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Abstract. Calculating a multi-model mean, a commonly
used method for ensemble averaging, assumes model inde-
pendence and equal model skill. Sharing of model compo-
nents amongst families of models and research centres, con-
flated by growing ensemble size, means model independence
cannot be assumed and is hard to quantify. We present a
methodology to produce a weighted-model ensemble projec-
tion, accounting for model performance and model indepen-
dence. Model weights are calculated by comparing model
hindcasts to a selection of metrics chosen for their physi-
cal relevance to the process or phenomena of interest. This
weighting methodology is applied to the Chemistry—Climate
Model Initiative (CCMI) ensemble to investigate Antarc-

tic ozone depletion and subsequent recovery. The weighted
mean projects an ozone recovery to 1980 levels, by 2056
with a 95 % confidence interval (2052-2060), 4 years ear-
lier than the most recent study. Perfect-model testing and
out-of-sample testing validate the results and show a greater
projective skill than a standard multi-model mean. Interest-
ingly, the construction of a weighted mean also provides
insight into model performance and dependence between
the models. This weighting methodology is robust to both
model and metric choices and therefore has potential appli-
cations throughout the climate and chemistry—climate mod-
elling communities.
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1 Introduction

Global chemistry—climate models (CCMs) are the most com-
prehensive tools to investigate how the global composition
of the atmosphere develops, both naturally and under an-
thropogenic influence (Flato et al., 2014; Morgenstern et al.,
2017; Young et al., 2018). As with projecting climate change,
consensus views of the past and potential future evolution
of atmospheric composition are obtained from coordinated
CCM experiments (Eyring et al., 2008; Lamarque et al.,
2013; Morgenstern et al., 2017) and subsequent analysis of
the ensemble of simulations (Iglesias-Suarez et al., 2016;
Dhomse et al., 2018). Although not a complete sample of
structural and epistemic uncertainty, these ensembles are an
important part of exploring and quantifying drivers of past
and future change and evaluating the success of policy in-
terventions, such as stratospheric-ozone recovery resulting
from the Montreal Protocol and its amendments (Dhomse
et al.,, 2018; WMO, 2018). Typically, analysis of an en-
semble investigates the behaviour and characteristics of the
multi-model mean and the inter-model variance (Solomon
et al., 2007; Tebaldi and Knutti, 2007; Butchart et al., 2010),
rather than accounting for individual model performance or
lack of model independence (Knutti, 2010; Riisidnen et al.,
2010). Methods to address these shortcomings have been
proposed for simulations of the physical climate (e.g. Gillett,
2015; Knutti et al., 2017; Abramowitz et al., 2019), but
this topic has received less attention in the atmospheric-
composition community. Here, we demonstrate a weight-
ing method for the CCM simulation of Antarctic ozone loss
and projected recovery, where the weighting accounts for
model skill and independence over specified metrics rele-
vant to polar stratospheric ozone. We apply this to the re-
cent Chemistry—Climate Model Initiative (CCMI) (Morgen-
stern et al., 2017) ensemble and demonstrate the impact of
the weighting on estimated ozone hole recovery dates.

Many years of scientific studies and assessments have
tied stratospheric-ozone depletion to the anthropogenic emis-
sion and subsequent photochemistry of halogen-containing
gases, such as chlorofluorocarbons (CFCs), hydrofluoro-
carbons (HCFCs) and halons (WMO, 2018). This science
guided the development of the Montreal Protocol and its
subsequent amendments to limit and ban the production of
these ozone-destroying gases, and stratospheric ozone is now
thought to be recovering (Solomon et al., 2016; Chipperfield
et al., 2017). Of particular concern is the Antarctic “ozone
hole”: a steep decline in high-latitude stratospheric ozone
during austral spring that can reduce ozone concentrations
to near zero at particular altitudes, driven by polar nighttime
chemistry, cold temperatures and heterogeneous catalysis on
polar stratospheric clouds (PSCs) (Solomon, 1999). While
the ozone hole continues to appear in each austral spring, it
appears to be showing signs of recovery (Langematz et al.,
2018). The strong cooling associated with Antarctic ozone
depletion (Thompson and Solomon, 2002; Young et al.,
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2012) has driven circulation changes in the stratosphere and
in the troposphere, particularly in austral summer. This has
notably included an acceleration and poleward movement
of the southern high-latitude westerly winds and associated
storm tracks (Son et al., 2008; Perlwitz et al., 2008), lead-
ing to summertime surface climate changes through many
lower-latitude regions including the tropics (Thompson et al.,
2011).

The recovery process is slow due to the long atmospheric
lifetimes of ozone-depleting substances and could be ham-
pered by releases of ozone-depleting substances (ODSs) not
controlled by the Montreal Protocol, such as short-lived halo-
gens (Claxton et al., 2019; Hossaini et al., 2019) or nitrous
oxide (Portmann et al., 2012; Butler et al., 2016), or instances
of non-compliance, such as the recent fugitive emissions of
CFC-11 (Montzka et al., 2018; Rigby et al., 2019). Recovery
itself is often defined as the date at which the ozone layer re-
turns to its 1980 levels, and this is the benchmark used by the
World Meteorological Organization (WMO; WMO, 2018) to
assess the progress due to the implementation of the Mon-
treal Protocol.

The assessment of when the ozone layer will recover is
conducted using an ensemble of chemistry—climate mod-
els, forced by past and projected future emissions of ozone-
depleting substances (ODSs) and climate forcers (Eyring
et al., 2010; Dhomse et al., 2018). Such ensembles are used
to establish the robustness of the model results for a partic-
ular scenario: when several models agree, the prevailing as-
sumption is that we can have greater confidence in the model
projections. Yet, there has been much discussion about how
true this assumption is (Tebaldi and Knutti, 2007; Sander-
son et al., 2015b; Abramowitz et al., 2019). In an ideal sce-
nario, every model within an ensemble would be indepen-
dent and have some random error. In this case, we would ex-
pect that increasing the ensemble size would decrease the en-
semble uncertainty and allow us to better constrain the mean
value. However, in modern model inter-comparison projects
this is not the case: although often developed independently,
models are not truly independent, often sharing components
and parameterisations (Knutti et al., 2013); models are not
equally good at simulating the atmosphere (Reichler and
Kim, 2008; Bellenger et al., 2014); and lastly, models do not
have a predictable random error but instead have layers of
uncertainty extending from uncertainties in parameterising
sub-grid processes (Rybka and Tost, 2014) to structural un-
certainties from the design of the model (Tebaldi and Knutti,
2007; Knutti, 2010).

Given these issues, there is currently no consensus on how
best to combine model output when analysing an ensem-
ble. Probably the most widely used and simplest is to take
a multi-model mean where each model contributes equally,
and indeed it has also been established that an ensemble
mean performs better than any single model (Gleckler et al.,
2008; Reichler and Kim, 2008; Pincus et al., 2008; Knutti
et al., 2010). A more sophisticated method is to weight in-
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dividual ensemble members, accounting for model perfor-
mance as well as the degree of a model’s independence.
Weighting methods of various forms have been developed
and implemented on global physical climate model ensem-
bles (Tebaldi et al., 2005; Riisdnen et al., 2010; Haughton
et al., 2015; Knutti et al., 2017) but seldom for atmospheric
composition. In most cases the weights are calculated from
comparison of model hindcasts to observational data, ei-
ther for a single variable of interest or over a suite of diag-
nostics. Additionally, reliability ensemble averaging (REA)
(Giorgi and Mearns, 2002) is an alternative weighting tech-
nique which gives higher weights to those models near the
multi-model mean. The main motivation for using a weighted
mean is to encapsulate model skill and model independence
such that we down-weight models which perform less well
and/or are more similar.

Quantifying model skill (or performance) against com-
parable observations forms an important part of the valida-
tion and analysis of multi-model ensembles (Gleckler et al.,
2008; Flato et al., 2014; Harrison et al., 2015; Hourdin et al.,
2017; Young et al., 2018). Many CCM inter-comparison
projects feature validation and assessment through the use
of observation-based performance metrics, which may cap-
ture model performance for particular atmospheric variables
(e.g. temperature, chemical species concentrations and jet
position) or be a more derived quantity which gets closer
to evaluating the model against the process it is trying to
simulate (e.g. ozone trends versus temperature trends, chem-
ical species correlations, and relationships of chemistry—
meteorology and transport ) (Eyring et al., 2006; Waugh and
Eyring, 2008; Christensen et al., 2010; Lee et al., 2015). Per-
formance metrics are chosen based upon expert knowledge
of the modelled system to ensure that metrics are highly re-
lated to the physical or chemical processes that the models
are being evaluated on.

In this study we develop a weighting methodology, origi-
nally presented by Sanderson et al. (2017) and Knutti et al.
(2017), for CCM ensembles that accounts for model perfor-
mance and model independence. We apply it to the impor-
tant issue of estimating Antarctic ozone recovery using sev-
eral well-established metrics of model performances, where
previously only unweighted means have been used. We first
describe our weighting framework in Sect. 2, before de-
scribing the model and observational data in Sect. 3. Sec-
tion 4 presents the application of the weighting framework
to Antarctic ozone depletion and the corresponding results.
Sections 5 and 6 present a summary and our conclusions.

2 The model-weighting framework

In this study, we develop and exploit a framework to calculate
model weights based on recent work in the physical-climate-
science community (Sanderson et al., 2015a, b, 2017; Knutti
et al., 2017; Lorenz et al., 2018; Brunner et al., 2019). Here,
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for an ensemble of N models, the weight for model i (w;) is

given by
D?
A
N 2\
1+ 5 exp <_ni&,§>

The numerator captures the closeness of the model to ob-
servations. Dl.2 is the squared difference between a model and
the corresponding observation, which is a measure of perfor-
mance. The denominator captures the closeness of a model
to all other models by comparing the squared difference be-
tween them (Sizj). Both op and og are constants which allow
for tuning of the weighting to preference either independence
or performance (see discussion below). Put more simply, a
model has a larger weighting if it closely matches observa-
tions and is suitably different to the other models in the en-
semble. Finally, Eq. (1) differs from similar versions (e.g.
Knutti et al., 2017) through the addition of n;, which is the
size of the data used to create the weighting. This could be
the amount of grid points for a spatial field, the number of
points in a time series or just one for a single-valued statistic,
and it normalises the data by length allowing for comparison
between models and variables with time series of different
length- and time-invariant parameters.

Investigating and evaluating a phenomenon or complex
process often relies on identifying multiple metrics since it
can only be partially expressed by any single variable. Ex-
pert understanding of the physical process is needed to select
a set of relevant metrics with which to develop the process-
based weighting. Including multiple metrics, provided they
are not highly correlated, has the further benefit of giving less
weight to models which perform well but do so for the wrong
reasons. In this framework, ensuring that these metrics influ-
ence the weighting proportionally is done by normalising the
model data using a min—max scaling between 0 and 1.

When combining multiple metrics into a weighting, the
weight of the ith model can be found from

M D?
(e~
M M N St ’
2 k=12 €XP P

where M is the total number of metrics and k is the index of
the metric. Note that the summation is performed separately
over the numerator and the denominator. This means that we
calculate the performance and independence scores over all
the metrics combined before merging the scores to create the
final weighting, which, as before, is normalised over all the
models to sum to 1.

We take the combined weights for each model and apply
them to our parameter or process of interest (the evolution of
stratospheric ozone here). As with the metrics this parameter
need not be a time series and could be a spatial distribution or

6]

w; =

2

w; =
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a single measure. The weighted projection is therefore x =
ZZNZ Jw;x;, where x; is an individual model projection and
w; is the associated weight.

2.1 Choosing sigma values

The two scaling parameters (os and op) represent a length
scale over which two models, or a model and observation,
are deemed to be in good agreement. For example, a large
os would spread weight over a greater number of models, as
more models would lie within the length scale of og. On the
other hand, a small og sets a higher tolerance for measuring
similarity. The choice of the sigma values needs to be con-
sidered carefully to strike a balance between weighting all
models equally, thus returning to a multi-model mean, ver-
sus weighting just a few selected models. As the same val-
ues of sigma apply across all metrics, it is necessary for the
data to be normalised to the same values, ensuring that met-
rics impact the weightings equally. Figure 1 shows how the
weighting function depends on os, op, model performance
and model independence.

As noted in Knutti et al. (2017) there is not an objective
way of determining optimal sigma values. Our method of se-
lecting appropriate parameter values was to consider a train-
ing and a testing set of data, much like a machine learning
problem. We determined the values of sigma using the train-
ing data, which in this case is the refC1SD simulations such
that the weighted training data gave a good fit to the obser-
vations. The testing data (refC2 simulations) allowed us to
test the weights and sigma values out of the temporal range
of the training data, which avoids performing testing on data
that were used to tune the parameters.

3 Applying the weighting framework to the Antarctic
ozone hole

We demonstrate the applicability of this weighting frame-
work by applying it to the important and well-understood
phenomenon of the Antarctic stratospheric ozone hole, for
which we can use several decades of suitable observations to
weight the models. Below, we describe the model and obser-
vation data used and the metrics selected, against which we
measure model performance and independence.

3.1 Model and observation data sources

CCM output was taken from the simulations conducted under
Phase 1 of the Chemistry—Climate Model Initiative (CCMI)
(Morgenstern et al., 2017, and references therein), which
represents an ensemble of 20 state-of-the-art CCMs (where
chemistry and atmospheric dynamics are coupled) and chem-
istry transport models (CTMs, where the dynamics drives
the chemistry, but there is no coupling). A detailed descrip-
tion of the participating models is provided by Morgenstern
et al. (2017), and here we briefly review their overarching

Atmos. Chem. Phys., 20, 9961-9977, 2020
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features. Most models feature explicit tropospheric chem-
istry and have a similar complexity of stratospheric chem-
istry, though there is some variation in the range of halogen
source gases modelled. Horizontal resolution of the CCMs
ranges from between 1.125° x 1.125° and 5.6° x 5.6°. Ver-
tically, the atmosphere is simulated from the surface to near
the stratopause by all models, and many also resolve higher
in the atmosphere. Vertical resolution varies throughout the
models, both in the number of levels (34 to 126) and their
distribution. All models simulate the stratosphere, although
they differ in whether they have been developed with a tro-
pospheric or stratospheric science focus.

We focus on two sets of simulations, called refC1SD
and refC2, and for the weighting analysis we only consider
models which ran both simulations. Table 1 details the ex-
act model simulations used. The refC1SD simulations cover
1980-2010 and represent the specified-dynamics hindcast,
where the models’ meteorological fields are nudged to re-
analysis datasets in order that the composition evolves more
in line with the observed inter-annual variability of the at-
mosphere. In addition to being nudged by meteorology, the
refC1SD runs are forced by realistically varying boundary
conditions, including greenhouse gas (GHG) concentrations,
ODS emissions, and sea surface temperatures (SSTs) and
sea-ice concentrations (SICs). The refC1SD simulations are
used to create the model weightings, since these are the mod-
els’ best attempt at replicating the past, giving reasonable
confidence that any down weighting arises due to poorer
model performance or strong inter-model similarity. It must
be noted that the nudging process is not consistent across the
models (Orbe et al., 2018), and we should be mindful that it
has the capability to influence the weighting. We discuss the
choice to use refC1SD simulations in greater detail in Sect. 5.

The refC2 simulations cover 1960-2100 and are used to
construct weighted projections of Antarctic ozone recov-
ery, using the weights calculated from refC1SD. The forcing
from GHGs and anthropogenic emissions follows the his-
torical scenario conditions prescribed for the fifth Coupled
Model Inter-comparison Project (CMIPS) (Lamarque et al.,
2010) up to the year 2000 and subsequently follows RCP6.0
(representative concentration pathway) for GHGs and tropo-
spheric pollutant emissions (van Vuuren et al., 2011); the
ODS emissions follow the World Meteorological Organiza-
tion A1l halogen scenario (WMO, 2011). From CCMI this is
the only scenario which estimates the future climate change
and developments to stratospheric ozone.

Model performance was evaluated against a series of well-
accepted metrics (see below), drawing from widely used
observational and reanalysis datasets listed in Table 2. As-
sessing models and ensembles using observational data is
a principal way of validating models (Eyring et al., 2006;
Waugh and Eyring, 2008; Dhomse et al., 2018), and this is
the methodology we follow, with the addition that we create
the weights based upon this skill, alongside model indepen-
dence.

https://doi.org/10.5194/acp-20-9961-2020
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Figure 1. Panel (a) shows the overall weighting function w; (Eq. 1), plotted for 11 models (N = 11) with op = 0.1 and og = 0.1. Panel (b)
shows the contribution to the weighting due to model performance (at Sizj /n; = 1), and panel (c) shows the contribution due to model

independence (at Di2 /n; = 10~%). A model which has higher independence and higher skill receives a larger weight. For the weight due to

performance (a) we can see that the weight equals e~ when Di2 /ni = 0]%. This shows how op acts as a length scale that determines how
close a model has to be to observations to receive weight. og works similarly, setting the length scale that determines similarity.

Like many ozone recovery studies, we utilise TSAM (time
series additive modelling) (Scinocca et al., 2010) to quan-
tify projection confidence, which produces smooth estimates
of the ozone trend whilst extracting information about the
inter-annual variability. Here, the TSAM procedure involves
finding individual model trends for the refC2 simulations by
removing the inter-annual variability using a generalised ad-
ditive model. Each model trend is then normalised to its own
1980 value. The weighted mean (WM) is created by sum-
ming model weights with individual model trends. Two un-
certainty intervals are created: a 95 % confidence interval,
where there is a 95 % chance that the WM lies within, and
a 95 % prediction interval, which captures the uncertainty of
the WM and the inter-annual variability.

https://doi.org/10.5194/acp-20-9961-2020

3.2 Metric choices — how best to capture ozone
depletion

The first step in the weighting process is to identify the most
relevant processes that affect Antarctic ozone depletion to al-
low for appropriate metric choice. Suitable metrics require
adequate observational coverage and for the models to have
outputted the corresponding variables. The metrics we chose
are as follows:

Total ozone column gradient This is the first derivative
with respect to time of the total ozone column. Given
the discontinuity in the total ozone column record, the
years 1992-1996 are excluded. It is a southern polar
cap (60-90° S) average over austral spring (October and
November). September is not included due to discontin-
uous coverage in the observations.

Atmos. Chem. Phys., 20, 9961-9977, 2020
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Table 1. The CCMI model simulations used in this analysis and their key references.

Model refC1SD realisation(s)  refC2 realisation(s)  Reference(s)
CCSRNIES-MIROC3.2  rlilpl rlilpl Imai et al. (2013), Akiyoshi et al. (2016)
CESM1-CAM4Chem rlilpl rlilpl Tilmes et al. (2015)
CESM1-WACCM rlilpl rlilpl Marsh et al. (2013), Solomon et al. (2015),
Garcia et al. (2017)
CHASER-MIROC-ESM  rlilpl rlilpl Sudo et al. (2002), (Sudo and Akimoto, 2007),
Watanabe et al. (2011), Sekiya and Sudo (2012)
Sekiya and Sudo (2014)
CMAM rlilpl rlilpl Jonsson et al. (2004), Scinocca et al. (2008)
CNRM-CMS5-3 rlilp2 rlilpl Michou et al. (2011), Voldoire et al. (2013)
r2ilp2?
EMAC-L47TMA rlilpl rlilpl Jockel et al. (2010), Jockel et al. (2016)
rlilp22
EMAC-L90OMA rlilpl rlilpl
rlilp2?2
IPSL rlilpl rlilpl Marchand et al. (2012), Szopa et al. (2013),
Dufresne et al. (2013)
MRI-ESM1r1 rlilpl rlilpl Deushi and Shibata (2011), Yukimoto (2011),
Yukimoto et al. (2012)
UMUKCA-UCAM rlilpl rlilpl Morgenstern et al. (2009), Bednarz et al. (2016)

4 Represents the simulations used in the similarity analysis but that did not form part of the model weighting.

Table 2. The observational products and respective variables used to construct metrics on which to weight the models. MSU: Microwave
Sounding Unit. NIWA-BS: National Institute of Water and Atmospheric Research — Bodeker Scientific. GOZCARDS: Global OZone Chem-
istry And Related trace gas Data records for the Stratosphere. ERA-Interim: European Centre for Medium-Range Weather Forecasts —
ECMWEF — Reanalysis.

Product Variable Metric(s) Reference

MSU Lower-stratospheric temperature (TLS)  TLS, TLS gradient, ozone—temperature Mears and Wentz (2009)
NIWA-BS Total column ozone v3.4 (TCO) TCO gradient, ozone—temperature Bodeker et al. (2018)
GOZCARDS Hydrogen chloride concentration Antarctic hydrogen chloride concentration  Froidevaux et al. (2015)
ERA-Interim  Eastward-wind speed Polar-vortex breakdown trend Berrisford et al. (2011)

Lower-stratospheric temperature The lower-stratospheric Ozone-temperature gradient Both the lower-stratospheric

temperature for all of the models are constructed using
the MSU TLS-weighting function (Mears and Wentz,
2009). The MSU dataset extends to 82.5° S, and there-
fore the southern polar cap average ranges from 60 to
82.5° S and is temporally averaged over austral spring
(Sept, Oct, Nov).

Lower-stratospheric temperature gradient This is the

first derivative with respect to time of the lower-
stratospheric temperature found above.

Breakdown of the polar vortex The vortex breakdown

date is calculated as when the zonal mean wind at 60° S
and 20hPa transitions from eastward to westward as
per Waugh and Eyring (2008). We find the trend of
the breakdown date between the years 1980 and 2010,
and the gradient of the trend forms the polar-vortex
breakdown metric.

Atmos. Chem. Phys., 20, 9961-9977, 2020

temperature and the total ozone column are separately
averaged over 60 to 82.5°S, and the October and
November mean was taken. We determined a linear re-
lationship between temperature and total ozone column,
and the gradient of this linear relationship forms the
ozone—temperature metric (Young et al., 2013).

Ozone-trend-temperature-trend gradient This is similar

to the metric above except that we first calculated the
time derivative of the total ozone column and tempera-
ture polar time series before calculating the linear re-
lationship. The gradient of the linear relationship is
the total-ozone-column-trend—temperature-trend gradi-
ent metric.

Hydrogen chloride The hydrogen chloride concentration

was averaged over the austral spring months and over
the southern polar cap, for areas which have observa-
tional coverage. We consider a pressure range of 316 to

https://doi.org/10.5194/acp-20-9961-2020
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15 hPa to capture the concentration in the lower strato-
sphere.

These metrics capture two of the main features of ozone
depletion, namely: (1) the decrease in temperature over the
poles caused by the depletion of ozone and (2) the break-
down of the vortex which has a major role of isolating the
ozone-depleted air mass. The chlorine metric encapsulates
the anthropogenic release of ODSs and the main chemical
driver of ozone depletion. Ozone—temperature metrics allow
us to look at model success in reproducing the temperature
dependency in ozone reaction rates and stratospheric struc-
ture. By looking at the instantaneous rate of change as well
as the overall trends, we can gather a picture of both short-
term and long-term changes for a range of chemical and dy-
namical processes.

The metrics are not highly correlated, except for the to-
tal ozone column gradient and the lower-stratospheric tem-
perature gradient, which are correlated because of the strong
coupling of ozone and temperature in the stratosphere (e.g.
Thompson and Solomon, 2008). Although this could be
cause to discard one of the metrics, to avoid potential dou-
ble counting, we retain and use both to weight because the
models may not necessarily demonstrate this coupling that
we see in observations. By considering this variety of met-
rics, the approach aims to demonstrate that models do not
just get the “right” output but that they do so for the right
reasons.

3.3 Evaluating the weighting framework

Two types of testing were used to investigate the usefulness
of the weighted prediction and to validate metric choices.
Firstly, we performed a simple out-of-sample test on the
weighted prediction against the total ozone column obser-
vations from NIWA-BS. Although the weights are gener-
ated from comparison between the specified-dynamics runs
(refC1SD) and observations, it does not necessarily follow
that the weighted projection created using the free-running
(refC2) runs will be a good fit for the observations. To test
this, we compared the refC2 multi-model mean and weighted
projection to the observations. Due to the large inter-annual
variability in the total column ozone (TCO) observations, we
do not expect the weighted average to be a perfect match;
after all, free-running models are not designed to replicate
the past. However, we need to test the level of agreement be-
tween the weighted mean and the observations for an out-of-
sample period (2010-2016). This serves a secondary purpose
of determining transitivity between the two model scenarios
used, i.e. that the weightings found from refC1SD apply to
refC2.

Secondly, we used a perfect-model test (also known as
model-as-truth or a pseudo-model test) to determine whether
our weighting methodology is producing valid and robust
projections. In turn, each model is taken as the pseudo truth
and weightings are found in the same way as described in
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Sect. 2 except that the pseudo truth is used in place of ob-
servations. From these weightings we can examine the skill
with which the weighted mean compares to the pseudo truth.
We are normally limited to a single suite of observations,
but a perfect-model test allows us to test our methodology
numerous times using different pseudo truths, demonstrating
robustness.

Perfect-model testing also allows us to test transitivity
between scenarios, since, unlike with the obvious tempo-
ral limit on observations, the pseudo truth exists in both
the hindcast and forecast. If a weighting strategy produces
weighted means which are closer to the pseudo truth than a
multi-model mean, then we can have some confidence that
we can apply a weighting across model scenarios. Herger
et al. (2019) compare the perfect-model test to the cross val-
idation employed in statistics but note that although neces-
sary, perfect-model tests are not sufficient to fully show out-
of-sample skill which in this case is scenario transitivity. It
should be backed up by out-of-sample testing as described
above.

4 Applying the weighting framework to Antarctic
ozone simulations

4.1 Antarctic ozone and recovery dates

Figure 2 shows the October weighted-mean (WM) total col-
umn ozone (TCO) trend from the refC2 simulations for
the Antarctic (60-90° S). The weights are calculated using
Eq. (2) and are based on both model performance and in-
dependence. All models simulate ozone depletion and sub-
sequent recovery but with large discrepancies in the abso-
lute TCO values and the expected recovery to 1980 levels
(see Dhomse et al., 2018), from here on referred to as D18.
The WM and multi-model mean (MMM) are similar, given
the small number of models considered from the ensemble
(N =11). At maximum ozone depletion, around the year
2000, the WM projects a significantly lower ozone concen-
tration (5DU; Dobson unit) than the MMM. This steeper
ozone depletion seen in the WM fits the observations better
than the MMM, although the modelled inter-annual variabil-
ity seems to underpredict the observations.

The WM predicts a return to 1980 TCO levels by 2056
with a 95 % confidence interval (2052-2060). For compari-
son the recovery dates presented in D18 were 2062 with a 1o
spread of 2051-2082. Although taken from the same model
ensemble (CCMI), the subset of models in this analysis is
smaller than that used in D18, meaning that difference in re-
covery dates between the two works is attributable to both the
methodology and the models considered. The smaller num-
ber of models used in this study could lead to a narrower
confidence interval than the one reported in D18.

The confidence interval for recovery dates is formed from
the predictive uncertainty in the WM from the TSAM (for
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Figure 2. Antarctic (60-90° S) October TCO. The weighted mean (refC2 simulations weighted upon refC1SD performance and indepen-
dence) is shown in red; the multi-model mean (refC2 simulations) is shown in blue; and individual refC2 model trends are shown in grey. The
NIWA-BS observations are shown in black. All model projections and ensemble projections are normalised to the observational 1979-1981
mean shown as the black dashed line. The 95 % confidence and prediction intervals for the weighted mean are also shown with shading.

which the 95 % confidence interval is 2054—2059) and the
uncertainty associated with the weighting process. Choices
made about which models and metrics to include influence
the return dates and therefore introduce uncertainty. This
is similar to the concept of an “ensemble of opportunity”,
which is that only modelling centres with the time, resources
or interest take part in certain model ensembles. To quantify
this uncertainty, we performed a dropout test where a model
and a metric were systematically left out of the recovery date
calculation. This was done for all combinations of models
(N = 11) and metrics (M = 7), providing a range of 77 dif-
ferent recovery dates between 2052 and 2058. Combining the
TSAM and dropout uncertainties produces a 95 % confidence
interval of 2052-2060. We additionally tested dropping out
up to three metrics at a time and observed that the confidence
interval did not notably increase in size.

Figure 3 shows the model weights for individual metrics
and in total as found using Eqgs. (1) and (2). Good agree-
ment is shown between the models for the metrics of lower-
stratospheric temperature, the temperature gradient and the
TCO gradient. There is one exception of UMUKCA-UCAM
which exhibits a colder pole compared to the ensemble
and observations. Resultantly, UMUKCA-UCAM is down-
weighted for its lower performance at replicating the historic
lower-stratospheric temperature. Dissimilarity to the rest of
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the ensemble will contrastingly increase the weighting but
to a lesser effect than the down weighting for performance,
due in part to the values of the sigma parameters. In spite of a
bias in absolute lower-stratospheric temperature, UMUKCA -
UCAM does reproduce the trend in the lower-stratospheric
temperature with similar skill to the other models.

Due to the nudging of temperature that takes place in
most of the specified-dynamics simulations, we would ex-
pect stratospheric temperatures to be reasonably well simu-
lated. However, variation exists in nudging methods in addi-
tion to inter-model differences, and this leads to part of the
variability in weights (Orbe et al., 2018; Chrysanthou et al.,
2019). For the ozone-temperature metrics, which although
formed from variables linked to nudged fields are more com-
plex in their construction, we see a much less uniform spread
of weights. Furthermore, for processes not directly linked to
nudged variables (hydrogen chloride, ozone and the polar-
vortex breakdown trend), there is much less agreement be-
tween models. This is captured in the weights of these met-
rics which show just a few models possessing large weights.

The total weighting, formed from the mean of individual
metric weights per model, is largely influenced by CNRM-
CM5-3, which has a weight of 0.27 (297 % of the value of
a uniform weighting). The CNRM-CM5-3 simulations are
more successful at simulating metrics whilst being reason-
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ably independent from other models, leading to a weight
with greater prominence than the other models. This does
not mean that CNRM-CMS5-3 is the most skilful model. For
example, if two nearly identical models had the highest per-
formance, their final weights would be much lower, as they
would be down-weighted for their similarity. All models are
contributing towards the weighted ensemble mean providing
confidence that our weighting methodology is not over-tuned
and returning model weights of zero. The lowest total model
weight is 45 % of the value of a uniform weighting.

4.2 Testing the methodology

We performed a perfect-model test (Sect. 3.3) to assess the
skill of the weighted-mean projection, the results of which
are shown in Fig. 4. The perfect-model test shows that, on
average, using this weighting methodology produces a WM
which is closer to the “truth” than the MMM by 1 DU. In ad-
dition to improvements in projections, the pseudo recovery
dates are better predicted on average, with a maximal im-
provement of 6 years.

Three models, when treated as the pseudo truth, do not
show an improvement of the WM with respect to the MMM.
Note that this is not poor performance of the model in ques-
tion, but it is rather that the weighting methodology does not
do an adequate job of creating a weighted projection for that
model as the pseudo truth. Using CHASER-MIROC-ESM
as the pseudo truth gives a worse WM projection than if we
used the MMM. However, the average correlation between
the CHASER-MIROC-ESM-simulated TCO and other mod-
els in the ensemble is the lowest at 0.65, compared to the
average ensemble cross-correlation score of 0.81. Since a
weighted mean is a linear combination of models in the en-
semble, it is understandable that models with low correla-
tion to CHASER-MIROC-ESM will be less skilful at repli-
cating its TCO time series. This is why an improvement is
not seen for CHASER-MIROC-ESM as the pseudo truth in
the perfect-model testing.

We also performed out-of-sample testing on the WM pro-
jection for the years 2011-2016 inclusive by comparing it to
the TCO observational time series, which was smoothed as
described in Sect. 3.1 to remove inter-annual variability. The
mean squared error (MSE) was used as the metric for good-
ness of fit. This range of years is chosen, as it is the overlap
between the TCO observations and the years not used in the
creation of the weighting. The MSE of the WM is on average
202 DU? less than the MMM per year, and the MSE values
were 1510 and 2720 DU? for the WM and MMM respec-
tively for the out-of-sample period.

4.3 Model independence
The current design of model inter-comparison projects does

not account for structural similarities in models, ranging
from sharing transport schemes to entire model components.
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Therefore, a key part of generating an informed weighting
is considering how alike any two models are. The weight-
ing scheme presented here accounts for model independence
through the denominator in Eq. (1).

The refC1SD scenario from CCMI consists of 14 differ-
ent simulations, some of which are with different models,
whereas others are just different realisations of the same
models. Note that there are more models used here than in the
creation of the Antarctic ozone projection. This is because
for the weighted projection we require both a refC1SD and a
refC2 simulation for each model, but for similarity analysis
we can use all the refC1SD simulations. For these model runs
we calculated a similarity index s;; (shown in Eq. 3), which
is the similarity between models i and j averaged across all
the performance metrics, where ny is the size of the data for
metric k.

. =i§:exp — Stk 3)
MG nog

Similarities between all refC1SD models are shown in
Fig. 5. We also found the maximum value of s;; for each
model, indicating the model which model i is most simi-
lar to. The most alike models are the two realisations of
CNRM-CMS5-3, which are the same models running with
slightly different initial conditions. We also see high similar-
ity between the two variations of the CESM model, CESM-
WACCM and CESM-CAM4Chem. CESM1-CAM4Chem is
the low-top version of CESM1-WACCM, meaning that up to
the stratosphere the two models should be much alike (Mor-
genstern et al., 2017). Analysing the EMAC models this way
presents an interesting observation: changing the nudging
method has a greater impact on model similarity than chang-
ing the number of vertical levels (the difference between
EMAC-L47MArlilpl and EMAC-L47MArlilp2, and like-
wise the 90-level model variant, is that the pl variant addi-
tionally nudges to the global mean temperature; Jockel et al.,
2016). CHASER-MIROC-ESM and CCSRNIES-MIROC3.2
are two other models which are identified as similar albeit at
a lower value. Considering that these two models are built
upon the same MIROC general circulation model, it is not a
surprise that we see a similarity. The fact that the weighting
framework can identify all of the models with known simi-
larities (same institution or realisations) confirms confidence
in the methodology and means that we are down weighting
similar models.

5 Discussion

The projection of the ozone hole recovery date presented
here makes use of an ensemble of the latest generation of
CCMs and a weighting methodology that accounts for com-
plexities within model ensembles. While the ozone recovery
date found in this work (2056) is different to that found by
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Figure 3. Model weights for each of the seven metrics are all shown in blue. The weights account for both performance and independence
and are found using Eq. (1). The total weights, as found from Eq. (2), are shown in red and were the weights used to construct the weighted
mean shown in Fig. 2. The black dashed line indicates a uniform weighting as prescribed by a multi-model mean.

Dhomse et al. (2018) (2062), these two dates are not easily
comparable, as they are created from different subsets of the
same ensemble. For our subset of models, the MMM recov-
ery date was 3 years earlier (2053) than the WM. Although
the return dates are not significantly different, for the period
of peak ozone depletion (especially between 1990 and 2030),
the MMM projection is significantly different to the WM. As
the model subsets in this work, for the WM and MMM re-
main the same, the variation in the projections is entirely due
to the construction of the WM.

Atmos. Chem. Phys., 20, 9961-9977, 2020

The CNRM-CM5-3 model received the largest weight of
0.27, giving it 3 times the influence in the WM than in the
MMM. Initially this may seem as if we are placing too much
importance on one model, but consider that in a standard
MMM, a model which runs three simulations with different
combinations of components will have 3 times the influence
of a model with a single simulation. Furthermore, CNRM-
CM5-3 is not weighted higher, because it ran more simula-
tions; it is weighted higher because it is skilful at simulating
hindcasts whilst maintaining a level of independence.
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Mean monthly improvement
of prediction (DU)

Figure 4. Results of the perfect-model test. The mean monthly im-
provement in the Antarctic October TCO projection (1960-2095)
of the WM compared to the MMM for each model taken as the
pseudo truth. The average shown in red is the improvement across
all the perfect-model tests. No conclusions about overall model skill
should be drawn from this plot.
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Figure 5. Inter-model similarity across all refC1SD models as cal-
culated by Eq. (3). A similarity of 1 denotes models which are iden-
tical for all the metrics, whereas a lower similarity shows a greater
independence. The orange boxes highlight the model most similar
to the model on the y axis.

Central to the weighting methodology is the selection of
metrics requiring expert knowledge. The set of metrics we
chose was grounded in scientific understanding and produce
a good improvement of the weighted projection compared
to the MMM. There are numerous other metrics of varying
complexity which could be considered, such as the size of the
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ozone hole or the abundance of polar stratospheric clouds.
These extra metrics could improve the model weighting and
give a more accurate projection, but testing an exhaustive col-
lection of metrics was not our aim, and there are not always
appropriate measurements to validate the metrics with. We
have shown a weighting framework which improves upon the
current methodology for combining model ensembles and is
also flexible and adaptable to whichever metric choices the
user deems reasonable. Furthermore, the low range in return
dates produced from the dropout testing shows that the re-
sults produced in this weighting framework are robust to met-
ric and model choices. This is a desirable effect of a method-
ology to provide stable results irrespective of fluctuations
in the input. It is reassuring to know that the methodology
is robust to metric choices, as we are often constrained by
the availability of observational data. In this work we benefit
from the decades of interest in polar ozone which have led to
datasets of a length suitable for constructing model weights.
This highlights the importance of continued production of
good observational datasets because, although perfect-model
testing allows us a form of testing which forgoes the need for
observations, weighting methodologies must be grounded in
some estimate of the truth.

Abramowitz et al. (2019) discuss approaches for assess-
ing model dependence and performance and mention caveats
around the notion of temporal transitivity: is model be-
haviour comparable between two distinct temporal regions?
Here, we rephrase the question to be the following: are the
weights generated from the hindcast scenario relevant and
applicable to the forecast scenario? This not only questions
temporal transitivity but also that models may have codified
differences between scenarios in addition to differences in
physical and chemical regimes. In this study, scenario transi-
tivity (as we call it) is demonstrated through perfect-model
testing. On average the WM produced a better (closer to
the pseudo truth) projection than if we had considered the
MMM. This shows that weights calculated from the refC1SD
hindcasts produce better projections from the refC2 forecasts
and are therefore transitive between the two scenarios.

We generated weights from the refC1SD simulations
which means that some metrics we chose are based on
nudged variables, such as the lower-stratospheric tempera-
ture gradient. As a result, one might expect that the model
skill for these metrics should be equal, though given Fig. 3
this is not true. One may then expect that the weighting is
not capturing model skill but instead the skill of the mod-
els’ nudging mechanisms; the models are nudged on different
timescales ranging from 0.5 to 50 h and from varying reanal-
ysis products (Orbe et al., 2020). We use the perfect-model
test to show that the utility of the weighting methodology
is not compromised by using models with such a variety in
nudging timescales and methods.

As the perfect-model test produces better projections, for
models which are nudged in a variety of ways, we can con-
clude that the weighting is not dominated by nudging. Take
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for example UMUKCA-UCAM, which is nudged quite dif-
ferently compared to the ensemble, as evidenced by a south-
ern pole significantly colder than the ensemble. When we
take UMUKCA-UCAM as the pseudo truth (temporarily as-
suming the UMUKCA-UCAM output is the observational
truth) we generate weights based upon the refC1SD simu-
lations and test them on the refC2 simulations. The weights
generated are based on the dynamical system simulated in
refC1SD which includes any model nudging. We can test
how well these weights apply to a different dynamical sys-
tem without nudging (refC2). As we see an improvement in
the WM compared to the MMM, we can conclude that the
weights generated from the refC1SD dynamical system can
be applied to the refC2 dynamical system. If there had not
been an improvement, then the dynamical systems described
by refC1SD and refC2 may be too dissimilar for this weight-
ing methodology, and the weights may instead have been
dominated by how well models are nudged. Nudging may
be influencing the weights, but not to a degree that the ac-
curacy of the projection suffers. Orbe et al. (2020) highlight
the need for care when using the nudged simulations, and we
would like any future work on model weighting to quantify
the impact of nudging upon model weights to reflect this.

We justified using the nudged refC1SD simulations, de-
spite these considerations, for two reasons. Firstly, these
nudged simulations give the models the best chance at match-
ing the observational record, by providing relatively consis-
tent meteorology across the models. The free-running CCMI
hindcast simulations (refC1) have a large ensemble vari-
ance and, despite producing potentially realistic atmospheric
states, are not directly comparable to observational records.
Secondly, the perfect-model testing discussed above demon-
strates that the nudging does not have a detrimental effect on
the model weighting.

Although we were not seeking to grade the CCMs as per
Waugh and Eyring (2008), the construction of a weighted
mean provides insight into model performance which would
not be considered in the MMM. This is of some relevance, as
the CCMI ensemble has not undergone the same validation
as its predecessors, such as CCMVal (Chemistry—Climate
Model Validation Activity; Eyring et al., 2008). Additionally,
we gain insight into model dependence shown in Sect. 4.2.
Whilst this approach may not be as illuminating as Knutti
et al. (2013), who explored the genealogy of CMIP5 mod-
els through statistical methods, or Boé (2018), who analysed
similarity through model components and version numbers,
it successfully identified the known inter-model similarities.
More complex methods are desirable, especially those that
consider the history of the models’ developments. Neverthe-
less, the simplicity of quantifying inter-model distances as a
measure of dependence lends itself well to model weighting.
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6 Conclusions

We have presented a model-weighting methodology, which
considers model dependence and model skill. We applied this
over a suite of metrics grounded in scientific understanding to
Antarctic ozone depletion and subsequent recovery. In partic-
ular we have shown that the weighted projection of the total
ozone column trend, with inter-annual variability removed,
predicts recovery by 2056 with a 95 % confidence interval of
2052-2060. Through perfect-model testing we demonstrated
that on average a weighted mean performs better than the cur-
rent community standard of calculating a multi-model mean.
Additionally, the perfect-model test, a necessary step in val-
idating the methodology, showed a level of transitivity be-
tween the free-running and the specified-dynamics simula-
tions.

This methodology addresses the known shortcomings of
an ensemble multi-model mean, which include the problem
of ensembles including many similar models and the inabil-
ity to factor in model performance. It does this by quanti-
fying skill and independence for all models in the ensemble
over a selection of metrics which are chosen for their phys-
ical relevance to the phenomena of interest. This weighting
methodology is still subject to some of the same limitations
of taking an ensemble mean: i.e. we are still limited by what
the models simulate. For example, in the case of ozone deple-
tion, a weighted mean is no more likely to capture the ozone
changes due to the recent fugitive CFC-11 release (Rigby
et al., 2019). Instead it allows us to maximise the utility of
the ensemble, and, provided we are cautious of over-fitting,
it allows us to make better projections.

Addressing the shortcomings and presenting possible im-
provements of methods for averaging model ensembles is
timely given the current running of CMIP6 simulations
(Eyring et al., 2016). That ensemble could arguably be the
largest climate model ensemble created to date, in terms of
the breadth of models considered. Therefore, the need for
tools to analyse vast swathes of data efficiently for multi-
ple interests is still growing. The models within CMIP6 are
likely not all independent, which could affect the robustness
of results from the ensemble by biasing the output towards
groups of similar models. The similarity analysis within this
work would allow users of the ensemble data to understand
if ensemble biases are emerging from similar models and ac-
knowledge how this may impact their results.

In summary, we have presented a flexible and useful
methodology, which has applications throughout the envi-
ronmental sciences. It is not a silver bullet for creating the
perfect projection for all circumstances; however, it can be
used to construct a phenomenon-specific analysis process
that can account for model skill and model independence,
both of which can improve ensemble projections compared
to a multi-model mean.
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Code and data availability. The Jupyter notebook used to
run the analysis, along with a collection of functions
to produce weightings from ensembles, can be found at
https://doi.org/10.5281/zenodo.3624522 (Amos, 2020). The CCMI
model output was retrieved from the Centre for Environmental Data
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