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In a previous paper, Orubaet al. (J. Fluid Mech., vol. 818, 2017, pp. 205Ð240)
considered the ÔprimaryÕ quasi-steady geostrophic (QG) motion of a constant density
ßuid of viscosity ! that occurs during linear spin-down in a cylindrical container
of radius r  = L and heightz  = H, rotating rapidly (angular velocity" ) about its
axis of symmetry subject to mixed rigid and stress-free boundary conditions for the
caseL = H. Here, Direct numerical simulation at largeL = 10H and Ekman numbers
E = !/ H2" in the range= 10" 3Ð10" 7 reveals inertial wave activity on the spin-down
time scaleE" 1/ 2" " 1. Our analytic study, based onE # 1, builds on the results of
Greenspan & Howard (J. Fluid Mech., vol. 17, 1963, pp. 385Ð404) for an inÞnite
plane layerL $ % . In addition to QG spin-down, they identify a ÔsecondaryÕ set of
quasi-maximum frequency#   $ 2" (MF) inertial waves, which is a manifestation of
the transient Ekman layer, decaying algebraically& 1/

'
t  . Here, we acknowledge that

the blocking of the meridional parts of both the primary-QG and the secondary-MF
spin-down ßows by the lateral boundaryr  = L provides a trigger for other inertial
waves. As we only investigate the response to the primary QG-trigger, we call the
model ÔreducedÕ and for that only inertial waves with frequencies#   < 2" are
triggered. We explain the ensuing organised inertial wave structure via an analytic
study of the thin disc limitL ( H restricted to the regionL " r  = O(H) far from the
axis, where we make a Cartesian approximation of the cylindrical geometry. Other
than identifying a small scale fan structure emanating from the corner[r   , z  ] = [ L, 0],
we show that inertial waves, on the gap length scaleH, radiated (wave energy ßux)
away from the outer boundaryr  = L (but propagating with a phase velocity towards
it) reach a distance determined by the mode with the fastest group velocity.

Key words: waves in rotating ßuids

  Email addresses for correspondence:ludivine.oruba@latmos.ipsl.fr,
andrew.soward@ncl.ac.uk, Emmanuel.Dormy@ens.fr
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1. Introduction

The linear spin-down of a rapidly rotating ßuid, when the containing boundary
is adjusted by a small amount, is characterised by two distinct transient motions.
The primary part which is largely responsible for the spin-down is a quasi-steady
geostrophic (QG) ßow exterior to any quasi-steady boundary layers. A secondary part
is the excitation of inertial waves, which decay either due to boundary layer effects
or, if they are of sufÞciently short length scale, in the main body of the ßuid itself. In
our previous paper (Oruba, Soward & Dormy2017), we investigated spin-down in a
cylindrical container, radiusL, height H, rotating rapidly about its axis of symmetry
subject to mixed rigid and stress-free boundary conditions. There, we focused on
the aspect ratio$ ) L/ H = 1 and, because our direct numerical simulations (DNS)
revealed little inertial wave activity or more precisely the inertial waves decayed
very rapidly (for reasons that will become clearer later) and were hardly visible,
we only investigated analytically the aforementioned primary QG-ßow part. That
study was motivated by the possible application to intense nearly axisymmetric
vortices, which develop in geophysical ßows, e.g. hurricanes in the atmosphere, and
westward-propagating mesoscale eddies that occur throughout most of the World
Ocean (Chelton, Schlax & Samelson2011) as evidenced by the sea surface height
variability. Oscillations, reminiscent of inertial waves, have been observed near the
eye of actual tropical cyclones (e.g. Harlow & Stein1974; Chen et al. 2015). The
beneÞts of modelling such objects by isolated structures is well established (see
Persinget al. 2015; Oruba, Davidson & Dormy2017, 2018; Atkinson, Davidson &
Perry 2019, and references therein). For those applications the aspect ratio$ ought to
be large, and so our previous choice$= 1 is clearly not the most appropriate. Indeed,
later DNS results for large aspect ratio, namely$ = 10, have revealed considerable
persistent inertial wave activity. The analytic results of ¤2 apply to all $, while
their numerical predictions are compared with DNS results of ¤3 for the largish
aforementioned$= 10. However, it is only in ¤¤4Ð6 that the analysis is restricted to
the limit, $( 1 (see (4.5b)) amenable to asymptotic treatment, enabling us to identify
the wave mechanisms that operate.

As our work builds upon Orubaet al. (2017), we only repeat essential details such
as the description of the model and needed results. Our cylindrical container is Þlled
with constant density ßuid of viscosity! and rotates rigidly with angular velocity
! about its axis of symmetry. That is the frame relative to which our analysis is
undertaken and in which the Ekman number is small:

E = !/( H2") # 1. (1.1)

Initially, at time t  = 0, the ßuid itself rotates rigidly at the slightly larger angular
velocity Ro! , in which the Rossby numberRo is sufÞciently small (Ro# E1/ 4) for
linear theory to apply (see Duck & Foster2001, p. 235). Whereas, the nonlinear
development of spin-down and spin-up differ (see, e.g. Calabretto, Denier &
Mattner 2018, and references therein), their linear evolution, which we consider,
is mathematically equivalent. Relative to cylindrical polar coordinates,(r   , %  , z  ), the
top boundary (r  < L, z  = H) and the sidewall (r   = L, 0< z  < H) are impermeable
and stress free. The lower boundary (r  < L, z  = 0) is rigid. For that reason alone
the initial state of relative rigid rotationRo! of the ßuid cannot persist and the ßuid
spins down to the Þnal state of no rotation relative to the container ast  $ % . In
order to make our notation relatively compact at an early stage, we useH and " " 1

as our units of length and time, respectively, and introduce

r  = Hr, z  = Hz, " t  = t. (1.2a" c)
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For our unit of relative velocityv  , we adopt the velocity incrementRoL" of the
initial ßow at the outer boundaryr  = L. So, relative to cylindrical components, we
set

v  = RoL" v, v = [ u, v, w] (1.2d,e)

and refer to [u, v] and w as the horizontal and axial components of velocity,
respectively. The meridional ßow[u, w] may be described by a streamfunction
r& as

u= "
'&
' z

, w =
1
r

'
' r

(r&). (1.3a,b)

Owing to the impulsive nature of the transient spin-down, the classical temporally
spreading diffusion width

(   =
'

! t  = H(, (( t) =
'

Et (1.4a,b)

provides a useful measure for deÞning all boundary-layer widths, both horizontal and
vertical.

1.1. Spin-down between two unbounded parallel plates
When the ßow is unbounded in the radial extent the solution to the linear spin-down
problem has the similarity form

[u, v] = (r/$) [u, v](z, t), w = (1/$) w(z, t), (1.5a,b)

& = (r/$)) ( z, t), ) = 1
2w(z, t) =

! 1

z
udz, (1.5c,d)

i.e. u = " ') /' z, by mass continuity. Here[u, v] solves

' tu " 2(v " g) = E' 2
z u, ' tv + 2u = E' 2

z v, (1.6a,b)

where g(t) (independent ofz) is the suitably non-dimensionalised radial pressure
gradient. It is chosen such that the total radial volume ßux proportional to
) ( 0, t) = * u+ = 0, where

*¥+ =
! 1

0
¥dz (1.7)

is the z-average. Equation (1.6) are solved subject to the boundary conditions[u, v] =
[0, 0] at z = 0 (rigid) and [' zu, ' zv] = [ 0, 0] at z = 1 (stress free) fort > 0 and, of
course,*u+ = 0 which by (1.6a) implies g = * v+ " 1

2E' zu|z= 0. The initial condition is
[u, v] = [ 0, 1] everywhere att = 0.

We identify the primary part of the ßow, largely responsible for the spin-down,
namely a quasi-steady geostrophic QG-ßow exterior to a quasi-steady Ekman layer
adjacent to the rigid boundaryz= 0 in ¤1.1.1. Then, in ¤1.1.2, we outline the nature
of the remaining transient motion.
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1.1.1.The quasi-geostrophic QG-ßow
In the mainstream exterior to the Ekman layer, thez-independent horizontal

components of the primary QG-velocity[uQG, vQG] = (r/$) [uQG, vQG] are described
by

[uQG, vQG](t) = vQG[ 1
2Q, 1], Q= E1/ 2* . (1.8a,b)

Motion is dominated by the azimuthal velocityvQG = (r/$) vQG, where

vQG(t) = +E(t), E(t) = exp(" Qt). (1.8c,d)

The constants+ and * are both close to unity and have expansions:

+ = 1+ 1
4E1/ 2 + O(E), * = 1+ 3

4E1/ 2 + O(E) (1.8e,f )

(see Orubaet al. 2017, equations (1.3aÐc)). The streamfunction&QG = (r/$) ) QG(z, t)
(linear in z) has

) QG = 1
2wQG(z, t) = (1 " z)uQG = 1

2Q(1 " z)vQG. (1.8g)

The non-zero value) QG(0, t) = 1
2QvQG(t), corresponding towQG(0, t) = 2uQG(t), results

from the outßow from the Ekman layer, in which the horizontal velocity is[uE, vE] =
(r/$) [uE, vE] with

[uE, vE] = " vQG[sin(E" 1/ 2z), cos(E" 1/ 2z)] exp(" E" 1/ 2z). (1.9)

Finally, the composite horizontal velocity[u, v] = (r/$) [u, v] is the sum

[u, v] = [ uQG, vQG] + [ uE, vE]. (1.10)

The azimuthal ßuid ßux deÞcit*v(r, z, t)+ " vQG(r, t) (= (µ " 1)vQG(r, t), say, but
see (1.11) below) is important for our interpretation of the DNS. For althoughvQG(r, t)
is well deÞned in the limitE , 0, it is not easily determined unambiguously from the
numerics at ÞniteE. Nevertheless, we can readily calculate*v+ and from it we may
extract

vQG = µ " 1*v+, whereµ = 1 " 1
2E1/ 2 + O(E), (1.11a,b)

which is the asymptotic prediction encapsulated by equation (2.20) of Orubaet al.
(2017). The result (1.11a) not only applies to the particular rigid rotation ßow (1.8c)
but also to any QG-ßowvQG(r, t) with arbitrary r-dependence, which is dominated
by the decay factor exp(" E1/ 2* t), as in (1.8d), while possibly evolving on the longer
lateral diffusion time scale, as we will now explain.

The main thrust of Orubaet al. (2017) was to elucidate how the laterally unbounded
QG-ßow (1.8) is modiÞed by the outer sidewall atr = $ (r  = L). There two boundary
layers form whose widths(( t) (see (1.4b)) evolve by lateral viscous diffusion.
One develops into the quasi-steady ageostrophicE1/ 3-Stewartson layer of width
(( tS) = ( S = E1/ 3, which forms on the time scaletS = E" 1/ 3. The other, importantly
QG, spreads indeÞnitely Þlling the container when(( t$) = $ at time t$ = $2E" 1. So
although (1.8) provides a valid description of the QG-motion on the spin-down time
scale tsd = E" 1/ 2 (see (1.8b,d,e)), its radial dependence is more complicated on the
longer lateral diffusion time scalet$ = $2E" 1. The temporal evolution of the QG-ßow
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Spin-down inertial waves 888A9-5

vQG(r, t) is sensitive to whether or not the boundaryr = $ is stress free as in Oruba
et al. (2017) or rigid as in Greenspan & Howard (1963). However, here we will
Þlter out any QG-motion, ignore the ageostrophicE1/ 3-Stewartson layer (discussed
at length in Orubaet al. 2017) and, for that matter, the EkmanE1/ 2 - E1/ 2 corner
regions, which are largely passive and have vanishing inßuence on the ßow elsewhere
as E $ 0. Subject to those restrictions we will only investigate the remaining wave
part. With that proviso our study applies equally to both the stress-free (Oruba
et al. 2017) and rigid (Greenspan & Howard1963) r = $ boundary cases. The DNS
solutions presented here are for the stress-free case, but simulations for the moderately
small E = 10" 3 case performed with a no-slip outer wall demonstrated only minor
changes to the inertial waves generated. In summary the key times, pertaining to the
QG-study of Orubaet al. (2017), are ordered as follows:

1# tS = E" 1/ 3 # tsd = E" 1/ 2 # t$ = $2E" 1. (1.12)

In addition, we stress that all steady boundary layers form on the time scalet = E" 1( 2

(see (1.4b)) of their shortest dimension( , so, e.g. Ekman layers and corner regions
form on the rotation timet = O(1). All times mentioned are important to us, as we
will report results exterior to all boundary layers fort > 0. So we need to be aware
of any ageostrophic motion that our study cannot explain.

1.1.2.The inertial wave of maximum frequency for t( 1
Relevant to our previous$= 1 study, but of even greater importance to the large$

of interest to us, are the aspects of the seminal work of Greenspan & Howard (1963)
that pertain to the unbounded limit$ $ % . They considered the linear spin-up (the
same, except for a change of sign, as spin-down) between rigid boundaries atz= ± 1.
Our mathematical problem is equivalent to theirs, because at the mid-planez= 0 their
ßow characteristics mimic those at an impermeable stress-free boundary. So, since
their ßow satisÞes the symmetry conditions& .$ " &, v .$ v under the reßection
z .$ " z, we may employ their approximate solution (Greenspan & Howard1963,
equations (3.9), (3.10)). Following the replacement of theirz by z" 1, the similarity
amplitudes of our transient contribution to the spin-down are

) MF / E cos(2t)
%"

m= 1

#
(z" 1) "

sin[, m(z" 1)]
sin, m

$
exp(" E, 2

mt), (1.13a)

vMF / E sin(2t)
%"

m= 1

#
1 "

cos[, m(z" 1)]
cos, m

$
exp(" E, 2

mt), (1.13b)

where the, m are given by the positive roots of

tan, m = , m + O(E1/ 2) (m! 1). (1.13c)

The harmonics withE, 2
m = O(1) are unreliable and, to ensure that they may be

neglected, it is necessary thatt ( 1. The nature of (1.13a,b) is clariÞed upon setting

, m = (m+ 1
2)! " -m (0< - m < 1

2! ), (1.14)

in which -m is moderately small:-1 / 0.219, -2 / 0.129, -3 / 0.091 with -m , 0 asm$
% (see, e.g.http://mathworld.wolfram.com/TancFunction.html). Obviously, *uMF+ = 0,
but the approximation tan, m = , m implies that*vMF+ = 0 too.
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888A9-6 L. Oruba, A. M. Soward and E. Dormy

For Et # 1, the small amplitude factorE in (1.13a,b) is misleading because
asymptotic evaluation of the sums determines larger amplitudes. To see this, we
note that, for sufÞciently smallEt, the factor exp(" E, 2

mt) is approximately unity for
m# (Et)" 1/ 2. So many harmonics contribute to the sum, which is dominated by the
high harmonics with, m / (m+ 1

2)! (see (1.14)). For those largem, we can make the
continuum approximation, whereby the sums (1.13a,b) are replaced by the integrals

) MF / E cos(2t)
! %

0
[(z" 1) + cos(m! z)] exp(" E(m! )2t) dm, (1.15a)

#
uMF

vMF

$
/ E

#
" cos(2t)

sin(2t)

$ ! %

0
[1 " (m! ) sin(m! z)] exp(" E(m! )2t) dm, (1.15b)

in which we have ignored terms in the expansions of the trigonometric forms
small by factorsO(m" 1). The amplitude[uMF, vMF] & [" cos(2t), sin(2t)] predicted
by (1.15b) has the circularly polarised property of an inertial wave of maximum
frequency (MF) 2. SigniÞcantly, they are modulated by them-integrals involving
temporal exponential decay, which render them quasi-MF waves. Nevertheless,
henceforth we will omit the qualiÞcation ÔquasiÕ and refer to them as MF-waves.

Evaluation of (1.15) (use ¤ 1.4 equation (11) and ¤ 2.4 equation (19) of ErdŽlyiet al.
1954) shows that we may partition the solution into mainstream and boundary-layer
parts,

vMF = vMF + vMF( , (1.16)

deÞned by the similarity amplitudes

) MF / E1/ 2(z" 1)
cos(2t)
'

4! t
, ) MF( / E1/ 2 cos(2t)

'
4! t

exp
%

"
z2

4Et

&
, (1.17a,b)

vMF / E1/ 2 sin(2t)
'

4! t
, vMF( / " E1/ 2 sin(2t)

'
4! t

z
2Et

exp
%

"
z2

4Et

&
, (1.17c,d)

valid for 1 # t # E" 1, which includes the important spin-down timetsd = O(E" 1/ 2).
In view of (1.15b), uMF and uMF( follow from (1.17c,d) upon replacing sin(2t) by
" cos(2t).

The MF-boundary-layer ßow[uMF( , vMF( ], width (( t), adjacent to the lower
boundary z = 0, is the transient part of Ekman layer formation. As motion is
constrained to be largely in the plane of the boundary, the dynamics has features
in common with an inertial wave propagating in the direction (here thez-direction)
normal to the plane of motion. Such inertial waves have the maximum frequency 2
and are characterised by[u, v](r, z, t) = (r/$) [uMF, vMF](z, t) in which the similarity
amplitude[uMF, vMF] is independent ofr. Hence, the Ekman outßow 2) MF|z= 0 causes
the mainstream ßowvMF to oscillate at frequency 2 as well. In the more general case
of boundaries not normal to the rotation axis, such as the slanting inner boundary
(frustum) considered by Kleinet al. (2014), the boundary-layer frequency is again
that of an inertial wave propagating normal to the boundary. Then the group velocity
of the forced waves (same frequency) in the mainstream is directed parallel to the
boundary. Our case with its boundary normalz-directed is degenerate because the
group velocity in the horizontal plane vanishes!
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Spin-down inertial waves 888A9-7

Interestingly, as already remarked below (1.14), *vMF+ / 0 and so*vMF+ / "* vMF( +,
as met by (1.17c,d) and consistent with the fact thatvMF( = O(( " 1/ 2vMF). We stress
that the condition*vMF+ / 0 only holds whent ( 1 for which tentative estimates
suggest

*vMF+ = O(t" 1*vMF+). (1.18)

OnceEt = O(1), the MF-ßow is fully z-dependent and the continuum, i.e.
'

.$
(

,
approximation no longer applies. Moreover, on that time scale,) MF andvMF (1.13a,b)
are smallO(E). The Þrst non-trivial eigenvalue, 1 / 4.4934 (see (1.14)) determines the
m= 1 mode with the slowest decay rate that dominates asEt $ % . Recall too that
t = O(E" 1) is the time scale on which the QG-sidewall shear layer has spread laterally
an O(1) distance (as exempliÞed by the QG-solution, equation (3.8a), of Orubaet al.
2017).

1.1.3.The entire ßow for1# t # E" 1

When we consider the entire mainstream ßowvQG + vMF, an important measure is
the relative decay rates of the respective QG and MF-contributions. SpeciÞcally,

(i) the primary QG-part,vQG (see (1.8)), decays exponentially& exp(" E1/ 2* t);
(ii) the secondary MF-part,vMF (see (1.17c)), decays algebraically& t" 1/ 2.

At large time, the relative magnitudes of their azimuthal and radial velocities are
)
)
)
)
vMF

vQG

)
)
)
) = O((E/ t)1/ 2e* E1/ 2t),

)
)
)
)
uMF

uQG

)
)
)
) = O(t" 1/ 2e* E1/ 2t). (1.19a,b)

The factorE1/ 2 in the estimate of the ratio|vMF/ vQG| suggests that the MF-wave may
remain insigniÞcant on the spin-down timet = O(E" 1/ 2). However, the absence of
that factorE1/ 2 in the ratio |uMF/ uQG| for the smaller radial velocities is interesting,
because it suggests that, on the Ekman layer formation time scalet = O(1) # tsd, which
we do not consider, theuMF and uQG contributions ought to be of comparable size.

1.2. Spin-down between two parallel plates bounded at r  = L
The inclusion of a lateral boundary atr = $ complicates matters. In our previous study
(Oruba et al. 2017) of the quasi-steady part of the spin-down, our primary concern
was the evolution of the laterally diffusing QG-layer from that outer boundary on
the long t$ = $2E" 1 time scale. However, even in the unbounded case discussed in
¤1.1, inertial waves are excited by the initial impulse, albeit limited to the degenerate
MF-type identiÞed by Greenspan & Howard (1963). Now it is well known that a
myriad of inertial waves exist in our circular cylinder geometry as elucidated, for
example, by Kerswell & Barenghi (1995) and Zhang & Liao (2008) (see also Zhang
& Liao 2017). Though, the inertial waves triggered by the initial impulse in the
bounded cylinder geometry are evidently axisymmetric, the realised mode selection
in the closed cylinder remains complicated and is the objective of our present study.
Other investigations include: combined experimental and theoretical studies (Cederlšf
1988; Dolzhanskii, Krymov & Manin 1992; Davidson, Staplehurst & Dalziel2006;
Klein et al. 2014), linear inertial wave activity in a half-cone (Liet al. 2012), linear
inertial wave activity in a precessing plane layer (Mason & Kerswell2002) and linear
and nonlinear waves in a container (Jouve & Ogilvie2014; Brunet, Dauxois & Cortet
2019).
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888A9-8 L. Oruba, A. M. Soward and E. Dormy

Indeed, evidence from the unbounded case, namely the algebraict" 1/ 2 decay of
the MF-modes, suggests that inertial wave generation is a minor effect. This point
of view was supported by the DNS results of Orubaet al. (2017), which showed
little evidence of any signiÞcant inertial wave generation for the case$= 1. However,
more recent DNS results for large aspect ratio (shallow) containers, namely$ = 10,
have revealed signiÞcant inertial wave activity on the spin-down timetsd = E" 1/ 2,
as manifest particularly by the contours of& = const. in Þgures1, 2 (below) at
various times (panelsa,d,g). For that reason, we focus attention on the large$ case,
but will comment brießy on the relative absence of wave activity for$ = 1 in our
concluding ¤7.

Our asymptotic approach, based on smallE, builds on the premise that the
Greenspan & Howard (1963) inÞnite plane layer solution gives a Þrst approximation
to the Þnite$ bounded problem. However, the main weakness of that solution is its
serious failure to meet the impermeable boundary conditionu= 0 at r = $. SpeciÞcally,
the z-independent partu($, t) of the radial velocity has two parts,

uQG($, t) = 1
2*+E1/ 2E(t) (QG-trigger) (1.20a)

(see (1.8)) and the remaining part

uMF($, t) = u($, t) " uQG($, t) (MF-trigger). (1.20b)

Our objective is to identify the inertial waves ÔtriggeredÕ by demanding that the radial
velocity correction is" u($, t) at r = $. This simply extends the idea that ßow blocking
provides the trigger for the expanding QG-shear layer atr = $, explored in ¤ 6 of
Greenspan & Howard (1963) (see also Orubaet al. 2017).

When t = O(1), the two trigger contributions" uQG($, t) and " uMF($, t) are of
comparable size, but later, up until the spin-down time is reached, 1# t " O(E" 1/ 2),
(1.19b) gives the estimate|uMF($, t)|/ |uQG($, t)| = O(t" 1/ 2) # 1 suggesting that
the QG-triggered motion dominates. Under the assumption that the MF-trigger
" uMF($, t) is of lesser importance, we ignore it and restrict our attention to the
simpler QG-trigger, valid for 1# t " O(E" 1). For this Ôreduced modelÕ, we Þnd that
the triggered waves (all with frequency# < 2) compare remarkably well with the
DNS, when due account is taken of the distinct MF-wave (# = 2) contribution (see
second paragraph of ¤1.3). However, the failure of our reduced model to correctly
capture the early timet = O(1) nature of the complete trigger" u($, t) leads to a
small phase shift of the dominant wave structure at late time, just perceptible in
Þgures1Ð4. Despite this blemish, our results identify and highlight the key physical
processes that operate. However, we stress that, without consideration of the complete
trigger, detailed quantitative agreement is not to be expected. Finally we remark that
when $ is relatively large, the shallow cylinder also acts as a wave guide for the
triggered inertial waves.

Interestingly Cederlšf (1988) undertook an investigation loosely related to ours in
which, on p. 405, the three ßow responses, items (i) QG (# = 0), (ii) MF (# = 2),
(iii) triggered inertial waves (0< # < 2), are each identiÞed.

1.3. Outline
On omitting the MF-ßow contributionuMF responsible for the MF-trigger, we
formulate in ¤2 the mathematical problem for the QG-triggered wave motion,
E1/ 2vwave = v " vQG (2.1), and in ¤2.1 simplify using a Fourier series inz. In
¤2.2 we include viscosity and solve by the Laplace transform method leading to a
FourierÐBessel series inr (see ¤2.3 and appendixA). Wave modes are damped by
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FIGURE 1. The caseE = 10" 3, &-contours at three distinct instantst = N! / 2 (N =
3, 7, 11) whenE" 1/ 2&MF is maximised: panels (aÐc), (dÐf ), (gÐi) correspond tot = 4.72,
11.00, 17.28, respectively. (a,d,g) Show the direct numerical simulationsE" 1/ 2&DNS (colour
scale from" 0.3 to 0.3); (b,e,h) and (c,f,i) show the Þltered DNS, with the geostrophic
ßow subtracted&FNS and the analytic solutions&IW, respectively (colour scale from" 0.1
to 0.1).
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FIGURE 2. As in Þgure1 but now at three distinct instantst = (N + 1
2)! / 2 (N = 3, 7, 11)

at which E" 1/ 2&MF = 0. Panels (aÐc), (dÐf ), (gÐi) correspond tot = 5.50, 11.79, 18.07,
respectively.

two mechanisms: Ekman suction (see ¤2.4) and internal friction considered in ¤2.3.

(i) Ekman suction leads to the decay ratedE = O(E1/ 2* E), where the factor* E =
(1 " | # |/ 2)1/ 2, estimated from (2.25b,c), depends on the frequency#. The QG-
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FIGURE 3. As in Þgure1 but nowv-contours for the same instants, at whichE" 1/ 2vMF = 0
(equivalent toE" 1/ 2&MF maximised). Panels (a,d,g) showE" 1/ 2vDNS (colour scale from" 30
to 30); (b,e,h) and (c,f,i) show vFNS and vIW, respectively (colour scale from" 0.5 to 0.5).

limit # $ 0 determinesdE $ E1/ 2 / Q in agreement with (1.8b,d), while the
MF-limit # 0 2 yields dE , 0. For that, the only damping mechanism is internal
friction conÞned to the expanding shear layer, identiÞed by (1.17b,d), adjacent to
the lower boundary.
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FIGURE 4. As in Þgure2 but now v-contours for the same instants, at whichE" 1/ 2vMF

is maximised (equivalent toE" 1/ 2&MF = 0). Panel description as in Þgure3.

(ii) Internal friction causes the decay rate,d. = O(E. " 2), to be dependant on the
mode length scale. , and leads to the decay rate ratiod. / dE = O(E1/ 2/(. 2* E)).
So Ekman suction dominates when. 4(1 " | # |/ 2) ( E. However, for modes with

���
%

�%
�"

�$
���

���
���

!��
���

!�#
���

���
���

���
���

��

���

���
���

���
���

���
���

���
�	�

�
���

!�(
� �

��!
���

���
���

���
�#

�!�
���

���
%

�%
�"

�$
���

���
�(

�(
�(

���
���

���
��#

���
���

���
��!

�#
���

���
�!�

#�
�

���
��
�
���

���
��!

���
�� 

���
'��

�#
�$

���
%

���
���

���
��#

�#
���

���
�%

���
���

�#
���

���
���

&
�#

���
�

���
��!

� �
����
	��

���
���

���
���

���
���

���
%

���
���

���
���

���
��	 ���
��$

�&
���

���
���

%
���

%
�!�

��%
���

���
���

���
���

#�
���

���
���

���
!�#

���
��%

���
#�

��$
���

!��
���

&
�$

���
���

���
'��

���
���

���
���

���
��%

��
���

%
�%

�"
�$

���
���

�(
�(

�(
���

���
���

��#
���

���
���

��!
�#

���
���

�!�
#�

���
�%

���
#�

��$
��



Spin-down inertial waves 888A9-13

0 2 4 6 8 10

1

0 2 4 6 8 10

1

0 2 4 6 8 10

1

(a)

(b)

(c)

0 2 4 6 8 10

1(d)

0 2 4 6 8 10

1(e)

FIGURE 5. The meridional speedE" 1/ 2
'

u2 + w2 = r" 1|! (r&)| at t = 18.07 as in
Þgure2(gÐi). Respectively, the panels show results for: (aÐc) the Þltered DNS&FNS, when
(a) E = 10" 3, (b) E = 10" 5, (c) E = 10" 7; (d) the analytic&wave in the limit E , 0; (e) the
full DNS E" 1/ 2&DNS when E = 10" 7 (colour scale from 0 to 3).

frequency# close to 2 or of sufÞciently short length scale. , i.e. when. 4(1 "
|# |/ 2) # E, internal friction is more important. Such small scale structure is
generated close tor = $ and quickly destroyed near that boundary at the relatively
moderate valueE= 10" 3 used to produce the DNS-results reported in Þgures1Ð4.

In ¤3 we explain how the entire inertial wave (IW) motionE1/ 2[uIW, vIW], composed
of the triggered inertial wavesE1/ 2[uwave, vwave] (see ¤2) together with the basic state
MF-waves [uMF, vMF] (including their thickening boundary layer, see (1.16) and
(1.17)), may be obtained under asymptotic assumptions from the full solution by
removing the QG-part (see ¤3.1, particularly (3.4) and (3.6)). For 0< E # 1, we
extract from the DNS, by the same recipe, our so-called Þltered-DNS, or simply FNS,
[uFNS, vFNS] (see (3.5) and (3.7)). Our prime objective, the comparison of[uFNS, vFNS]
with the analytic results forE1/ 2[uIW, vIW] undertaken in ¤3.2, is only applicable
outside all quasi-steady boundary layers; they include both the Ekman layer width
( E = E1/ 2 on the rigid z = 0 boundary and the Stewartson sidewall layer width
( s = E1/ 3 abutting the boundaryr = $.

Most of our detailed DNS/FNS/IW-comparisons are made forE = 10" 3 (see
Þgures1Ð4). They highlight the relevance of the asymptotics for moderate values
of E. Smaller values ofE are used in Þgures5 and 10(b). This reduces the
boundary-layer widths and lessens the effect of internal friction, allowing us to
see better small scale features (see also animations in supplementary material A
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available athttps://doi.org/10.1017/jfm.2019.1064). A sharper picture of the various
detailed structures identiÞed in ¤3 is obtained in ¤4 upon settingE = 0, which
removes viscous damping entirely. To understand the complex (but elegant) wave
patterns that emerge, we further restrict our domain of interest in ¤4.2 to the large
r-limit $ " r = O(1) ($ ( 1), for which a rectangular Cartesian approximation is
applicable. Two distinct solution techniques are employed.

Firstly in ¤5, due to the omission of viscosity, the simplicity of the topz = 1
and bottomz = 0 boundaries permits our use of the method of images, convenient
for handling wave reßection atz= 1 and 0. The primary mode (i.e. unbounded and
without reßection) studied in ¤5.1 (see also the supplementary material B) explains
the nature of the singularity near the corner[r, z] = 0, while, in ¤5.2 and appendixB,
we appraise the full solution obtained by superimposing the images, i.e. reßections.
The approach clariÞes the detailed nature of the inertial waves in the vicinity ofr = $.
Further away, wave interference leaves simpler cell forms with dimensions of the gap
width unity.

So, secondly, in ¤6, we consider the(r, t)-evolution of individual m-modes of
the z-Fourier series (2.7). For given integerm, we use the method of stationary
phase in ¤6.2 to identify the dominant structure at given(r, t). We Þnd that waves
reach a distancexc(t) = $ " rc(t) & m" 1t (Þxed by the vanishing of the gradient of
the group velocity; see (6.21e)) from the outer boundary. There the waves change
character over a thickening layer width( c(t) & m" 1t1/ 3, and become evanescent (see
also appendixC) for $" rc(t) > xc(t). Since the transition is relatively abrupt, in the
sense that( c(t)/ xc(t) & t" 2/ 3, we refer to the layer as a front. Them-dependence,
xc(t) & m" 1, highlights the importance of the smallestm= 1 mode and explains why
detailed structure, associated with largerm, is only to be found for small$ " r,
perhapsO(1). SigniÞcantly, since dxc/ dt = O(1), the waves reach the axis after time
taxis = O($).

As we only report results fort < taxis, the relative size oftaxis to the spin-down time
tsd, namely taxis/ tsd = O(E1/ 2$), is pertinent. With$ = 10 and E = 10" 3, the ratio is
O(1) but decreases in concert withE to zero. This implies that our DNS/FNS/IW-
comparisons at smallerE pertain to earlier stages of the spin-down process. Indeed,
that consideration provides the physical context, namely very early timetaxis(# tsd),
for our E , 0 results of ¤¤4Ð6. We end with a few concluding remarks in ¤7.

2. The mathematical problem

As already explained our objective is to investigate the inertial wave motion,
velocity E1/ 2vwave, which is excited by the initial impulse caused by the failure of
the radial QG-velocityu = (r/$) uQG(t) (see (1.5)) to meet the boundary condition
u = 0 at r = $. This failure leads in part to a QG-correction in the form of a shear
layer, width (( t) =

'
Et, expanding fromr = $. We denote the entire QG-velocity by

vQG(r, t), but not, of course, limited to the special rigid rotation case (1.8). Together
they determine

v = vQG + E1/ 2vwave (2.1)

in the mainstream exterior to the Ekman layer adjacent toz = 0 and ageostrophic
E1/ 3-sidewall shear layers adjacent tor = $. The MF-contributionvMF is omitted in
our formulation because it is not part of the QG-trigger. Nevertheless, the MF-waves
will be reinstated in order to make comparison with the DNS. For that, though the
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mainstream/boundary-layer decomposition (1.15)Ð(1.17), valid for t ( 1, is physically
illuminating, we adopt the primitive form (1.13), valid for all t > 0.

Subject to the above caveats, the boundary conditionu = 0 at r = $ may be
expressed, using (2.1), as

(uQG " uQG) + E1/ 2uwave = " uQG. (2.2)

Elsewhere (0" r < $), the differenceuQG(r, t) " (r/$) uQG(t) recovers the expanding
QG-shear layer with boundary conditionuQG($, t) = uQG studied by Orubaet al.
(2017). So, in what follows, we simply suppose that the inertial waves are triggered
by the remaining balance

uwave = " E" 1/ 2uQG = " 1
2+* E(t) at r = $ (2.3)

(see (1.8), also (1.20a), and (2.6b) below). Throughout this section we simply solve
for the inertial wavesvwave triggered by (2.3) and to simplify the notation drop the
superscript ÔwaveÕ and writev = [ u, v, w](1 !vwave).

The complete linear spin-up/-down problem is formulated by Greenspan & Howard
(1963) in their ¤ 2 ÔFormulationÕ p. 386, where in addition the full nonlinear equation
of motion is also presented. In summary, the linear equations

'v
' t

+ 2u= E(2 2 " r" 2)v, [u, w] =
#
"

'&
' z

,
1
r

'( r&)
' r

$
, (2.4a,b)

'/
' t

" 2
'v
' z

= E(2 2 " r" 2)/ , / = " (2 2 " r" 2)& (2.4c,d)

govern azimuthal momentum (2.4a) and vorticity (2.4c) (Greenspan & Howard
1963 equations (2.4), (2.5) but also Orubaet al. 2017 equations (2.2)Ð(2.4)). When
restricted to our inertial wave problem, the system (2.4) is to be solved subject to
the initial (t = 0) conditions

v = 0, / = 0, (2.5a,b)

and for t ! 0 the boundary conditions

r& = 0, at r = 0 (0< z" 1), (2.6a)
r& = 1

2$+* (z" 1) E(t), at r = $ (0< z" 1), (2.6b)
& = 0, at z= 0, 1 (0< r < $), (2.6c)

where (2.6b) corresponds to (2.3): recall thatE(t) = exp(" Qt) (1.8). We stress that
the boundary condition (2.6b) is the essential QG-trigger of our inertial waves and
the cornerstone of our investigation.

Some care is needed in the interpretation and implementation of the boundary
conditions (2.6), which strictly apply to the inviscidE= 0 problem and are insufÞcient
for the viscous (E 3=0) equations (2.4). From our asymptotic,E # 1, point of view
we only address internal friction in ¤¤2.1Ð2.3 but later incorporate the effects of
Ekman boundary layers in ¤2.4. Indeed, we ignore any viscous sidewall layers at
r = $ completely, as highlighted by the discussion between (2.14) and (2.15) below.
The reason for this cavalier approach is twofold:

(i) neither the quasi-steady shear layers nor the QG-evolution of spin-down
associated with them have any inßuence on the triggered waves (see also
the discussion below (2.20));

(ii) our primary concern is to identify the inertial wave generation, which is all that
the E = 0 solution exhibits. Their damping is a secondary bookkeeping exercise
needed to identify what is realised at ÞniteE so that comparisons can be made
with the DNS.
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2.1. The z-Fourier series
We seek az-Fourier series solution

#
&
/

$
= " +*

%"

m= 1

(" 1)m

m!

#
*&m

/ m

$
sin(m! (z" 1)), (2.7a)

chosen so that&(r, z, t) satisÞes the top and bottom boundary conditions (2.6c), and
use

1
2(z" 1) = "

%"

m= 1

(" 1)m

m!
sin(m! (z" 1)) (0< z" 1) (2.7b)

in our application of the boundary condition (2.6b). The horizontal velocity is
#
u
v

$
= " +*

%"

m= 1

(" 1)m

m!

#
*um

*vm

$
cos(m! (z" 1)). (2.7c)

A further property ofv, due to its assumed form (2.7c), is

*v+ = 0, strictly O(E1/ 2) (2.7d)

when the consequences of the Ekman layer are taken into account. The series (2.7a,c)
satisfy (2.4) when *&m(r, t) and *vm(r, t) are governed by

' *vm

' t
+ 2*um = EDm*vm, *um = " m! *&m, (2.8a,b)

' */ m

' t
+ 2m! *vm = EDm*/ m, */ m = " Dm*&m, (2.8c,d)

in which

Dm¥ =
1
r

'
' r

%
r
' ¥
' r

&
"

%
1
r2

+ (m! )2

&
¥ . (2.8e)

They are to be solved subject to the initial (t = 0) conditions

*vm = 0, */ m = 0 45 *&m(r, 0) = I1(m! r)/ I1(m! $) (2.9a" c)

(see (2.5) together with (2.8d) and (2.10) below), and fort ! 0 the boundary conditions

r *&m = 0, at r = 0 (0< z< 1), (2.10a)
r *&m = $E(t), at r = $ (0< z< 1) (2.10b)

(see (2.6a,b) and (2.7b)).
In the following ¤¤2.2 and 2.3, we solve the problem posed by (2.8)Ð(2.10) by the

Laplace transform (henceforth LT) method. To that end it is helpful to note that the
initial value, *&m(r, 0) = I1(m! r)/ I1(m! $) (2.9c) can be represented, via the use of the
FourierÐBessel series (A 3) with q= i (giving J1(im! r) = iI 1(m! r)), in the form

I1(m! r)
I1(m! $)

= "
%"

n= 1

Fmn
J1( jnr/$)
jnJ0( jn)

on 0" r < $, (2.11a)

where jn denotes thenth zero (> 0) of J1(x), and

Fmn =
q2

mn#
2
mn

2
, # mn =

2
+

q2
mn + 1

, qmn =
jn

m! $
. (2.11b" d)
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2.2. The Laplace transform solution
We employ the LT

,¥(z, p) = L p{¥(z, t)} )
! %

0
¥(z, t) exp(" pt) dt, (2.12)

in which the subscript ÔpÕ to the LT-operatorL identiÞes the independent transform
variable. The LT of the governing equations (2.8aÐd) and initial conditions (2.9)
determine

p,*vm " 2m! ,*&m = EDm
,*vm, (2.13a)

pDm
,*&m " 2m! ,*vm = ED2

m
,*&m, (2.13b)

where the differential operatorDm is deÞned by (2.8e),

[ ,*&m, ,*vm](z, p) = L p{[ *&m, *vm]} (2.13c)

and L p is deÞned by (2.12). Elimination of ,*vm leads to a single equation for,*&m,

(p " EDm)2Dm
,*&m " 4(m! )2,*&m = 0. (2.14)

As already stressed, we ignore viscous boundary layers and solve (2.14) on the basis
that, whenE= 0, it is second order inr, for which the endpoint boundary conditions

r ,*&m = 0 at r = 0 and

-
r ,*&m = $,E(p) at r = $,
,E(p) = (p+ Q)" 1,

(2.15a,b)

namely the LTs of (2.10) and (1.8d), sufÞce. Upon seeking modal solutions of the
form

.
,*&m
,*vm

/

=
#

1
2m! / p

$
,E(p)

J1(m! qr)
J1(m! q$)

, (2.16a)

that meet the boundary condition (2.15b) at r = $ and have the property

Dm
,*&m = " (q2 + 1)(m! )2,*&m, (2.16b)

it follows from (2.14) that p and q are related by the Ôdispersion relationÕ

p2 = " 4/( q2 + 1), wherep= p+ E(q2 + 1)(m! )2, (2.17a,b)

equivalently

q2 + 1= " 4/ p2 and p= p+ E(2m! )2/ p2, (2.17c,d)

from which we obtain the useful result

p
dp
dp

= p " 2E
(2m! )2

p2
. (2.17e)
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We utilise the inverse-LT of (2.12), namely

¥ (z, t) = L " 1
p {,¥(z, p)} )

1
2! i

! i%+ c

" i%+ c
,¥(z, p) exp(pt) dp, (2.18)

with c sufÞciently large that the integration contour is to the right of all poles. When
applied to ,*&m, deÞned by (2.16a), we may simply write

*&m = L " 1
p

0
,E(p)

J1(m! qr)
J1(m! q$)

1
. (2.19)

The initial condition (2.9c) is recovered on expanding the corresponding integrand of
the inverse-LT integral (2.18) about the limitp$ % (appropriate tot , 0), for which
q$ i (see (2.17a,b)) and p,E(p) $ 1. For t > 0 the inverse of (2.16a) has two parts:

[ *&m, *vm] = [ *&!
m, *v!

m] + [ *&AG
m , *vAG

m ]. (2.20)

The former inertial wave part[ *&!
m, *v!

m] stems from the residues (denoted by Res{}) at
the set! of poles p = pmn(3=0) linked to the zerosjn of the denominator J1(m! q$)
in (2.19), i.e. q= qmn = jn/( m! $) (see (2.11d)); for t > 0, explicit evaluation in (2.21)
below shows that each inertial wave part has the property*&!

m($, t) = 0. The poles
pmn(3=0) are pure imaginary, whenE= 0 (see (2.17a,b)), and are thus associated with
wave motion. The latter ageostrophic part[ *&AG

m , *vAG
m ] stems from the residues at the

poles of ,E(p) = (p+ Q)" 1 and p" 1. When internal friction is included (dmn 3=0), this
ageostrophic part determines a StewartsonE1/ 3-layer and alone meets the boundary
condition *&AG

m ($, t) = E(t) (see (2.15b)). However, since we have not applied any stress
related boundary conditions, the ßow so determined is unphysical and we consider it
no further. Hence, the wave part of the velocityvwave alluded to in (2.1) is simply v! ,
valid on the entire range 0" r " $.

2.3. The r-FourierÐBessel series

The residue calculation outlined above is messy to implement, because evaluation of
the residues involves Þrst determining thep-derivatives of the denominator J1(m! q$)
at the polespm,n 6 ! . It can be done but that complication is best bypassed by use of
the FourierÐBessel series (A 3) with q2 = " 1 " 4/ p2 (2.17a), q2

mn = " 1 + 4/# 2
mn (see

(2.11c)) giving 2q2
mn/( q2

mn" q2) = Fmnp2/( p2 + # 2
mn) on use of (2.11b). It enables us to

express the residue sum for[ *&!
m, *v!

m] derived from (2.16a) directly in the form

#
*&!

m
*v!

m

$
= "

%"

n= 1

J1( jnr/$)
jnJ0( jn)

FmnRes
p6!

0#
p

2m!

$
pexp(pt)
p2 + # 2

mn

1
p+ Q

1

= "
%"

n= 1

J1( jnr/$)
jnJ0( jn)

Fmn

%
Res
p6! +

0#
p/ 2
m!

$
exp(pt)
p " i#mn

1
p+ Q

1
+ c.c.

&
. (2.21)

The pole structure is immediately apparent and identiÞed by the pole half-set,! + ,

p= pmn = i#mn 75 p= pmn = i#mn " dmn (2.22a,b)
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having #mn = Im{pmn} > 0, which when combined with their complex conjugates
(denoted by c.c.) form the complete set! . On use of (2.17d,e), we determine

dmn =
E(2m! )2

# 2
mn

45
#
p

dp
dp

$

p= i#mn

= i#mn + 2dmn. (2.22c,d)

Evaluation of the residues in (2.21), noting that the factor dp/ dp|p= i#mn is needed in
the denominator, yields

#
*&!

m
*v!

m

$
=

%"

n= 1

J1( jnr/$)
jnJ0( jn)

Fmn

# 8&!
mn

8v!
mn

$
exp(" ! mnt), (2.23a)

in which Fmn is deÞned by (2.11b) and
# 8&!

mn
8v!
mn

$
=

#
" 1

2
im! /# mn

$
i#mn + 2dmn

i#mn " dmn + Q
exp(i#mnt) + c.c. (2.23b)

Written explicitly, equation (2.23a) is

*&!
m = "

%"

n= 1

Fmn
J1( jnr/$)
jnJ0( jn)

(CE
mn cos0mn + SE

mn sin0mn) exp(" ! mnt), (2.24a)

*v!
m = "

%"

n= 1

Fmn
2m!
#mn

J1( jnr/$)
jnJ0( jn)

(CE
mn sin0mn " SE

mn cos0mn) exp(" ! mnt), (2.24b)

where

CE
mn = 1 "

(3dmn " Q)(dmn " Q)
# 2

mn + (dmn " Q)2
, SE

mn =
(3dmn " Q)# mn

# 2
mn + (dmn " Q)2

, (2.24c,d)

and

0mn(t) = #mnt, ! mn = dmn. (2.24e,f )

Since the boundary condition (2.10b) on *&m at r = $ is non-zero, it is counter-
intuitive that each*&!

m($, t) vanishes. The apparent paradox is resolved by noting the
non-zero value of*&m($, t) is accommodated by the quasi-steady ageostrophic part
*&AG

m ($, t) that we disregard.

2.4. Ekman layer damping
The various frictional damping effects that we need to consider are encapsulated by
equation (4.5) of Zhang & Liao (2008), which consists of three sets of terms. The
Þrst corresponds to our internal friction decay ratedmn. The second, proportional to
their 1 " 1 (our $" 1), corresponds to decay caused by the end wall boundaries, which
is negligible in our large aspect$ ( 1 limit. Indeed, that friction is absent for our
stress-free outer boundary. The third, namely the remaining pair of terms, identiÞes
the Ekman layer decay ratedE. For that, we halve the Zhang & Liao result because
we only have an Ekman layer onz = 0 and no layer onz = 1. Accordingly, to
accommodate Ekman layer dissipation, we add the complex growth rate

pE±
mn = " dE

mn ± i# E
mn, (2.25a)
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where
#

dE
mn

# E
mn

$
= 1

2E1/ 2* mn+ * mn"

#
* 3

mn+ + * 3
mn"

* 3
mn+ " * 3

mn"

$
, * mn± =

+
1± #mn/ 2 (2.25b,c)

(c.f. also Scott2014, equation (2.22), but in Cartesian geometry and with time unit
(2") " 1 rather than our" " 1). Here, the correction# E to the frequency is not given
by Zhang & Liao, but can be determined from the formula (2.12) of Kerswell &
Barenghi (1995). To conclude, the formula (2.24a,b) continues to hold, but with
(2.24e,f ) replaced by

0mn(t) = (# mn + # E
mn)t + 2E

mn, ! mn = dmn + dE
mn, (2.26a,b)

in which the small phase corrections2E
mn are not determined by the aforementioned

results. Although2E
mn is the same size as# E

mn, as time proceeds it becomes small
compared to the secular phase# E

mnt. Accordingly, we believe2E
mn to be unimportant

and set2E
mn = 0 in all our numerical evaluations.

3. Comparison with the DNS

To solve the entire linear spin-down problem, we performed DNS of the full
governing equations (2.4) subject to the initial conditions

v/ r = 1, r& = 0 everywhere att = 0, (3.1)

and boundary conditions

r& =
'(v/ r)

' r
=

' w
' r

= 0, at r = 0 and$ (0< z< 1), (3.2a)

r& =
'( r&)

' z
= v/ r = 0, at z= 0 (0< r < $), (3.2b)

r& =
' 2(r&)

' z2
=

'(v/ r)
' z

= 0, at z= 1 (0< r < $), (3.2c)

i.e. the bottom plate is rigid (3.2b), whereas the top and side boundaries are stress
free (3.2a,c).

We solved (2.4) using second-order Þnite differences in space, and an implicit
second-order backward differentiation (BDF2) in time. We used a stretched grid,
staggered in thez-direction. The simulations were performed with a spatial resolution
up to 2500- 2000, a convergence study conÞrmed that this resolution is sufÞcient at
the Ekman number considered here.

In ¤2 we considered, from an asymptotic point of view, the inertial wave response
E1/ 2vwave outside the Ekman layer (see (2.1)) to the QG-trigger subject to the reduced
set of initial and boundary conditions (2.5) and (2.6). The superscript ÔwaveÕ, dropped
in ¤2, is reinstated throughout this section. On excluding the sidewall layers, we have
E1/ 2vwave = E1/ 2v! , i.e. the pole contributions. Those considerations ignored the MF-
wave contributionvMF, which needs to be added toE1/ 2vwave to construct the complete
inertial wave structureE1/ 2vIW,

v = vQG + E1/ 2vIW, E1/ 2vIW = vMF + E1/ 2vwave. (3.3a,b)

Our goal is to compare the ¤2 results with the DNS identiÞed by the subscript ÔDNSÕ
and illustrated in panels (a,d,g) of Þgures1Ð4 (below). Care must be taken with the
scale factorE1/ 2 introduced inE1/ 2vIW, E1/ 2vwave and evident in the relations (3.4)Ð
(3.7) (below). Once these inter-relations have been set up in the following ¤3.1, we
adopt the scalingE" 1/ 2v (as in vIW, vwave) for our reference velocity unit in all our
Þgures.
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3.1. The Þltered DNS-velocityvFNS

The most dominant feature of the spin-down, exterior to the bottom Ekman layer,
is the z-independent azimuthal QG-ßowvQG, which is larger by a factor of at least
O(E" 1/ 2) than almost all other contributions to the complete ßow description. So,
to make comparison with results based on our ¤2 theory for E1/ 2vwave, we need
to remove vQG from v. As vQG is not easily identiÞable from the numerics, we
determine it indirectly from thez-average*v+ of v. To this end, we note that, on
ignoring all wave motion, equation (1.11) indicates that*v+ = µvQG + O(E), a result
that even holds in the expanding QG-shear layer adjacent to the outer boundaryr = $.
Interestingly, for t ( 1, although the MF-wave hasvMF = O((E/ t)1/ 2) (see (1.17c),
its zÐaverage*vMF+ is smaller by a factorO(t" 1): *vMF+ = O(E1/ 2t" 3/ 2) (see (1.18)).
Furthermore the inertial wavesE1/ 2vwave in their assumed form (2.7c) have zero
z-average. That assumption is based on neglect of their associated Ekman layer. In
practice, these Ekman layers carry an azimuthal ßux smaller by a factorO(E1/ 2) so
that E1/ 2*vwave+ = O(E). This fortuitous estimate indicates that the (IW-)contribution
E1/ 2vIW (3.3b), outside the Ekman layer, is related to the full solution by

vIW = E" 1/ 2vMF + vwave = E" 1/ 2(v " µ " 1*v+) + O(E1/ 2) (3.4)

on a spin-down timet = O(E" 1/ 2) large compared to unity.
We also assume that the quasi-steadyz-dependent correction tovQG is relatively

small O(E|vQG|) (see Orubaet al. 2017, equation (2.11a)) so that its presence on the
right-hand side of (3.4) does not corrupt the recipe for the IW-partvIW, at any rate to
the order of accuracy needed. Importantly, we may evaluatev " µ " 1*v+ directly from
the DNS results and refer to

vFNS= E" 1/ 2(vDNS" µ " 1*vDNS+) (3.5)

as the ÔÞltered DNSÕ or simply FNS. It should be emphasised that this Þlter is delicate
as it needs to determine the difference of theO(1) quantitiesvDNS and µ " 1*vDNS+
accurately toO(E1/ 2). In Þgures3 and 4 (below), we portrayvFNS in the FNS panels
(b,e,h), derived from E" 1/ 2vDNS illustrated in the DNS panels (a,d,g), while vIW is
shown in the IW panels (c,f,i).

All contributions to the radial ßowu are O(E1/ 2). Nevertheless, just as forv, we
need to Þrst identify the QG-partuQG = 1

2* E1/ 2vQG = 1
2(* /µ) E1/ 2*vQG+ (the same

recipe as in (1.8a,b), also (1.11)), and note that the IW-contribution, outside the
Ekman layer, is

uIW = E" 1/ 2uMF + uwave = E" 1/ 2(u " uQG) + O(E1/ 2)

= E" 1/ 2u " 1
2(* /µ) *v+ + O(E1/ 2) (3.6a)

on the spin-down timet = O(E" 1/ 2). Exactly as before in our consideration ofvQG,
we neglect the small quasi-steadyz-dependent correctionO(E|uQG|) to uQG (see
Oruba et al. 2017, equation (2.11b)) on the right-hand side of (3.6a). On deÞning
the mainstream streamfunction asr& = r

( 1
z udz, we may extract the IW-part via the

recipe

&IW = E" 1/ 2&MF + &wave = E" 1/ 2& " 1
2(* /µ)( 1 " z)*v+ + O(E1/ 2). (3.6b)

The results (3.6a,b) suggest that we deÞne the radial FNS-velocity and streamfunc-
tion by

uFNS= E" 1/ 2uDNS" 1
2(* /µ) *vDNS+, (3.7a)
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&FNS= E" 1/ 2&DNS" 1
2(* /µ)( 1 " z)*vDNS+. (3.7b)

In Þgures1 and 2 (below), we portrayE" 1/ 2&DNS in the DNS panels (a,d,g), &FNS in
the FNS panels (b,e,h) and &IW in the IW panels (c,f,i).

3.2. The inertial wavevIW comparison withvFNS

In the FNS and IW panels of Þgures1Ð4, contours are scaled consistently as in
(3.4)Ð(3.7) so that amplitude comparisons are readily discernible. The full DNS results,
however, exhibit a wider amplitude range, because they contain, in addition to the
IW-contribution, the generally large QG-part. It is therefore impractical to employ the
same scaling in the DNS panels as used in the FNS and IW panels. The DNS panels
are, however, important as they illustrate the entire spin-down process and provide a
visual measure of the relevance of the IW-contribution. This is particularly pertinent
to E" 1/ 2vDNS which is O(E" 1/ 2) larger than bothvFNS and vIW.

The results portrayed in Þgures1Ð4 all concernE = 10" 3. The lower Ekman layer
has width E1/ 2 # 0.03, which is perhaps most readily identiÞable in the azimuthal
velocity E" 1/ 2v contour plots of Þgures3 and 4. The well-known Ekman spiral is
evident in the DNS panels, whereas on the blown up scale of the FNS panels it
blurs and appears as thin black shaded layer. There is also a persistent ageostrophic
E1/ 3-sidewall layer atr = $ of width 0.1. Our FNS- and IW-results are only meaningful
in the regions exterior to those quasi-static boundary layers. Note that neither the
Ekman layer nor the sidewall layer appears on the IW panels as they are not part
of either of the constituents (&MF, vMF) or (&wave, vwave) that together compose the
IW-solution.

The time range of our plots starts att = 4.72 > 1 (i.e. large compared to the
spin-down time) in Þgures1 and3, panels (aÐc) and ends att = 18.07< 103 (i.e. short
compared to the MF boundary-layer (width(( t) =

'
Et (1.4b)) diffusion time E" 1

needed to Þll 0< z < 1) in Þgures2 and 4, panels (gÐi). Essentially, the results
apply on the spin-down timetsd = E" 1/ 2 # 30. The actual times chosen in Þgure1 (3)
are t = N! / 2 (N = 3, 7, 11) at which the MF-wave contributionE" 1/ 2&MF & cos(2t)
given by (1.17a) is maximised (forE" 1/ 2vMF & sin(2t) = 0, see (1.17c)). The times
t = (N + 1

2)! / 2 (N = 3, 7, 11) used in Þgure2 (4) are whenE" 1/ 2&MF & cos(2t) = 0
(E" 1/ 2vMF & sin(2t) is maximised). The idea is that at times whenE" 1/ 2&MF = 0
(E" 1/ 2vMF = 0), the FNS and IW panels forE" 1/ 2& (E" 1/ 2v) in Þgure 2 (3) simply
describe&wave (vwave). However, at times, whenE" 1/ 2&MF (E" 1/ 2vMF) are maximised,
the FNS and IW panels forE" 1/ 2& (E" 1/ 2v) in Þgure 1 (4), through comparison
with Þgure2 (3), identify the role of theE" 1/ 2&MF (E" 1/ 2vMF) contribution. Perhaps
the most striking characteristic of this comparison is thatE" 1/ 2&MF (E" 1/ 2vMF)
identiÞed in Þgure1 (4) is non-zero throughout the entire domain, just as predicted
by (1.17a (c)). By contrast&wave (vwave) identiÞed in Þgure2 (3) is only non-zero
for a limited radial extent from the outer boundaryr = $. In the following ¤4 we
ignore all damping and in ¤6 explain this phenomenon. There is also much detailed
structure in a subdomain close tor = $, which we explain in ¤5.

As explained in ¤1.1.2(b) and noted earlier in this subsection in the context of time
scales, the MF-wave possesses a spreading boundary-layer width(( t) =

'
Et adjacent

to the lower boundaryz= 0 quantiÞed by (1.17b,d). This layer is most clearly evident
in the IW panels of Þgure4 (sufÞciently far to the left forvwave to be negligible),
for which the Ekman layer is absent. It is also evident in the FNS panels, where it
extends beyond the prominent Ekman layer. These features can also be identiÞed, but
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less obviously, in the corresponding panels of Þgure1 (sufÞciently far to the left for
uwave to be negligible).

The values of&wave, vwave used for our IW-plots are given by thez-Fourier series
(2.7a,c) using *&m, *vm determined by (2.24a,b). Since we found that the slow decay of
the QG-ßow has virtually no effect on the result, we set

Q= E1/ 2* = 0 (3.8)

in (2.24c,d), which deÞne the parametersCE
mn, SE

mn (2.24a,b). As the formulae (2.24c,d)
for the phase0mn(t) and decay rate! mn account only for the damping by internal
friction, we used instead (2.26a,b), which also takes into account Ekman damping,
but with the slight change of phase2E

mn set to zero, as explained there. To assess
whether or not our damping predictions are reasonable, we need to compare the FNS
IW panels for&FNS and&IW in Þgure2 (noting thatE" 1/ 2&MF / 0) andvFNS andvIW in
Þgure3 (noting thatE" 1/ 2vMF / 0). Our theoretical model, although generally good,
appears to slightly overestimate damping on the shorter length scales. This appears
to be a shortcoming of our choice of the QG-triggeruQG($, t) = 1

2*+E1/ 2E(t) (1.20a).
As we will report elsewhere, the inclusion of the MF-triggeruMF($, t) improves the
comparison.

4. No damping E , 0

With dissipation included thez-Fourier series representations (2.7a,c) for & and v
(the superscript ÔwaveÕ is again generally dropped, except to avoid ambiguity when
discussing numerical results portrayed in the Þgures), possessingr-Fourier-Bessel
series coefÞcients (2.24a,b) with parameter values (2.24c,d) and (2.26a,b), determine
results, which compare well with the DNS forE = 10" 3, as Þgures1Ð4 in ¤3
illustrate. Nevertheless, at that moderately smallE, motion on small scales suffers
considerable dissipation and decays rapidly.

To assess the extent to which our wave predictions are visible at smallerE, we plot
Þltered DNS (FNS) contours of the meridional speedE" 1/ 2

'
u2 + w2 = r" 1|! (r&)| at

E= 10" 3, 10" 5 and 10" 7 in Þgure5(aÐc) at t = 18.07. As E decreases from 10" 3, a fan
structure emerges near the corner[r, z] = [ $,0], which converges rapidly to that for the
analytic &wave contours atE = 0 portrayed in Þgure5(d). Although &IW = E" 1/ 2&MF +
&wave (see (3.6b)), rather than&wave, ought to be compared with the FNS results,
the good agreement of Þgure5(c,d) suggests that the MF-contribution is negligible,
a suggestion supported by inspection of Þgure10(b) at the ordinatet = 18.07 (see
also the discussion in the penultimate paragraph of ¤6.3 prior to ¤7). Finally we plot
unÞltered DNS contours atE = 10" 7 in Þgure5(e) expecting the QG-contribution to
&DNS to obscure the waves. That does not happen; instead, the wave pattern remains
prominent though somewhat distorted by the QG-ßow.

To explore the suggestions from the smallE results of Þgure5 in more detail, we
formulate theE , 0 problem in ¤4.1 and then identify a larger domain in ¤4.2
amenable to asymptotic study.

4.1. Formulation and results
On setting E = 0 in (2.4aÐd), these governing equations together with the initial
conditions (2.5a,b) and boundary condition& = 0 at z= 1 (2.6c) determine

& =
! 1

z
udz, v = " 2

! t

0
udt = 2

! t

0

'&
' z

dt, / = 2
! t

0

'v
' z

dt. (4.1a" c)
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t = 5.50

t = 11.79

t = 18.07

t = 24.35

FIGURE 6. The analytic&wave-contours in theE , 0 limit at sequential timest = (N +
1
2)! / 2. (a) N = 3, (b) N = 7, (c) N = 11, cf. Þgures2(c), ( f ), (i) respectively. (d) N = 15
(colour scale from" 0.1 to 0.1).

We continue to consider the representations (2.7a,c) and (2.24a,b), in which Fmn =
q2

mn#
2
mn/ 2 (2.11b) and 0mn= #mnt (2.24e), but setE1/ 2* = Q= 0, + = * = 1, dmn= 0 so

that the coefÞcients becomeCE
mn= 1, SE

mn= 0 (see (2.24c,d)) and ! mn= 0 (see (2.24f )).
In this way, equation (2.24a,b) yield

*&m = *&!
m = "

%"

n= 1

q2
mn#

2
mn

2
J1( jnr/$)
jnJ0( jn)

cos(# mnt), (4.2a)

#
*um

*vm

$
=

#
*u!

m
*v!

m

$
=

%"

n= 1

qmn# 2
mn

2
J1( jnr/$)
$J0( jn)

#
cos(# mnt)

" (2/# mn) sin(# mnt)

$
. (4.2b)

4.1.1.The E, 0 results
Some solutions&wave = & and vwave = v, realised by substitution of (4.2) into

(2.7a,c), are illustrated in Þgures6 and 7, respectively. The timest = 5.50, 11.79,
18.07 adopted in the Þrst three panels (aÐc) of Þgure6 correspond to the prescription
t = (N + 1

2)! / 2 (N = 3, 7, 11) adopted in Þgure2, for which E" 1/ 2&MF = 0. By
this choice, we see how the small scale structure of&wave visible in Þgure6(aÐc)
particularly near the outer boundaryr = $ is largely eliminated by dissipation in the
contour plots of&IW in Þgure2(c,f,i). Likewise, at timest = 4.72, 11.00, 17.28, i.e.
t = N! / 2 (N = 3, 7, 11) when E" 1/ 2vMF = 0, a similar comparison of Þgure7(aÐc)
with Þgure 3(c,f,i) can be made. To understand in detail this small scale structure,
we formulate an asymptotic approach in ¤4.2 based on$( 1 (see (4.5)), which we
apply in ¤¤5 and 6.
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(d)

t = 4.72

t = 11.00

t = 17.28

t = 23.56

FIGURE 7. The analyticvwave-contours in theE , 0 limit at sequential timest = N! / 2.
(a) N = 3, (b) N = 7, (c) N = 11, cf. Þgures3(c), ( f ), (i), respectively. (d) N = 15 (colour
scale from" 0.5 to 0.5).

A striking feature of&wave plotted in Þgure6, but also evinced by thevwave plots in
Þgure7, is the limited distance,x(t) = $" r(t) (say), reached by the wave disturbance
triggered at the outer boundaryr = $. For that reason, it is instructive to consider
results for the individual Fourier modes

&wave
m (r, z, t) = " (m! )" 1 *&m sin(m! z) (4.3)

(see (2.7a)) for which contour plots withm= 1, 2 are illustrated in Þgure8 at times
t = 15 and 25. Indeed, on comparing them= 1 panels (a,b) with the m= 2 panels (c,d),
suggests that each of these twom-modes reaches a distancexm(t) = $" rm(t) related by
x1(t) / 2x2(t), with the possible implication that the largerm-modes reach a distance
decreasing withm. This idea is explored further in the spaceÐtime (0< t " 30) contour
plots of &wave

m (r, zm, t), for the m = 1, 2 modes, in Þgure9(a,b), at their respective
maximaz1 = 0.5, z2 = 0.25. From these the spatial extentrm(t) $ r < $ is clearly visible.

In view of the above remarks, we reassess the wave activity in Þgures6 and 7.
SufÞciently far to the left, the waves, when existent, are clearly dominated by the
m= 1 mode. On halving the distance to the right-hand outer boundary,r = $, some
interference from them = 2 mode is visible. Yet further reduction of that distance
leads to interference from successive higher harmonics, that complicates the picture
more. Note too that, though the waves penetrate further to the left with time, a feature
of their negative group velocity, the waves themselves propagate to the right with
positive phase velocity.
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FIGURE 8. The analytic&wave
m -contours in theE , 0 limit (see (4.3)) for the casesm= 1

at (a) t = 15, (b) t = 25, andm= 2 also at (c) t = 15, (d) t = 25 (colour scale from" 0.1
to 0.1).
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FIGURE 9. The analytic&wave
m -contours in theE, 0 limit (see (4.3)) at Þxedz= zm, in the

rÐt plane for $= 10. Pertaining to the asymptotic$ ( 1 results of ¤6.3: the solid black
line identiÞes the critical group velocity, i.e.cgct + ($ " r) = 0 with cgc # " 0.245/ m (see
(6.21c)) valid for $ " r = O(1). The dashed black line corresponds to the critical phase
velocity cpct = r with cpc = " 3cgc # 0.735/ m (cf. (6.21d)) also only valid for$" r = O(1).
(a) m= 1 with z1 = 0.5; (b) m= 2 with z2 = 0.25 (colour scale from" 0.1 to 0.1).

4.1.2.The E# 1 results
Now the complete inertial wave response is the sum of the MF-wave and the

triggered waves,

&IW = E" 1/ 2&MF +
%"

m= 1

&wave
m (4.4)
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FIGURE 10. The Þltered DNS (FNS)&FNS-contours at Þxedz= 0.5, as in 9(a). (a) E =
10" 3, (b) E = 10" 5 (colour scale from" 0.1 to 0.1).

(see (3.6b) and (4.3)). In order to make comparison with the DNS, we plot&FNS-
contours atz = z1 = 0.5 in Þgure10 for the casesE = 10" 3, 10" 5 in panels (a,b)
respectively, in the same style as&wave

1 in Þgure9(a). So whereas Þgure9(a) concerns
&wave

1 , Þgure10 for &IW comprisesE" 1/ 2&MF and the other odd harmonics&wave
m (m=

3, 5, 7, . . .) non-zero atz= z1 = 0.5. To the left of the liner / r1(t), namely 0< r $
r1(t), where the triggered waves have not reached, only the MF-wave is visible. To the
right of the line, namelyr1(t) $ r < $, much of the pattern in Þgure9(a) is reproduced
in Þgure10(b) for E = 10" 5, broken up to some extent by the MF-wave. However,
there is little evidence of the higherm! 3 harmonics, which only penetrate a short
distance fromr = $. The suggestion from Þgure10(a,b) is that, although the MF-waves
dominate initially, the triggered inertial waves with frequency less than 2 are more
persistent, a suggestion that must be tempered by the following considerations. At the
end of the introduction (¤1), we noted the importance of the ratio of the time the
triggered waves take to reach the axisr = 0 (Þgure10 suggeststaxis / 40= 4$) and
the spin-down time, namelytaxis/ tsd = O(E1/ 24$). With $ = 10, the ratio isO(1) for
E = 10" 3 but a factor 1/ 10 smaller forE = 10" 5, a consideration which suggests that
Þgure 10(a) concerns events on the spin-down time, whereas Þgure10(b) concerns
events at a relatively early stage of spin-down. For that our estimate (1.19b) is also
relevant, in the sense that the MF-wave decays algebraically while the inertial wave
decays exponentially like the QG-ßow with virtually no decay whenE1/ 2t # 1.

In the above discussion, we introduced the distancexm(t) = $ " rm(t), that each
m-mode reaches from the boundaryr = $, in a qualitative way. In ¤6 we use our
asymptotic theory, based on$ ( 1 (see (4.5)), to derive robust results based onx =
O(1), i.e. valid far from the symmetry axisr = 0.

4.2. The Cartesian limit,$= L/ H ( 1, $" r = O(1)
The wave solutions are best understood by their behaviour at larger. So throughout
this section and the following ¤¤5 and 6, we restrict our attention to

x = $" r = O(1) for $( 1, (4.5a,b)

for which two key approximations follow:

J1( jnr/$)
J0( jn)

/ " sin(n! x/$), jn / n! for n ( 1, (4.6a)
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I1(m! r)
I1(m! $)

/ exp(" m! x). (4.6b)

Henceforth, we will adoptx rather thanr as our independent variable, but it must be
remembered thatx measures distance in the opposite direction tor (see (4.5a)).

The essential idea is that forx= O(1), the r = 0 axis is unimportant. So, with$( 1,
we may regardn/$ as a continuous rather than discrete variable and approximate the
sum

' %
n= 1 ¥n in (4.2) by the integral

( %
0 ¥n dn instead. In this way, from (2.11c,d) and

(4.6a), we obtain

n / jn/ ! = ($/ ! )k, dn / ($/ ! )dk, (4.7a,b)

q= qmn = k/( m! ), # = #mn = 2m! /
+

k2 + (m! )2. (4.7c,d)

Accordingly, equation (4.2b) is approximated by
#
*um

*vm

$
/ "

2
!

! %

0

# 2k sin(kx)
4m!

#
cos(# t)

" (2/#) sin(# t)

$
dk, *&m = "

*um

m!
. (4.8a,b)

On noting thatL p{exp(i# t)} = (p+ i#)/( p2 + # 2), the Fourier sums (2.7c) for u and
v, based on (4.8), have Laplace transforms

#
,u
,v

$
/

2
! p

#
1

" 2/ p

$ %"

m= 1

#! %

0

k sin(kx)
k2 + (m! s)2

dk
$

cos(m! z), (4.9a)

where, on settingE = 0 in (2.17) to obtain

s= " iq= (p2 + 4)1/ 2/ p 75 4/ p2 = s2 " 1, (4.9b,c)

we have noted from (4.7d) and (4.9c) that 4/# 2 + 4/ p2 = k2/( m! )2 + s2. Evaluation
of the integral in (4.9a) (use ¤ 2.2 equation (15) of ErdŽlyiet al. 1954) yields

#
,u
,v

$
=

1
p

#
1

" 2/ p

$ %"

m= 1

exp(" m! sx) cos(m! z) (4.10a)

=
1
2p

#
1

" 2/ p

$ #
" 1+

sinh(s! x)
cosh(s! x) " cos(! z)

$
. (4.10b)

A cursory inspection of modal expansion (4.10a) might suggest evanescent behaviour
in x, but it must be recalled thats is complex and related to the LT-variablep by
(4.9b). Indeed, att = 0, the exponential decay is realised (see (4.11a)), while for
t > 0 all waves are evanescent at sufÞciently largex (see ¤6.2.2 but more generally
appendixC). Application of the formula,& =

( 1
z ,udz determines

,& / "
1

! p

#
"

! z
2

+ tan" 1

%
tan(! z/ 2)

tanh(s! x/ 2)

&$
, ,/ /

2
p

' ,v
' z

. (4.10c,d)

In order to invert the Laplace transforms, we need to note thats= (p2 + 4)1/ 2/ p$ 1
as |p| $ % , i.e. s is deÞned by a cut connectingp = " 2i to p = 2i along the
Im{ p}-axis and by analytic continuation elsewhere. This consideration is essential to
guarantee that we take the correct sign of the square root of(p2 + 4)1/ 2. Indeed, this
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property may be used to extract the initial values of& andu, which are determined by
the form of ,u and ,& in the limit |p| $ % . In that limit, evaluation of the inverse-LTs
is achieved by simply settings = 1 and then evaluating the residues of (4.10b,c) at
the only remaining singularity, the pole atp= 0 (s= 1), so determining

u(x, z, 0) /
1
2

#
" 1+

sinh(! x)
cosh(! x) " cos(! z)

$
, (4.11a)

&(x, z, 0) / "
1
!

#
"

! z
2

+ tan" 1

%
tan(! z/ 2)

tanh(! x/ 2)

&$
, (4.11b)

with the property

&(x, z, 0) / "
1
!

exp(" ! x) sin(! z), as x $ % (4.11c)

(essentially them = 1 mode&wave
1 deÞned by (4.3), but see also (4.10a) and (C 4)).

Initially v and / are zero, but fort # 1 (4.1b,c) determine

v / " 2tu(x, z, 0), / / " 2t2 ' u
' z

(x, z, 0). (4.12a,b)

Despite the apparent simplicity of the Laplace transforms,u, ,v and ,& given by
(4.10b,c), their direct inversion is not straightforward. That is partly due to the
essential singularity of tanh(s! x) at p= 0 which leads to some apparently suspicious
results following LT-inversion. For example, the forms (4.10a,b) hint at a pole at
p= 0, where none exists in the primitive form (4.9a) (recall thatp2s2 $ 4 asp$ 0).
An alternative approach is suggested by the formula

" 1+
sinh(s! x)

cosh(s! x) " cos(! z)
= " 1+

1
!

%"

l="%

2sx
(z" 2l)2 + s2x2

(4.13)

(Gradshteyn & Ryzhik2007, ¤ 1.445, equation (9)), which we substitute into (4.10b).
Due to the invariance of the sum (4.13) under the shiftz.$ z+ 2, there is only one
independent solution linked tol = 0. We refer to the others, forl 3=0, as the Ôimage
systemÕ.

The various LT-representations suggest two distinct strategies for their inversion.
In ¤5, we adopt the Ômethod of imagesÕ, based on (4.10b) and (4.13), to explain
detailed features of the solution particularly evident at smallx. In ¤6, we study the
evolution of the individualz-Fourier m-modes (4.8). The smallest,m = 1, identiÞes
the dominant structure at largex. Indeed, the initial evanescent behaviour identiÞed
by (4.11c) continues to be a feature for sufÞciently largex (see appendixC and
¤6.2.2).

5. The case E , 0: the Ômethod of imagesÕ

We continue the investigation of wave motion begun in ¤4.2 valid at large r,
speciÞcally (4.5a), focusing on the LT-solution (4.10b) with (4.13). Their inverse-LT
takes the form

#
u
v

$
/

#
" 1

2
t

$
+

%"

l="%

#
ùul

ùvl

$
,

#
ùul

ùvl

$
(x, z, t) =

#
ùu
ùv

$
(x, z" 2l, t). (5.1a,b)
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In ¤5.1, we consider only the primaryl = 0 mode [ùu, ùv](x, z, t), which describes
motion throughout the half-planex > 0, "% < z < % due to a sink at[x, z] = 0,
or more preciselyùu(0, z, t) = .( z), where .( z) is the Dirac . -function. In ¤5.2,
we compose the complete solution[u, v](x, z, t), deÞned by (5.1a) formed upon
superimposing the image ßows[ùul, ùvl](x, z, t) due to the image sinks at[x, z] = [ 0, ± 2l],
whose net outßow is compensated by the additional uniform inßow contribution
u= " 1

2. In turn, the corresponding contributionv = t follows from (4.1b). Our use of
the description Ômethod of imagesÕ, commonly used in physics, is appropriate here,
because of the reßectional properties of eachl-constituent.

5.1. The primary l= 0 mode in x> 0, "% < z< %
On the introduction of the unit vector

[x, z] = [ x, z]/3 , 3 =
+

x2 + z2, x =
+

1 " z2, (5.2a" c)

the primary mode, deÞned via (4.10b) and (4.13) and expressed in the form

[ùu, ùv](x, z, t) = (! x)" 1[u, v](z, t) (" 1< z < 1) (5.2d)

has LT:

(! x)

.
,ùu
,ùv

/

(x, z, p) =
#
,u
,v

$
(z, p) =

(p2 + 4)1/ 2x2

p2 + 4x2

#
1

" 2/ p

$
. (5.2e)

In view of our remarks in the penultimate paragraph of ¤4.2, the pole atp = 0
determines an unexpected steady geostrophic ßow[ùuG, ùvG] given by

(! x)[ùuG, ùvG] = [ uG, vG] = [ 0, " 1]. (5.3)

When, however, we consider the full solution in the following ¤5.2, we see that
this unwelcome contribution is eliminated under accumulation with the image ßows.
Indeed, the entire ßow evolves indeÞnitely with no identiÞable non-oscillatory part.

The inverse-LT of (5.2e) at z= 0 for x > 0 (45 [ x, z] = [ 1, 0]) is

u(0, t) = J0(2t), v(0, t) " vG = 2
! %

t
J0(24)d4, (5.4a,b)

alternativelyv(0, t) = " 2
( t

0 J0(24)d4. Elsewhere (indeed,9z) it is

#
u
v

$
=

#
x2 cos(2xt)
" x sin(2xt)

$
+

! t

0

J1(24)
4

#
xEi(2x(t " 4 ))
Er(2x(t " 4 ))

$
d4 (5.5a)

in which

E(5) = " 1+ exp(i5),
#

Ei(5)
Er(5)

$
=

#
sin5

" 1+ cos5

$
. (5.5b,c)

On use ofL p{t" 1J1(2t)} = 2/ [(p2 + 4)1/ 2 + p] (see ¤ 4.14 equation (5) of ErdŽlyiet al.
1954), it is readily veriÞed that the Laplace transform of (5.5a) is (5.2e). In view of
the unlikely relevance of 2/ [(p2 + 4)1/ 2 + p] to (5.2e), the direct derivation (without
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hindsight) of (5.5a) was not obvious to us. The primitive form (5.5a) is useful for
t = O(1). However, the identity

( %
0 4" 1J1(24)E(2x4)d4 = " 1 + | z| + ix (use ¤ 1.12

equation (4) and ¤ 2.12 equation (5) of ErdŽlyiet al. 1954) permits the alternative
representation

[u, v] = (! x)([ùu, ùv]ms+ [ùu, ùv]bl) = [ u, v]ms+ [ u, v]bl, (5.6a)

useful for t ( 1, where

#
u
v

$

ms

"
#

0
vG

$
= | z|

#
x sin(2xt)
cos(2xt)

$
= | z|

#
xEi(2xt)

1+ Er(2xt)

$
, (5.6b)

#
u
v

$

bl

= "
! %

t

J1(24)
4

#
xEi(2x(t " 4 ))
Er(2x(t " 4 ))

$
d4. (5.6c)

At given position[x, z], the mainstream motion[ùu, ùv]ms is composed of the steady
ßow [0, ùvG] and the oscillatory ßow amplitude (5.6b) frequency 2x stemming from
the polesp = 0 and ± 2ix. For t ( 1, the remaining[ùu, ùv]bl (5.6c), stemming from
the cut pointsp = ± 2i, deÞnes an ever thinning boundary layer width( bl = xt" 1/ 2,
whose detailed character is described in the supplementary material B. Fort ( 1, its
width ( bl = xt" 1/ 2 is small, so that this thin transient boundary layer concernsx " 1/
" 1

2z2 = O(t" 1), i.e. of quasi-MF type, frequency 2x / 2. In the z > 0 half-space, it
carries the volume ßux

[*ùubl+, *ùvbl+] )
! %

0
[ùu, ùv]bl dz=

1
!

! 1

0

1
x2z

[u, v]bl dx. (5.7a)

Using (5.6c), the time derivative of*ùubl+ is

d*ùubl+
dt

= "
! %

t

J1(24)
4

J0(2(4 " t)) d4 / "
sin(2t)

! t
for t ( 1 (5.7b)

(use Gradshteyn & Ryzhik2007, ¤ 3.753, equation (2)). Since d*ùvbl+/ dt = " 2*ùubl+, two
successive integrations determine

[*ùubl+, *ùvbl+] / (2! t)" 1[cos(2t), " sin(2t)] for t ( 1, (5.7c)

giving the estimate[ùu, ùv]bl = O(( " 1
bl t" 1). Moreover, whenz= O(( bl), we also estimate

from (5.6b) that [ùums, ùvms" ùvG] = O(( blx" 2). Hence, both ßow velocities are the same
size O(x" 1t" 1/ 2) within the evaporating boundary layer.

An interesting variant of the problem just solved was explored by Davidsonet al.
(2006). They considered the evolution of a Gaussian eddy, their equation (2.11), close
to the origin relative to cylindrical polar coordinates in the half-spacez > 0. They
identify contours of swirl velocity (their Þgure 1) that resemble our fan structure
(5.6b) in the vicinity of the outer corner[x, z] = [ 0, 0] for our limiting Cartesian
geometry. We suspect that they have no boundary-layer structure like (5.6c) because
their eddy source is of Þnite size. The resemblance to our mainstream solution (5.6b)
is unsurprising as wave propagation in both cases is similar though the geometry and
source differ.
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5.2. The full solution on0 " z" 1
With [0, "ùvG] removed, the mainstream solution,[ùums, ùvms " ùvG] (5.6b), has the
remarkable feature that the frequency 2x of the oscillation at any given point[x, z] is
constant, independent of time. Nevertheless, consideration of the temporally evolving
lines 2xt of constant phase, emanating from the corner[x, z] = 0, reveals that the
nodes xn = n! /( 2t) (n = 1, 2, . . .) for ùu lie on a fan, which contracts with time
as illustrated in Þgures6 and 7. When internal friction is included, the associated
shortening of the length scale leads to considerable dissipation. This is a well-known
characteristic of phase mixing (Heyvaerts & Priest1983), which occurs whenever
there is a frequency gradient (here! (2x) 3=0).

Also visible in Þgures6 and 7 are the waves reßected atz= 1. They correspond to
the l = 1 image fan emanating from the image sink[x, z] = [ 0, 2] and are particularly
evident in panels (b,c). Owing to the intensity of the reßections including further
interference from other images, the last panel (d) (longest time) is ÔbusyÕ and a little
confused. The fan and its images (reßections) are also visible in the small-E FNS-plots
of Þgure5(b,c) and unsurprisingly in the&wave-plot (E = 0), Þgure5(d). By contrast
unexpected strong reßections are visible in the DNS-plot, Þgure5(e), which must
follow from some reinforcement by the QG-meridional ßow in certain locations; in
others it must be destructive.

Though much of what is visible in Þgures6 and 7 may be understood in terms of
the primary mode[ùu, ùv]ms and its reßections, the complete mathematical description,
at least within the asymptotic approximations (4.7), (4.8) for x = O(1) and $( 1, is
given by the sum (5.1a). As already remarked[ùu, ùv]bl is small for t ( 1. So we omit
its contribution to the sum (5.1a) and deÞne what remains,

#
u
v

$

ms

=
#
" 1

2
t

$
+

%"

l="%

#
ùul

ùvl

$

ms

, (5.8)

as the mainstream solution.
A disconcerting feature of (5.8) is the presence of the divergent contributiont to vms.

To test the worth of the approximation (5.8), which ignores the[ùul, ùvl]bl contributions,
we consider thez-average of that mainstream solution. Since[ùu, ùv](x, z, t) is symmetric
in z, we note that[*ùu+, *ùv+](x, t) = 1

2

( 1
" 1[ùu, ùv] dz with the implication[*ùul+, *ùvl+](x, t) =

1
2

( 1+ 2l
" 1" 2l [ùu, ùv] dz. This property permits us to express the integral of the inÞnite sum

in (5.8) as a single inÞnite integral:
#
*ums+
*vms+

$
=

#
" 1

2
t

$
+

1
2! x

! %

"%

#
x|z|Ei(2xt)

" 1+ | z| + | z|Er(2xt)

$
dz

=
#
" 1

2
t

$
+

1
2!

! 1

" 1

#
xEi(2xt)

"| z|" 1 + 1+ Er(2xt)

$
dx

x2
(5.9a)

= "
1
!

! %

2t

#
0" 1 sin0

2t0" 2 cos0

$
d0. (5.9b)

Here, we have used (5.6b) with ùvG = " (! x)" 1, noted thatx" 1dz = " x" 2|z|" 1dx and
evaluated (5.9a) with the help of

( %
0 [0" 1 sin0, 0 " 2(1 " cos0)] d0 = [ ! / 2, ! / 2].

For t ( 1, equation (5.9b) behaves like

[*ums+, *vms+] / (2! t)" 1[" cos(2t), sin(2t)] + O(t" 2). (5.10)
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Reassuringly, the diverging contributiont to v in (5.9a) is eliminated by the
summation and its mean value (5.10), being O(t" 1), decays. By implication, since
[*u+, *v+] = 0, the z-average of the remaining[u, v]bl =

' %
l="% [ùul, ùvl]bl, namely

[*ubl+, *vbl+] = "[* ums+, *vms+], (5.11)

decays at the same rate. Moreover the value of[*ubl+, *vbl+] predicted by (5.10) and
(5.11) coincides, at least to leading order, with the value of[*ùubl+, *ùvbl+] for the
primary l = 0 mode alone given by (5.7c). By implication, we may ignore entirely
the l 3=0 contributions[ùul, ùvl]bl and make the approximation[u, v]bl / [ùu, ùv]bl, when
t ( 1.

AppendixB explores the boundary layer matter further by considering values on the
boundaryz= 0. Our main conclusion is that, though the primaryl = 0 mode[ùu, ùv]ms

vanishes there, the mainstream ßow[u, v]ms, stemming from the accumulation of the
imagesl 3=0, is an order of magnitude larger than the boundary-layer ßow[u, v]bl.
SpeciÞcally, equation (B 3) conÞrms the domination of the mainstream solution by
showing that

[ums, vms]z= 0 = O(1) ( [ùubl, ùvbl]z= 0 = O(x" 1t" 1/ 2) (5.12)

(see also (5.7c) and the discussion that follows it).
The most striking feature of our solutions is the contracting (due to the secular

phase angle 2xt, i.e. phase mixing) fan structure (5.6b) of the primary l = 0 mode,
discussed in ¤5.1. The interaction of the inÞnite sum of image fansl 3=0 together with
the l = 0 mode causes secularity that is compensated (i.e. eliminated) by the secular
contribution [" 1

2, t] to the complete solution[u, v] in (5.1a). Although complicated,
the representation (B 2) on z= 0 clearly indicates how the compensation is achieved
but it is unfortunate that the sumÐintegral difference in (B 2d) is difÞcult to evaluate.

Finally, the apparatus of this section is not suited to explain the cell structure visible
at moderate-x nor for that matter the absence of wave motion at large-x. These are
matters resolved in ¤6 by consideration of individualz-Fourier m-modes.

6. The case E , 0: individual z-Fourier m-modes

Except close tor = $, the inertial wave motion is dominated sufÞciently far to the
left by them= 1 mode&wave

1 & sin(! z) (see (4.3) and Þgures1, 2, 6 and8) andvwave
1 &

cos(! z) (see Þgures3, 4 and 7) of the z-Fourier series (2.7a,c). So here we focus
attention on the individualm-modes[*um, *vm] given by (4.8). Noting (4.10a), their LT-
solution is

" (m! )" 1[,*um, ,*vm] = [ 1, " 2/ p] ,*&m, (6.1a)

where

,*&m(x, p) = p" 1 exp(" m! sx) with s(p) = (p2 + 4)1/ 2/ p (6.1b,c)

as before in (4.9b). We also Þnd it convenient to connect the cuts fromp= ± i, rather
than letting them extend to"% , and to deform the LT-contour of integration into a
circuit C containing the cut and the essential singularity atp= 0:

*&m(x, t) =
1

2! i

2

C

exp(, ( p))
p

dp with , = " m! s(p)x + pt. (6.1d,e)
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The change of variables6 =
'

m! x/( 2t), X =
'

2m! xt, equivalent to

6X = m! x, X/6 = 2t, (6.2a,b)

is suggested by our study of limiting forms of*&m(x, t). For 6 ( 1 and 9t > 0, i.e.
m! x ( 2t, (see (6.3a)), the solution*&m(x, t) ((C 2) of appendixC) has the wave-like
form (C 5a) provided that 2t ( (m! x)" 1/ 2 (C 5c).

However, the remainder of this section is devoted to the study of another limitX (
1, i.e. m! x ( (2t)" 1, which, for t ( 1 of interest to us, is almost allx. That limit
allows us to identify the wave-like character of the solutions that exist for6 < 6 c

(see (6.7a)), i.e. m! x < 6 2
c 2t.

6.1. Case X( 1: large t asymptotics
We evaluate the inverse-LT (6.1d) asymptotically, in the limitt ( 1 or more precisely

6 =
+

m! x/( 2t) = O(1), X =
'

2m! xt ( 1, (6.3a,b)

by the method of steepest descent, as in appendixC. To encompass the notation, we
express the exponent, (6.1e) as the product

, = ) X, with ) (6, p) = " 6s(p) + 1
26 " 1p. (6.4a,b)

It may be shown (although we omit details) that the dominant contributions to the
integral (6.1d) stem from the saddle points located, where thep-derivative

) ,p )
d)
dp

=
46
p3s

+
1

26
(6.5)

vanishes. The relevant saddle points occur at purely imaginary locations deÞned
parametrically by

p= psa = 2i(1 " 52)1/ 2, s= ssa = 25/ psa (6.6a,b)

together with their complex conjugates, all chosen to satisfy (6.1c). The condition
) ,p = 0 implies thatp3

sassa = " 86 2, from which (6.4b) determines

) = ) sa = i5" 1/ 2(1+ 52), (6.6c)

as well as establishing that5 is one of the two real positive roots5+ and 5" of the
cubic

53 " 5 + 6 2 = 0. (6.6d)

We order them, 0< 5 " < 5 + < 1, such that they deÞne

psa = p± = i#± , # ± = 2(1 " 52
± )1/ 2, 2> # " > # + > 0. (6.6e,f )

At 6 = 0, we have#+ = 0 and #" = 2. On increasing6 , #+ increases and#"

decreases until they coalesce when6 reaches

6 = 6c = 21/ 23" 3/ 4, (6.7a)
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at which

) ,pp = 0, 5 = 5c = 3" 1/ 2, # = #c = 23/ 23" 1/ 2. (6.7b" d)

The roots0± only form a real pair for 0< 6 < 6 c. They coalesce at6 = 6c and emerge
for 6 > 6 c as a single complex rootpsa with Re{ psa} > 0. The dominant contribution
to the integral from the emergentpsa saddle is small in proportion to exp(X) sa) with
Re{) sa} < 0 (recall thatX ( 1 (6.3b)). Of course, this is supplemented by its complex
conjugate.

Our formulation in terms of6 and X permits us to identify asymptotic ranges
unambiguously. It is well suited to the large6 case investigated in appendixC, where
the result (C 5a) is derived valid forX ( 6 1/ 3(( 1) (see (C 2b) and (C 5b)). However,
when 6 " 6c, the stationary phase approach adopted in the following section leads to
a clearer physical interpretation. The values of5± , 5c and related results identiÞed in
(6.6), (6.7) provide the cornerstones on which the analysis builds.

6.2. A stationary phase formulation
Our alternative approach to evaluating the inverse-LT (6.1d) begins by shrinkingC
as much as possible, speciÞcally to two lines either side of the imaginaryp-axis
connecting the cut pointsp= ± 2i. On them, we setp= i# , m! s= " ik and , = i(kx+
#t), and change the integration variable fromp to s, noting also that" (m! )" 1dp/ ds=
d#/ dk = 1/(# 3k). Then, on taking considerable care with the signs ofk and # (real)
on each of the four sections ofC (recall that the cut pointp = 2i, and the essential
singularity atp= 0 are now atk= 0 andk= % , respectively), we may express (6.1d)
in the form

*&m =
1
!

! %

0

k sin(kx+ #t) + k sin(kx" # t)
k2 + (m! )2

dk (6.8)

equivalent to (4.8), where# = 2m! /
'

k2 + (m! )2 as deÞned in (4.7d).
On the basis thatk > 0 and # > 0, the waves with phasekx+ #t (kx" # t) travel

outwards (inwards) in the direction ofx decreasing (increasing). The integrals in the
complex p-plane from which thekx+ #t (kx" # t) contribution originates stem from
the sections ofC with Re{ p} > (<) 0. Only the Þrst set of waves with phasekx+ #t
have points of stationary phase, which correspond to the saddle pointsp = i#± (see
(6.6e,f )), and so we limit our attention to them. That saddle point analysis identiÞes
the two dominant waves, linked to0± , at given x and time t. In order to take
advantage of the6 , X formalism (6.4)Ð(6.7) of the ¤6.1 steepest descent problem,
we introduce the new variablesK and 7 deÞned by

k/( m! ) = K/6, # = 267 45 kx+ #t = (K + 7 )X. (6.9a" c)

Following the parallel formalisms, the phase velocitycp = #/ k(> 0) is given by

m! cp =
0

m! #/ k, where# = 2m! /
'

k2 + (m! )2,
26 27 / K, where7 = 1/

'
K2 + 6 2.

(6.10)

The group velocitycg = '#/' k (< 0, see below) is given by

m! cg =
0

m! # :, where# : = " # 3k/( 2m! )2,
26 2 ú7 , where ú7 = " 7 3K,

(6.11)
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where the prime and dot denote the partial derivatives with respect tok and K
respectively. Being negative the group velocity is directed inwards (x increasing,
r decreasing), i.e. opposite to the phase velocity. Incidentally, the prefactor to
sin(kx+ #t) in the integral (6.8) may now be expressed as

k/ [k2 + (m! )2] = " # :/# = " cg/#. (6.12)

On further differentiation of (6.11), we obtain

(m! )2c:
g =

0
(m! )2# ::, wherek# ::/# : = 1+ 3k# :/#,
26 3 ¬7 , whereK ¬7 / ú7 = 1 " 3(K7 ) 2.

(6.13)

The pointsk = k± (k" < k+ with # : < 0 45 #" > # + ) of stationary phase occur
where thek-derivative of the phasekx+ #t vanishes,

m! (kx+ #t):|± =
0

m! (x + cg± t)
(1+ ú7± )6 X

1
= 0 45

0
cg± = " x/ t,

ú7± = " 1. (6.14)

Substitution of ú7± = " 1 into (6.11) determines7 3
± K± = 1 which together with (6.10)

yields K2/ 3
± = K2

± + %2. A comparison of this identity with (6.6d) shows that

K± = 53/ 2
± 45 7± = 5" 1/ 2

± , ¬7± = (352
± " 1)/5 3/ 2

± %0. (6.15a" c)

Here, 5± = K± 7± = k± #± /( 2m! ) (cf. (6.6b)) are the positive roots (0< 5 " < 5 + < 2)
of (6.6d). Together with (6.13) and (6.14), the inequalities (6.15c) imply that

k± c:
g± / cg± = 1+ 3cg± / cp± %0 with m! cg± = " 26 2. (6.15d,e)

A routine stationary phase evaluation of the integral in (6.8) involving sin(kx+ #t),
noting (6.12), determines

*&m(x, t) /

3
444445

444446

"

k= k±

" cg±

#±

7
2

± ! c:
g± t

8 1/ 2

sin(k± x + #± t ± ! / 4),

"

K= K±

" 1
7±

%
2

± ! ¬7± X

&1/ 2

sin[(K± + 7± )X ± ! / 4].

(6.16)

In the following two subsections we describe the nature of the solution (6.16) as 6
is increased from zero.

6.2.1.Case6 # 1 : wave-like solutions for" m! cg± # 1
The simultaneous limitsX ( 1 and6 # 1 restrict m! x to the range

(2t)" 1 # m! x # 2t, (6.17)

which only exists fort ( 1. With 6 small, the roots of (6.6d) are 5+ / 1 and5" / 6 2.
Accordingly (6.15) determines

K+ / 1, 7 + / 1, ¬7+ / 2, k+ / m! /6, # + / 26, (6.18a" e)

K" / 6 3, 7 " / 6 " 1, ¬7" / " 6 " 3, k" / m! 6 2, # " / 2, (6.18f " j)
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with which (6.16) becomes

*&m /
sin(2X + ! / 4)

(! X)1/ 2
+

6 5/ 2 sin(2t " ! / 4)
(! X/ 2)1/ 2

. (6.19)

The former *&+
m-mode is linked to the essential singularity atp = 0 (5+ ). In the

restricted limit t ( z2/ x ( x, the z-Fourier series (2.7a) is dominated by terms with
m = O(xt/ z2) large and may by summed asymptotically, so recovering (5.6b) in the
limited domainx # 1 (x deÞned by (5.2aÐc)). The complete summation over allm can
only be understood via the analysis of ¤5. By implication the*&+

m-modes are linked to
the Þne structure visible in Þgures6 and 7 in the vicinity of the corner[r, z] = [ 0, $].

The latter *&"
m-mode, smaller by a factorO(6 5/ 2), is linked to the cuts atp = ± 2i

(5" ). There is no asymptotic regime on which the ensuingz-Fourier series (of small
terms) may by summed overm, but the very small relative sizeO(6 5/ 2) of the *&"

m-
modes would seem to render them irrelevant anyway.

6.2.2.Case6 / 6c : the critical line x= " cgct (coalescing saddles) and beyond
Although the *&"

m-mode is small at small6 , on increasing6 its amplitude increases
and the contributions from both*&+

m and *&"
m become comparable when6 = O(1);

a trend that continues untilK+ and K" coalesce. There,¬7± = 0 and so (6.15c)
determines the critical value of5c, which together with6c were given previously by
(6.7a,c):

5c = 3" 1/ 2 6c = 21/ 23" 3/ 4. (6.20a,b)

On substitution into (6.15a,b) and (6.6c), they determine

Kc = 3" 3/ 4, 7 c = 31/ 4, " i) c = Kc + 7c = 4á3" 3/ 4. (6.20c" e)

With (6.9)Ð(6.11) they yield

(m! )" 1kc = Kc/6 c = 2" 1/ 2 # 0.707, (6.21a)
#c = 26c7c = 23/ 2 á3" 1/ 2 # 1.633, (6.21b)
" m! cgc = 26 2

c = 4á3" 3/ 2 # 0.770, (6.21c)
cpc = " (7 c/ Kc)cgc = " 3cgc, (6.21d)

c:
gc = 0. (6.21e)

Differentiation of (6.13), noting thatc:
gc = 0, yields the additional result

(k3
c/# c)c::

gc = (cgc/ cpc)2[1 " (cgc/ cpc)] = 4/ 27 (6.21f )

used in (6.23b) below.
We conclude that the wave-like stationary phase solutions (6.16) (k± real) only exist

on increasingx (equivalently6 ) from zero, at Þxedt, for x < xc(t) (6 < 6 c), where

xc(t) = " cgct # 0.245t/ m. (6.22)

As x 0 xc(t), the saddle pointsk+ and k+ coalesce, each of the corresponding wave
modes *&±

m blend to form the wave sin(kcx + #ct) modulated spatially by an Airy
function,

*&m(x, t) = "
cgc

#c

2
( c(t)

Ai
%

x " xc(t)
( c(t)

&
sin(kcx + #ct) (6.23a)
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(see, e.g. Chester, Friedman & Ursell1957) for O(( c(t)) = | x " xc(t)| # xc(t), where
the relation

kc( c(t) = kc( 1
2c::

gct)
1/ 3 = 25/ 6 á3" 7/ 6t1/ 3(( 1) (6.23b)

follows from (6.21b,d,f ). On crossing the straight linex = xc(t) (6 = 6c) in
the x-t plane, the solution decays on the length scale( c(t), whose ratio to the
half-wavelength! / kc is kc( c(t)/ ! = 25/ 6 á3" 7/ 6! " 1t1/ 3. At t = 27, say, the ratio is
roughly 0.5, i.e. ( c(t) < ! / kc. Although with such a small power oft involved we
can hardly claim to be in an asymptotic regime, the rate of predicted collapse is
plausibly consistent with the evaporation rate visible in Þgures6Ð8. There is also
possible evidence of the region of collapse slowly thickening with time to the left of
the line x = xc(t) in Þgure9, compatible with the power law( c(t) & t1/ 3. On further
increase ofx > xc(t), the exponential decay continues. Eventually, for6 ( 1, *&m is
given by (C 2) of appendixC, formulae valid for allt > 0.

6.3. Comparison with the full cylindrical results of¤4.1
Wave activity is limited to the region 0< x< xc(t) behind the frontx= xc(t) identiÞed
by the vanishing of the group velocity derivativec:

gc(= 0) (6.21e). The property
xc(t) & m" 1 (see (6.22)) is signiÞcant because it shows that them= 1 mode penetrates
furthest to the left. This feature was apparent in our full cylindrical analytic results
for E , 0 reported in ¤4.1.1, as evinced by the contours of the individual Fourier
mode&wave

m (r, z, t) (4.3) in Þgure8, from which we postulatedx1(t) = 2x2(t). Despite
the limitation of our Cartesian approximation tox = $ " r = O(1), it is remarkable
how well the formulax = xc(t), predicts the front location (i.e.xm(t) / [ xc(t)]m) for
both m = 1 and 2 as evinced by Þgure9(a,b). This is particularly noteworthy in
Þgure9(a), where r1(t) = $ " x1(t) is as small as roughly 2 att = 30. Furthermore,
the asymptotic property (6.21a) indicates that the half-wavelength! / kc & m" 1 also
decreases withm, a trend again conÞrmed by comparing panels (a) with (c) and (b)
with (d) of Þgure8.

A more exacting measure of the validity of the asymptotic formulae (6.21) is to test
the group and phase velocities at the frontx = xc(t), given by (6.21c,d), against the
analytic&wave

m (r, z, t) results determined in the full cylindrical geometry of ¤4.1.1, also
in the E , 0 limit. To that end, we recall that Þgure9 provides spaceÐtime contour
plots of &wave

m (r, z, t) at Þxedz = zm (chosen to maximise&wave
m , i.e. z1 = 0.5, z2 =

0.25) in the rÐt plane. Reassuringly the extent of wave activity is bounded by the
asymptotically predicted line$" r = xc(t), although with the caveat of front broadening
discussed in ¤6.2.2. As the maximum amplitude of the wave (i.e. crests) moves at the
local phase velocitycp, the tangent to its track has slope 1/ cp. For that reason we plot
the line t = r/ cpc and see that this property is indeed met at the frontx= xc(t), where
the line is reasonably parallel to the wave crest tracks evinced by the orientation of the
coloured patches atx= xc(t). The evolution of&wave

m (r, z, t) is followed in Þgure9(a,b)
up until t = 30. Later, however, them= 1 wave front reaches the axis att = taxis /
40, after which it is reßected, leading to less well ordered pulsating structures for
t & 40. The m = 2 wave is reßected att / 80 and so on. We add that theE , 0
comparisons concerning the phase and group velocities continue to apply in theE #
1 limit discussed in ¤4.1.2. Indeed, Þgure10 clearly shows that the frontx = xc(t)
continues to bound the triggered wave activity, while the local phase velocitycp line
remains parallel to the wave crests on the front.

The above discussion reiterates much ¤4.1, which describes results derived for the
full cylinder, 0" r < $. Here, we have provided an asymptotic explanation based on
the Cartesian approximationx = $" r = O(1), $( 1.
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7. Concluding remarks

The primary feature of any spin-down process is the evolution of the azimuthal
QG-ßowv on the spin-down time scale, visible for our problem in the DNS (E= 10" 3)
results forE" 1/ 2vDNS reported in Þgures3 and 4 panels (a,d,g). The meridional ßow,
characterised by the streamfunctionr& and smaller by a factorE1/ 2, needed to provide
the vortex line compression needed for spin-down, is apparent in the same panels
of Þgures1 and 2 for E" 1/ 2&DNS. Like the QG meridional ßow, all components of
the superimposed MF-inertial waves areO(E1/ 2). Consequently they are visible in
Þgures1 and 2 for E" 1/ 2&DNS but not in Þgures3 and 4 for E" 1/ 2vDNS, where they
are overwhelmed by the dominant QG-part. Being a manifestation of the transient
Ekman layer, as discussed in ¤1 (previously identiÞed by Greenspan & Howard1963),
the MF-waves decay algebraically (& t" 1/ 2) with time. Outside an expanding boundary
layer, width(( t) = (Et)1/ 2 (see (1.17b,d)), the horizontal components of the MF-waves
are z-independent (see (1.17c)), and in that respect are similar in character to the
QG-ßow.

The aforementioned characteristics are found in the unbounded layer$$ % . Our
objective here has been to identify the extra inertial waves triggered by a boundary
at r = $ large but Þnite. Like the MF-waves, they are visible in theE" 1/ 2&DNS contour
plots of Þgures1 and 2, but are not clearly identiÞed until consideration of the
Þltered DNS (FNS) (3.5) and (3.7b) in panels (b,e,h) of Þgures1Ð4, in which the
QG-contribution has been removed.

Since the extra inertial waves are only clearly visible in the DNS when$( 1 (for
us $= 10), we considered an analytic solution in ¤2 aimed at application to that large
$ case. There we simply determined the response to the QG-trigger" uQG($, t) (1.20a),
which reßects the failure of the unbounded QG-ßow solution to meet the impermeable
boundary condition atr = $. So, although our Þltered DNS (FNS) still contains the
MF-ßow uMF(r, t), we have ignored its contribution" uMF($, t) = " u($, t) + uQG($, t)
(1.20b) to the full trigger, arguing that, as it decays liket" 1/ 2, its inßuence on the
triggered waves is likely to be small. This point of view appears to be vindicated
by the fact that, when our QG-triggered waves are combined with the MF-waves, the
results capture the essential ingredients of the FNS solution, a measure of the full
(DNS) solution. For detailed comparison, it is necessary to include the additional MF-
trigger which we will do elsewhere. The reason for not including it here is that it adds
technical complications which obscure our understanding of the principle mechanisms
that we have been able to identify in this paper.

In addition to Ekman damping, inertial waves of short length scale suffer signiÞcant
internal viscous dissipation. Both those damping mechanisms tend to hide much of the
Þne scale inertial wave activity in our DNS/FNS/IW contour plots of Þgures1Ð4 and
5(a) for E= 10" 3. Nevertheless Þgure5(b,c,e) shows that, atE= 10" 5 and smaller, Þne
scale structures are visible, suggesting that we ought to Þlter out damping completely
and consider analytically the solutions in the zero Ekman number limit, as we do
in ¤¤4Ð6. The resulting triggered waves, illustrated in Þgures5(d), 6 and 7, reveal
very detailed structure near ther = $ boundary, previously hinted at by Þgures1Ð4
panels (c,f,i). To explain the origins of that structure, we considered analytically the
rectangular Cartesian limit, appropriate tox = $ " r = O(1) ($ ( 1) in ¤4.2. Two
complimentary approaches were adopted.

On the one hand, in ¤5, we employed the method of images, which revealed the
nature of the wave generation, particularly as it pertained to smallx. The considerable
wave interference from the inÞnite set of images leads to simpler structures at largex.
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So, on the other hand, in ¤6, we considered individualz-Fourier m-modes. For
given wavenumberk, their energy travels at the group velocity" cg(> 0) and is
focussed at the distancex = " cgt from the trigger. At given(x, t), that identiÞes two
dominant wave (k± , #± : cg± , see (6.14)) packets. Our investigation of front transition
for each m-mode, particularlym = 1, in ¤6.2.2 has mathematical and physical
parallels with that for the famous Kelvin ship wave pattern (http://dlmf.nist.gov/36.13;
Abramowitz & Stegun2010). There, two ± -waves like our (6.16) coalesce at the
wake half-angle sin" 1 1

3 # 19.478; cf. 6c (6.7a). Ursell (1960) shows that the transition
to evanescence across the 19.478-line (cf. our line x/ t = " cgc = 26 2

c /( m! ) (6.21c)) is
described by his equation (4.12); its leading-order term compares with (6.23a). Indeed
Þgures 2Ð4 of Ursell (1960) bear a striking resemblance to our Þgure9: panels (a)
m= 1, (b) m= 2. For us, as the fastest movingm= 1 mode, having the longest length
scale (see Þgure8), suffers relatively little internal dissipation, it decays slowly and
remains the dominant visible feature in the DNS (or more clearly in the Þltered
DNS, Þgure10) as time proceeds. Of even greater signiÞcance is the fact that larger
m-modes propagate a shorter distance fromr = $ and are far less evident except
sufÞciently close tor = $.

Possible applications of this study include tropical cyclones in the atmosphere,
which are characterised by an aspect ratio close to 10 (approximately 10 km in
height and a few 100 km in radius) as well as a moderate turbulent Ekman number,
owing to the fact they develop close to the equator (see also Orubaet al. 2018).

We did consider the wave motion triggered in containers withO(1) aspect ratio
(particularly $ = 1), but for them the inertial wave activity showed little structure
and decayed rapidly. There was some evidence of fan-like behaviour near the corner
[r, z] = [ $, 1], but none of the other travelling wave or frontal behaviour. That is
unsurprising because waves are reßected promptly at the axis with no time available
to create the coherent travelling structures like those reported in this paper. As a result
of the almost immediate reßection, there is considerable wave interference leading to
incoherence, ever increasing complexity and cancellation.
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Appendix A. A FourierÐBessel series

We derive the FourierÐBessel series for J1(m! qr) (q = const.). According to ¤ 18.1,
equations (3), (4) of Watson (1966) it is

J1(m! qr) =
2
$2

%"

n= 1

[J0( jn)]" 2

#! $

0
rJ1(m! qr)J1( jnr/$) dr

$
J1( jnr/$), (A 1a)

where jn denotes thenth zero (> 0) of J1(x) with the consequence that

J2( jn) = J0( jn) = J:
1( jn). (A 1b)
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With Dm deÞned by (2.8e) and qmn = jn/( m! $) (2.11d), the identities

DmJ1(m! qr) = " (q2 + 1)(m! )2J1(m! qr), (A 2a)
DmJ1( jnr/$) = " (q2

mn + 1)(m! )2J1( jnr/$) (A 2b)

follow. Their use in a routine integration by parts leads to

" (q2
mn " q2)(m! )2

! $

0
rJ1(m! qr)J1( jnr/$) dr

=
! $

0
r[J1(m! qr)DmJ1( jnr/$) " J1( jnr/$) DmJ1(m! qr)] dr

= jnJ1(m! q$)J0( jn). (A 2c)

Substitution into (A 1a) determines

J1(m! qr)
J1(m! q$)

= "
%"

n= 1

2q2
mn

q2
mn " q2

J1( jnr/$)
jnJ0( jn)

on 0" r < $. (A 3)

The representation fails atr = $, where J1( jn) = 0 and each term vanishes.

Appendix B. The z= 0 values of [ùu, ùv]bl and [u, v]ms

On z= 0, since[ùums, ùvms" ùvG] = 0 (see (5.6b)), it follows from (5.6a) that [ùu, ùv]bl =
[u " ùums, v " ùvms] = [ùu, ùv " ùvG]. Substitution of the values given by (5.4) yields

(! x)
#

ùubl

ùvbl

$

z= 0

=
#

ubl

vbl

$

z= 0

=
#

J0(2t)
2

( %
t J0(24)d4

$
/

1
'

! t

#
cos(2t " ! / 4)

" sin(2t " ! / 4)

$
(B 1)

for t ( 1.
To estimate whether or not[ùu, ùv]bl is signiÞcant, we compare it to the value of

[u, v]ms at z= 0. Substitution of (5.6b) into (5.8), and noting thatùvms(x, 0, t) = ùvG(x) =
" (! x)" 1, determines

#
ums

vms" ùvG

$

z= 0

=
#
" 1

2
t

$
+

2
! x

%"

l= 1

#
xl |zl | sin(2xlt)

" 1+ | zl | cos(2xlt)

$
, (B 2a)

where

[xl, zl ] = [ x, 2l]/3 l, 3 l =
+

x2 + (2l)2 (B 2b,c)

and, as in (5.9a), we have appealed to the symmetry inz. By arguments similar
to those used to derive (5.9b), we may show that (B 2a) has the alternative
representation

#
ums

vms" ùvG

$

z= 0

=
2

! x

.
%"

l= 1

"
! %

0
dl

/ #
xl |zl | sin(2xlt)

" 1+ | zl | cos(2xlt)

$
+

#
*ums+
*vms+

$
. (B 2d)

The former term, namely the integralÐsum difference, avoids secular behaviour with
good convergence because[xl, zl ] $ [ 0, 1] when l ( x. Indeed, only terms with
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l = O(x) contribute to the integralÐsum difference, which therefore must be no larger
than O(x) and upon multiplying by 2/( ! x) becomesO(1). On the other hand, the
latter term, namely the mean contribution[*ums+, *vms+], is O(t" 1) (see (5.10)) and
therefore negligible. That leaves only theO(1) Þrst term, so giving the estimate
[u, v]ms= O(1) on z= 0.

In summary, the relative sizes of[u, v]ms and [ùubl, ùvbl] = [ ubl, vbl] on z= 0 are
#
ums

vms

$

z= 0

= O(1) (
#

ùubl

ùvbl

$

z= 0

= O(x" 1t" 1/ 2) (
#
*ums+
*vms+

$
= O(t" 1) (B 3)

for ( bl = xt" 1/ 2 # 1.

Appendix C. The case 6 ( 1 : large |p| asymptotics

The essential idea in considering the limit

6 ( 1 75 m! x ( 2t (C 1)

is that the contour pathC of the LT-inversion integral (6.1d) may be chosen
advantageously to be restricted to|p| ( 1, on whichs/ 1+ 2p" 2. This approximation
leads to the similarity solution

*&m / exp(" m! x)F (8), where8 = X/6 1/ 3 = m! x/6 4/ 3 (C 2a,b)

and, upon settingp= 26 2/ 3P,

F (8) =
1

2! i

2

C

exp[(" 1
2 P" 2 + P)8 ]

P
dP= 1+

%"

k= 1

(" 1)k (8 3/ 2)k

(2k)!k!
(C 2c)

an entire function (cf. the power series expansion (http://dlmf.nist.gov/10.2.E2) for the
Bessel function J0). For large8 , a steepest descent evaluation of the integral in (C 2c)
over the saddle points atP= 1± i

'
3/ 2 yields the dominant contribution

F (8) /
%

2
3! 8

&1/ 2

exp
%

3
4

8
&

sin
%

33/ 2

4
8 "

2!
3

&
for 8 ( 1. (C 3)

The initial t = 0 solution valid for allx > 0 is given by

*&m / exp(" m! x)F (0) = exp(" m! x). (C 4)

From this point of view, we may regard the factorF (8) in (C 2a) as an amplitude
modulation of the primary structure exp(" m! x). Substitution of the large8
asymptotic result (C 3) into (C 2a) determines

*&m /
%

2
3! 8

&1/ 2

exp
#
" m! x

%
1"

3
46 4/ 3

&$
sin

%
33/ 2

4
8 "

2!
3

&
, (C 5a)

provided that

8 = (2t)2/ 3(m! x)1/ 3 ( 1 75 m! x ( (2t)" 2. (C 5b)
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So, in view of (C 1), the asymptotic result (C 5a) only applies, at Þxedx, for a limited
period of time,

m! x ( 2t ( (m! x)" 1/ 2, (C 5c)

a domain that only exists form! x ( 1. So although the amplitude modulationF (8)
increases with8 , its inßuence in relative importance decreases, as identiÞed by the
factor 6 " 4/ 3 in the exponential of (C 5a).
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