Metallomics in deep time and the influence of ocean chemistry on the metabolic landscapes of Earth's earliest ecosystems - Archive ouverte HAL Access content directly
Journal Articles Scientific Reports Year : 2020

Metallomics in deep time and the influence of ocean chemistry on the metabolic landscapes of Earth's earliest ecosystems

(1) , (2) , (3) , (4, 5) , (1) , (6) , (6) , (7, 1) , (8) , (1)
1
2
3
4
5
6
7
8

Abstract

Modern biological dependency on trace elements is proposed to be a consequence of their enrichment in the habitats of early life together with Earth's evolving physicochemical conditions; the resulting metallic biological complement is termed the metallome. Herein, we detail a protocol for describing metallomes in deep time, with applications to the earliest fossil record. Our approach extends the metallome record by more than 3 Ga and provides a novel, non-destructive method of estimating biogenicity in the absence of cellular preservation. Using microbeam particle-induced X-ray emission (µPIXE), we spatially quantify transition metals and metalloids within organic material from 3.33 billion-year-old cherts of the Barberton greenstone belt, and demonstrate that elements key to anaerobic prokaryotic molecular nanomachines, including Fe, V, Ni, As and Co, are enriched within carbonaceous material. Moreover, Mo and Zn, likely incorporated into enzymes only after the Great Oxygenation Event, are either absent or present at concentrations below the limit of detection of µPIXE, suggesting minor biological utilisation in this environmental setting. Scanning and transmission electron microscopy demonstrates that metal enrichments do not arise from accumulation in nanomineral phases and thus unambiguously reflect the primary composition of the carbonaceous material. This carbonaceous material also has δ 13 c between −41.3‰ and 0.03‰, dominantly −21.0‰ to −11.5‰, consistent with biological fractionation and mostly within a restricted range inconsistent with abiotic processes. Considering spatially quantified trace metal enrichments and negative δ 13 C fractionations together, we propose that, although lacking cellular preservation, this organic material has biological origins and, moreover, that its precursor metabolism may be estimated from the fossilised "palaeo-metallome". Enriched Fe, V, Ni and Co, together with petrographic context, suggests that this kerogen reflects the remnants of a lithotrophic or organotrophic consortium cycling methane or nitrogen. Palaeo-metallome compositions could be used to deduce the metabolic networks of Earth's earliest ecosystems and, potentially, as a biosignature for evaluating the origin of preserved organic materials found on Mars. "The system of cell chemistry…cannot be divorced from the environment any more than it can be separated from a code. All the basic chemicals and energy come from the environment and this remains true to this day"
Fichier principal
Vignette du fichier
Hickman-Lewis et al. (2020) Palaeo-Metallomics.pdf (3.76 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

insu-02511006 , version 1 (18-03-2020)

Identifiers

Cite

Keyron Hickman-Lewis, Barbara Cavalazzi, Stéphanie Sorieul, Pascale Gautret, Frédéric Foucher, et al.. Metallomics in deep time and the influence of ocean chemistry on the metabolic landscapes of Earth's earliest ecosystems. Scientific Reports, 2020, ⟨10.1038/s41598-020-61774-w⟩. ⟨insu-02511006⟩
122 View
64 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More