A. Bodilis, Le bâtiment d'essais et de mesures Monge. REE. Rev. De L'électricité Et De L'électronique, vol.1, pp.84-89, 2001.

F. J. Lübken, G. Baumgarten, J. Hildebrand, and F. J. Schmidlin, Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques, Atmos. Meas. Tech, vol.9, pp.3911-3919, 2016.

F. Schmidlin, Rocket techniques used to measure the neutral atmosphere. In International Council of Scientific Unions Handbook for MAP, pp.17-46

B. Scostep and . College, , vol.19, p.28, 1986.

F. J. Lübken, W. Hillert, G. Lehmacher, U. Von-zahn, M. Bittner et al., Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes and radiosondes during the DYANA campaign, J. Atmos. Terr. Phys, vol.56, pp.1969-1984, 1994.

G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak et al., Review of mesospheric temperature trends, Rev. Geophys, vol.41, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01631208

D. A. Krueger, C. Y. She, and T. Yuan, Retrieving mesopause temperature and line-of-sight wind from full-diurnal-cycle Na lidar observations, Appl. Opt, vol.54, pp.9469-9489, 2015.

J. A. Gelbwachs, Iron Boltzmann factor LIDAR: Proposed new remote-sensing technique for mesospheric temperature, Appl. Opt, vol.33, pp.7151-7156, 1994.

V. Zahn, U. Höffner, and J. , Mesopause temperature profiling by potassium lidar, Geophys. Res. Lett, vol.23, pp.141-144, 1996.

A. Hauchecorne and M. L. Chanin, Density and temperature profiles obtained by lidar between 35 and 70 km, Geophys. Res. Lett, vol.7, pp.565-568, 1980.

P. Keckhut, A. Hauchecorne, and M. Chanin, A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars, J. Atmos. Ocean. Technol, vol.10, pp.850-867, 1993.

P. Keckhut, Rayleigh temperature lidar applications: Tools and methods, Proc.), vol.139, pp.337-360, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00150374

A. Hauchecorne, P. Keckhut, and M. L. Chanin, Dynamics and transport in the middle atmosphere using remote sensing techniques from ground and space, In Infrasound Monitoring for Atmospheric Studies, pp.665-683, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00451755

R. Wing, A. Hauchecorne, P. Keckhut, S. Godin-beekmann, S. Khaykin et al., Lidar temperature series in the middle atmosphere as a reference data set-Part 2: Assessment of temperature observations from MLS/Aura and SABER/TIMED satellites, Atmos. Meas. Tech, vol.11, pp.6703-6717, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01960060

S. Avdyushin, G. Tulinov, M. Ivanov, B. Kuzmenko, I. Mezhuev et al., 1. Spatial and temporal evolution of the optical thickness of the Pinatubo aerosol cloud in the northern hemisphere from a network of ship-borne and stationary lidars, Geophys. Res. Lett, vol.20, pp.1963-1966, 1993.

F. Immler and O. Schrems, Vertical profiles, optical and microphysical properties of Saharan dust layers determined by a ship-borne lidar, Atmos. Chem. Phys, vol.3, pp.1353-1364, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00301080

J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res. Space Phys, p.107, 2002.

D. L. Barton, V. B. Wickwar, J. P. Herron, L. Sox, and L. A. Navarro, Variations in Mesospheric neutral densities from Rayleigh lidar observations at Utah State University, EPJ Web of Conferences, vol.119, p.13006, 2016.

P. Argall, Upper altitude limit for Rayleigh lidar, Ann. Geophys, vol.25, pp.19-25, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00318251

D. P. Donovan, J. A. Whiteway, and A. I. Carswell, Correction for nonlinear photon-counting effects in lidar systems, Appl. Opt, vol.32, pp.6742-6753, 1993.

J. Khanna, J. Bandoro, R. J. Sica, and C. T. Mcelroy, New technique for retrieval of atmospheric temperature profiles from Rayleigh-scatter lidar measurements using nonlinear inversion, Appl. Opt, vol.51, pp.7945-7952, 2012.

R. Sica and A. Haefele, Retrieval of temperature from a multiple-channel Rayleigh-scatter lidar using an optimal estimation method, Appl. Opt, vol.54, pp.1872-1889, 2015.

A. Jalali, R. J. Sica, and A. Haefele, Improvements to a long-term Rayleigh-scatter lidar temperature climatology by using an optimal estimation method, Atmos. Meas. Tech, vol.11, pp.6043-6058, 2018.

A. Jalali, S. Hicks-jalali, R. J. Sica, A. Haefele, and T. V. Clarmann, A practical information-centered technique to remove a priori information from lidar optimal-estimation-method retrievals, Atmos. Meas. Tech, vol.12, pp.3943-3961, 2019.

P. Gallais, Atmospheric Re-Entry Vehicle Mechanics

R. A. Vincent and I. M. Reid, HF Doppler Measurements of Mesospheric Gravity Wave Momentum Fluxes, J. Atmos. Sci, vol.40, pp.1321-1333, 1983.

R. Wilson, M. Chanin, and A. Hauchecorne, Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2. Climatology, J. Geophys. Res. Atmos, vol.96, pp.5169-5183, 1991.

T. Nakamura, T. Tsuda, S. Fukao, A. Manson, C. Meek et al., Mesospheric gravity waves at Saskatoon (52 N), Kyoto (35 N), and Adelaide (35 S), J. Geophys. Res. Atmos, vol.101, pp.7005-7012, 1996.

J. Whiteway, T. Duck, D. P. Donovan, J. Bird, S. Pal et al., Measurements of gravity wave activity within and around the Arctic stratospheric vortex, Geophys. Res. Lett, vol.24, pp.1387-1390, 1997.

M. Pfenninger, A. Z. Liu, G. C. Papen, and C. S. Gardner, Gravity wave characteristics in the lower atmosphere at South Pole, J. Geophys. Res. Atmos, vol.104, pp.5963-5984, 1999.

T. Li, T. Leblanc, I. S. Mcdermid, D. L. Wu, X. Dou et al., Seasonal and interannual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory, Hawaii, J. Geophys. Res. Atmos, p.115, 2010.

N. Mzé, A. Hauchecorne, P. Keckhut, and M. Thétis, Vertical distribution of gravity wave potential energy from long-term Rayleigh lidar data at a northern middle-latitude site, J. Geophys. Res. Atmos, vol.119, pp.12-069, 2014.

D. W. Roberts, G. G. Gimmestad, A. K. Garrison, E. M. Patterson, S. C. Gimmestad et al., Design and performance of a 100 inch lidar facility, Opt. Eng, vol.30, pp.79-88, 1991.

P. Keckhut, Y. Courcoux, J. L. Baray, J. Porteneuve, H. Vérèmes et al., Introduction to the Maïdo Lidar Calibration Campaign dedicated to the validation of upper air meteorological parameters, J. Appl, p.94099

R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard et al., Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system, Appl. Opt, vol.34, pp.6925-6936, 1995.

V. Zahn, U. Von-cossart, G. Fiedler, J. Fricke, K. Nelke et al., The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance, Annales Geophysicae, vol.18, pp.815-833, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00329143

L. Sox, V. B. Wickwar, T. Yuan, and N. R. Criddle, Simultaneous Rayleigh-Scatter and Sodium Resonance Lidar Temperature Comparisons in the Mesosphere-Lower Thermosphere, J. Geophys. Res. Atmos, vol.123, pp.10-688, 2018.