V. Shankar and A. Sharma, Instability of the interface between thin fluid films subjected to electric fields, J. Colloid Interface Sci, vol.274, p.294, 2004.

S. Qian, S. W. Joo, Y. Jiang, and M. A. Cheney, Free-surface problems in electrokinetic micro-and nanofluidics, Mech. Res. Commun, vol.36, p.82, 2009.

M. A. André and P. M. Bardet, Experimental study of shear layer instability below a free surface, Phys. Fluids, vol.27, p.112103, 2015.

J. Dhar, S. Mukherjee, and S. Chakraborty, Universal oscillatory dynamics in capillary filling, EPL (Europhysics Lett, vol.125, p.14003, 2019.

W. Choi, A. Sharma, S. Qian, G. Lim, and S. W. Joo, Is free surface free in micro-scale electrokinetic flows?, J. Colloid Interface Sci, vol.347, p.153, 2010.

S. W. Joo, A new hydrodynamic instability in ultra-thin film flows induced by electroosmosis, J. Mech. Sci. Technol, vol.22, p.382, 2008.

Y. Gao, T. N. Wong, C. Yang, and K. T. Ooi, Two-fluid electroosmotic flow in microchannels, J. Colloid Interface Sci, vol.284, p.306, 2005.

U. Rosendahl, A. Grah, and M. E. Dreyer, Convective dominated flows in open capillary channels, Phys. Fluids, vol.22, p.52102, 2010.

A. A. Kumar, B. J. Medhi, and A. Singh, Experimental investigation of interface deformation in free surface flow of concentrated suspensions, Phys. Fluids, vol.28, p.113302, 2016.

Y. Temiz, R. D. Lovchik, G. Kaigala, and E. Delamarche, Lab-on-a-chip devices: How to close and plug the lab?, Microelectron. Eng, vol.132, p.156, 2015.

J. Gao, M. L. Sin, T. Liu, V. Gau, J. C. Liao et al., Hybrid electrokinetic manipulation in high-conductivity media, Lab Chip, vol.11, p.1770, 2011.

G. Kunti, A. Bhattacharya, and S. Chakraborty, Rapid mixing with high-throughput in a semi-active semi-passive micromixer, Electrophoresis, vol.38, p.1310, 2017.

T. M. Squires and M. Z. Bazant, Induced-charge electro-osmosis, J. Fluid Mech, vol.509, p.217, 2004.

G. Kunti, A. Bhattacharya, and S. Chakraborty, Numerical investigations of electrothermally actuated moving contact line dynamics: Effect of property contrasts, Phys. Fluids, vol.29, p.82009, 2017.

S. Chakraborty and S. K. Som, Heat Transfer in an evaporating thin liquid film moving slowly along the walls of an inclined microchannel, Int. J. Heat Mass Transf, vol.48, p.2801, 2005.

J. Dhar, P. Jaggi, and S. Chakraborty, Oscillatory regimes of capillary imbibition of viscoelastic fluids through concentric annulus, RSC Adv, vol.6, p.60117, 2016.

J. Dhar, U. Ghosh, and S. Chakraborty, Electro-capillary effects in capillary filling dynamics of electrorheological fluids, Soft Matter, vol.11, p.6957, 2015.

E. Boyko, S. Rubin, A. D. Gat, and M. Bercovici, Flow patterning in Hele-Shaw configurations using non-uniform electro-osmotic slip, Phys. Fluids, vol.27, p.102001, 2015.

C. Qi and C. Ng, Electroosmotic flow of a two-layer fluid in a slit channel with gradually varying wall shape and zeta potential, Int. J. Heat Mass Transf, vol.119, p.52, 2018.

G. Kunti, A. Bhattacharya, and S. Chakraborty, Alternating current electrothermal modulated moving contact line dynamics of immiscible binary fluids over patterned surfaces, Soft Matter, vol.13, p.6377, 2017.

G. Kunti, A. Bhattacharya, and S. Chakraborty, Interfacial dynamics of immiscible binary fluids through ordered porous media: The interplay of thermal and electric fields, Phys. Fluids, vol.31, p.32002, 2019.

R. Chakraborty, R. Dey, and S. Chakraborty, Thermal characteristics of electromagnetohydrodynamic flows in narrow channels with viscous dissipation and Joule heating under constant wall heat flux, Int. J. Heat Mass Transf, vol.67, p.1151, 2013.

S. Mandal, U. Ghosh, A. Bandopadhyay, and S. Chakraborty, Electro-osmosis of superimposed fluids in the presence of modulated charged surfaces in narrow confinements, J. Fluid Mech, vol.776, p.390, 2015.

S. Chakraborty and S. Ray, Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels, Phys. Fluids, vol.20, p.83602, 2008.

M. Z. Bazant and T. M. Squires, Induced-charge electrokinetic phenomena, Curr. Opin. Colloid Interface Sci, vol.15, p.203, 2010.

G. Kunti, P. K. Mondal, A. Bhattacharya, and S. Chakraborty, Electrothermally modulated contact line dynamics of a binary fluid in a patterned fluidic environment, Phys. Fluids, vol.30, p.92005, 2018.

S. Talapatra and S. Chakraborty, Double layer overlap in ac electroosmosis, Eur. J. Mech, vol.27, p.297, 2008.

W. Y. Ng, S. Goh, Y. C. Lam, C. Yang, and I. Rodríguez, DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels, Lab Chip, vol.9, p.802, 2009.

G. Kunti, J. Dhar, S. Bandyopadhyay, A. Bhattacharya, and S. Chakraborty, Energyefficient generation of controlled vortices on low-voltage digital microfluidic platform, Appl. Phys. Lett, vol.113, p.124103, 2018.

J. J. Feng, S. Krishnamoorthy, and S. Sundaram, Numerical analysis of mixing by electrothermal induced flow in microfluidic systems, Biomicrofluidics, vol.1, p.24102, 2007.

G. Kunti, A. Bhattacharya, and S. Chakraborty, Analysis of micromixing of non-Newtonian fluids driven by alternating current electrothermal flow, Journal of Non-Newtonian Fluid Mechanics, 2017.

J. P. Urbanski, J. A. Levitan, D. N. Burch, T. Thorsen, and M. Z. Bazant, The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps, J. Colloid Interface Sci, vol.309, p.332, 2007.

E. Du and S. Manoochehri, Microfluidic pumping optimization in microgrooved channels with ac electrothermal actuations, Appl. Phys. Lett, vol.96, p.34102, 2010.

A. Salari, M. Navi, and C. Dalton, A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications, Biomicrofluidics, vol.9, p.14113, 2015.

Q. Lang, Y. Wu, Y. Ren, Y. Tao, L. Lei et al., AC Electrothermal Circulatory Pumping Chip for Cell Culture, ACS Appl. Mater. Interfaces, vol.7, p.26792, 2015.

R. Zhang, C. Dalton, and G. A. Jullien, Two-phase AC electrothermal fluidic pumping in a coplanar asymmetric electrode array, Microfluid. Nanofluidics, vol.10, p.521, 2011.

A. Kumar, S. J. Williams, H. Chuang, N. G. Green, and S. T. Wereley, Hybrid optoelectric manipulation in microfluidics-opportunities and challenges, Lab Chip, vol.11, p.2135, 2011.

Y. Ai, Z. Zeng, and S. Qian, Direct numerical simulation of AC dielectrophoretic particle--particle interactive motions, J. Colloid Interface Sci, vol.417, p.72, 2014.

G. Kunti, J. Dhar, A. Bhattacharya, and S. Chakraborty, Joule heating-induced particle manipulation on a microfluidic chip, Biomicrofluidics, vol.13, p.14113, 2019.

S. J. Williams, A. Kumar, and S. T. Wereley, Electrokinetic patterning of colloidal particles with optical landscapes ?, Lab Chip, p.1879, 2008.

S. J. Williams, A. Kumar, G. Green, and S. T. Wereley, A simple , optically induced electrokinetic method to concentrate and pattern nanoparticles, Nanoscale, vol.1, p.133, 2009.

G. Kunti, A. Bhattacharya, and S. Chakraborty, Alteration in contact line dynamics of fluid-fluid interfaces in narrow confinements through competition between thermocapillary and electrothermal effects, Phys. Fluids, vol.30, p.82005, 2018.

G. Kunti, J. Dhar, A. Bhattacharya, and S. Chakraborty, Electro-thermally driven transport of a non-conducting fluid in a two-layer system for MEMS and biomedical applications, J. Appl. Phys, vol.123, p.244901, 2018.

J. Cao, P. Cheng, and F. J. Hong, A numerical study of an electrothermal vortex enhanced micromixer, Microfluid. Nanofluidics, vol.5, p.13, 2008.

E. Du and S. Manoochehri, Enhanced ac electrothermal fluidic pumping in microgrooved channels, J. Appl. Phys, vol.104, p.64902, 2008.

F. J. Hong, J. Cao, and P. Cheng, A parametric study of AC electrothermal flow in microchannels with asymmetrical interdigitated electrodes, Int. Commun. Heat Mass Transf, vol.38, p.275, 2011.

F. J. Hong, F. Bai, and P. Cheng, Numerical simulation of AC electrothermal micropump using a fully coupled model, Microfluid. Nanofluidics, vol.13, p.411, 2012.

V. Studer, A. Pepin, Y. Chen, and A. Ajdari, An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control, Analyst, vol.129, p.944, 2004.

M. Zehavi, A. Boymelgreen, and G. Yossifon, Competition between Induced-Charge Electro-Osmosis and Electrothermal Effects at Low Frequencies around a Weakly Polarizable Microchannel Corner, Phys. Rev. Appl, vol.5, p.44013, 2016.

K. Yang and J. Wu, Investigation of microflow reversal by ac electrokinetics in orthogonal electrodes for micropump design, Biomicrofluidics, vol.2, p.24101, 2008.

P. García-sánchez, A. Ramos, and F. Mugele, Electrothermally driven flows in ac electrowetting, Phys. Rev. E, vol.81, p.15303, 2010.

Q. Lang, Y. Ren, D. Hobson, Y. Tao, L. Hou et al., In-plane microvortices micromixer-based AC electrothermal for testing drug induced death of tumor cells, Biomicrofluidics, vol.10, p.64102, 2016.

J. Wu, M. Lian, and K. Yang, Micropumping of biofluids by alternating current electrothermal effects, Appl. Phys. Lett, vol.90, p.234103, 2007.

S. J. Williams and N. G. Green, Electrothermal pumping with interdigitated electrodes and resistive heaters, Electrophoresis, vol.36, p.1681, 2015.

G. Kunti, A. Bhattacharya, and S. Chakraborty, Electrothermally actuated moving contact line dynamics over chemically patterned surfaces with resistive heaters, Phys. Fluids, vol.30, p.62004, 2018.

M. Lian and J. Wu, Ultrafast micropumping by biased alternating current electrokinetics, Appl. Phys. Lett, vol.94, p.64101, 2009.

H. Morgan and N. G. Green, AC Electrokinetics: Colloids and Nanoparticles, 2003.

A. Ramos, Electrokinetics and Electrohydrodynamics in Microsystems, 2011.

A. Castellanos and . Electrohydrodynamics, , 1998.

D. R. Lide, CRC Handbook of Chemistry and Physics, 2003.

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, Ac electrokinetics: a review of forces in microelectrode structures, J. Phys. D. Appl. Phys, vol.31, p.2338, 1998.

N. G. Green, A. Ramos, A. Gonzalez, A. Castellanos, and H. Morgan, Electrothermally induced fluid flow on microelectrodes, J. Electrostat, vol.53, p.71, 2001.

A. Castellanos, A. Ramos, A. González, N. G. Green, and H. Morgan, Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws, J. Phys. D. Appl. Phys, vol.36, p.2584, 2003.

M. Sigurdson, D. Wang, and C. D. Meinhart, Electrothermal stirring for heterogeneous immunoassays, Lab Chip, vol.5, p.1366, 2005.

H. C. Feldman, M. Sigurdson, and C. D. Meinhart, AC electrothermal enhancement of heterogeneous assays in microfluidics, Lab Chip, vol.7, p.1553, 2007.

H. Liu, A. J. Valocchi, Y. Zhang, and Q. Kang, Phase-field-based lattice Boltzmann finitedifference model for simulating thermocapillary flows, Phys. Rev. E, vol.87, p.13010, 2013.

H. Liu, A. J. Valocchi, Y. Zhang, and Q. Kang, Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel, J. Comput. Phys, vol.256, p.334, 2014.

D. Jacqmin, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech, vol.402, p.57, 2000.