M. Park and S. A. Snyder, Sample handling and data processing for fluorescent excitation-638 emission matrix (EEM) of dissolved organic matter (DOM), Chemosphere, vol.193, pp.530-537, 2018.


R. Pedrosa-pàmies, C. Parinos, A. Sanchez-vidal, A. Gogou, A. Calafat et al., , p.641

I. Bouloubassi and N. Lampadariou, Composition and sources of sedimentary organic 642 matter in the deep eastern Mediterranean Sea, Biogeosciences, vol.12, pp.7379-7402, 2015.


R. Brogi, S. Derrien, M. Hur, and J. , Depth Assessment of the Effect of Sodium, 2019.

, Azide on the Optical Properties of Dissolved Organic Matter, J. Fluoresc, pp.1-9


R. Brogi, S. Kim, J. Ryu, J. Jin, Y. K. Lee et al., Exploring 648 sediment porewater dissolved organic matter (DOM) in a mud volcano: Clues of a 649 thermogenic DOM source from fluorescence spectroscopy, Mar. Chem, 2019.


V. G. Shah, R. H. Dunstan, P. M. Geary, P. .. Coombes, T. K. Roberts et al.,

E. , Evaluating potential applications of faecal sterols in distinguishing sources of 653 faecal contamination from mixed faecal samples, Water Res, vol.41, pp.3691-3700, 2007.


M. Sillanpää, Natural Organic Matter in Water: Characterization and Treatment Methods, p.656, 2015.

, Natural Organic Matter in Water: Characterization and Treatment Methods


M. W. Southwell, R. J. Kieber, R. N. Mead, G. B. Avery, and S. A. Skrabal, , 2010.

B. Wild, A. Andersson, L. Bröder, J. Vonk, G. Hugelius et al., , p.685

P. A. Raymond and Ö. Gustafsson, Rivers across the Siberian Arctic unearth the patterns 686 of carbon release from thawing permafrost, Proc. Natl. Acad. Sci. U. S. A, vol.116, pp.10280-687, 2019.

U. J. Wünsch, K. R. Murphy, and C. A. Stedmon, The One-Sample PARAFAC Approach, 2017.

, Reveals Molecular Size Distributions of Fluorescent Components in Dissolved Organic

, Matter. Environ. Sci. Technol

H. Xiao and C. Liu, Identifying organic matter provenance in sediments using isotopic 692 ratios in an urban river, Geochem. J, vol.44, pp.181-187, 2010.

Y. Yamashita, J. N. Boyer, and R. Jaffé, Evaluating the distribution of terrestrial dissolved 694 organic matter in a complex coastal ecosystem using fluorescence spectroscopy, Cont. Shelf, 2013.

. Res, , vol.66, pp.136-144

Y. Yamashita, N. Maie, H. Briceño, and R. Jaffé, Optical characterization of dissolved 697 organic matter in tropical rivers of the Guayana Shield, J. Geophys. Res, 2010.

, Biogeosciences, vol.115

Z. T. Yu, X. J. Wang, E. L. Zhang, C. Y. Zhao, and X. Q. Liu, Spatial distribution and sources 700 of organic carbon in the surface sediment of Bosten Lake, China. Biogeosciences, vol.12, pp.6605-701, 2015.

L. Zhang, K. Yin, L. Wang, F. Chen, D. Zhang et al., The sources and 703 accumulation rate of sedimentary organic matter in the Pearl River Estuary and adjacent 704 coastal area, Southern China, Estuar. Coast. Shelf Sci, vol.85, pp.190-196, 2009.

Y. Zhang, Y. Su, Z. Liu, J. Yu, and M. Jin, Lipid biomarker evidence for determining the 707 origin and distribution of organic matter in surface sediments of Lake Taihu, 2017.

, Ecol. Indic, vol.77, pp.397-408

A. R. Zimmerman and E. A. Canuel, Bulk Organic Matter and Lipid Biomarker Composition 710 of Chesapeake Bay Surficial Sediments as Indicators of Environmental Processes, 2001.

, Coast. Shelf Sci, vol.53, pp.319-341

A. Zsolnay, E. Baigar, M. Jimenez, B. Steinweg, and F. Saccomandi, Differentiating with 713 fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to 714 drying, Chemosphere, vol.38, pp.45-50, 1999.