 2013.

C. G. Wheat, M. J. Mottl, and M. Rudnicki, Trace element and REE composition of a low-temperature ridge-flank hydrothermal spring, Geochimica et Cosmochimica Acta, vol.66, pp.3693-3705, 2002.

E. E. Stüeken, R. Buick, B. M. Guy, and M. C. Koehler, Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr, Nature, vol.520, pp.666-669, 2015.

L. J. Robbins, Trace elements at the intersection of marine biological and geochemical evolution, Earth-Science Reviews, vol.163, pp.323-348, 2016.

B. Friedrich and E. Schwartz, Molecular biology of hydrogen utilization in aerobic chemolithotrophs, Annual Review of Microbiology, vol.47, pp.351-383, 1993.

K. L. Londry and D. J. Des-marais, Stable carbon isotope fractionation by sulfate-reducing bacteria, Applied and Environmental Microbiology, vol.69, pp.2942-2949, 2003.

T. E. Mccandless and J. J. Gurney, Diamond eclogites: comparison with carbonaceous chondrites, carbonaceous shales and microbial carbon-enriched MORB, Russian Geology and Geophysics, vol.38, pp.394-404, 1997.

B. Cavalazzi, Chemotrophic Filamentous Microfossils from the Hollard Mound (Devonian, Morocco) as Investigated by Focused Ion Beam, Astrobiology, vol.7, pp.402-415, 2007.

K. Hickman-lewis, Goldschmidt Abstracts, p.1627, 2017.

K. Hickman-lewis, Influence of early ocean chemistry on cell biochemistry and prokaryotic metallomic biosignatures, p.1014, 2018.

A. C. Allwood, Texture-specific elemental analysis of rocks and soils with PIXL: The Planetary Instrument for X-ray Lithochemistry on Mars 2020, IEEE Aerospace Conference Proceedings, p.15215581, 2015.

A. H. Knoll, K. D. Bergmann, and J. V. Strauss, Life: the first two billion years, Philosophical Transactions of the Royal Society B, vol.371, p.20150493, 2016.

J. A. Maxwell, W. J. Teesdale, and J. L. Campbell, The Gupix PIXE software package II. Nuclear Instruments and Method in, Physics Research B, vol.95, pp.407-421, 1995.

M. Mayer, SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA, AIP Conference Proceedings, vol.475, p.541, 1999.