T. Tite, A. Popa, L. M. Balescu, I. M. Bogdan, I. Pasuk et al., Cationic substitutions in hydroxyapatite: Current status of the derived biofunctional effects and their in vitro interrogation methods, Materials, vol.11, 2018.

G. Graziani, M. Boi, and M. Bianchi, A review on ionic substitutions in hydroxyapatite thin films: Towards complete biomimetism, vol.8, p.269, 2018.

L. Duta and A. C. Popescu, Current status on pulsed laser deposition of coatings from animal-origin calcium phosphate sources, vol.9, 2019.

G. E. Stan, A. C. Popescu, I. N. Mihailescu, D. A. Marcov, R. C. Mustata et al., On the bioactivity of adherent bioglass thin films synthesized by magnetron sputtering techniques, Thin Solid Films, vol.518, pp.5955-5964, 2010.

V. Campana, G. Milano, E. Pagano, M. Barba, C. Cicione et al., Bone substitutes in orthopaedic surgery: From basic science to clinical practice, J. Mater. Sci. Mater. Med, vol.25, pp.2445-2461, 2014.

R. Z. Legeros, Hydroxyapatite and Related Materials, 1994.

R. Z. Legeros, Calcium Phosphates in Oral Biology and Medicine, 1991.

M. Ebrahimi, M. G. Botelho, and S. V. Dorozhkin, Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research, Mater. Sci. Eng. C, vol.71, pp.1293-1312, 2018.

H. Zhou and J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater, vol.7, pp.2769-2781, 2011.

R. G. Carrodeguas, De Aza, S. ?-Tricalcium phosphate: Synthesis, properties and biomedical applications, Acta Biomater, vol.7, pp.3536-3546, 2011.

M. Prakasam, J. Locs, K. Salma-ancane, D. Loca, and A. Largeteau, Berzina-Cimdina, L. Fabrication, properties and applications of dense hydroxyapatite: A review, J. Funct. Biomater, vol.6, pp.1099-1140, 2015.

L. Joo, D. Ong, and C. N. Chanm, Hydroxyapatite and their use as coatings in dental implants: A review, Crit. Rev. Biomed. Eng, vol.28, pp.667-707, 1999.

C. F. Marques, S. Olhero, J. C. Abrantes, A. Marote, S. Ferreira et al., Biocompatibility and antimicrobial activity of biphasic calcium phosphate powders doped with metal ions for regenerative medicine, Ceram. Int, vol.43, pp.15719-15728, 2017.

R. Chung, M. Hsieh, C. Huang, L. Perng, H. Wen et al., Antimicrobial effects and human gingival biocompatibility of hydroxyapatite sol-gel coatings, J. Biomed. Mater. Res. B, vol.76, pp.169-178, 2006.

C. T. Johnson and A. J. Garcia, Scaffold-based anti-infection strategies in bone repair, Ann. Biomed. Eng, vol.43, pp.515-528, 2015.

J. L. Holloway, One step solution for fighting bacteria and growing bone, Sci. Transl. Med, vol.11, 2019.

K. Yuan, K. C. Chen, Y. J. Chan, C. C. Tsai, H. H. Chen et al., Dental implant failure associated with bacterial infection and long-term bisphosphonate usage: A case report, Implant Dent, vol.21, pp.3-7, 2012.

A. C. Popa, H. R. Fernandes, M. Necsulescu, C. Luculescu, M. Cioangher et al., Antibacterial efficiency of alkali-free bio-glasses incorporating ZnO and/or SrO as therapeutic agents, Ceram. Int, vol.45, pp.4368-4380, 2019.

B. Aslam, W. Wang, M. I. Arshad, M. Khurshid, S. Muzammil et al., Antibiotic resistance: A rundown of a global crisis, Infect. Drug Resist, vol.11, pp.1645-1658, 2018.

M. L. Badea, S. L. Iconaru, A. Groza, M. C. Chifiriuc, M. Beuran et al., Peppermint essential oil-doped hydroxyapatite nanoparticles with antimicrobial properties, Molecules, vol.24, 2019.

S. Burt, Essential oils: Their antibacterial properties and potential applications in foods-A review, Int. J. Food. Microbiol, vol.94, pp.223-253, 2004.

D. Predoi, S. L. Iconaru, N. Buton, M. L. Badea, and L. Marutescu, Antimicrobial activity of new materials based on lavender and basil essential oils and hydroxyapatite, Nanomaterials, vol.8, p.291, 2018.

R. J. De-carvalho, G. T. De-souza, V. G. Honorio, J. S. De-sousa, M. L. Da-conceiçao et al., Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter co-culture in cheese-mimicking models, Food Microbiol, vol.52, pp.59-65, 2015.

C. F. Bagamboula, M. Uyttendaele, and J. Debevere, Antimicrobial effect of spices and herbs on Shigella sonnei and Shigella flexneri, J. Food Prot, vol.66, pp.668-673, 2003.

D. Food and . Administration, Part 182-Substances Generally Recognized a Safe. Subpart A-General Provisions. Sec. 182.10 Species and Other Natural Seasoning and Flavorings, p.27, 2019.

C. Ballester-costa, E. Sendra, J. Fernandez-lopez, J. A. Perez-alvarez, and M. Viuda-martos, Chemical composition and in vitro antibacterial properties of essential oils of four Thymus species from organic growth, Ind. Crop. Prod, vol.50, pp.304-311, 2013.

C. Y. Kohiyama, M. M. Ribeiro, S. A. Mossini, E. Bando, N. S. Bomfim et al., Antifungal properties and inhibitory effects upon aflatoxin production of Thymus vulgaris L. by Aspergillus flavus Link, Food Chem, vol.173, pp.1006-1010, 2015.

H. Alioui, O. Bouras, and J. C. Bollinger, Toward an efficient antibacterial agent: Zn-and Mg-doped hydroxyapatite nanopowders, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng, vol.54, pp.315-327, 2018.

C. C. Coelho, R. Araujo, P. A. Quadros, S. R. Sousa, and F. J. Monteiro, Antibacterial bone substitute of hydroxyapatite and magnesium oxide to prevent dental and orthopaedic infections, Mater. Sci. Eng. C, vol.97, pp.529-538, 2019.

D. Predoi, S. L. Iconaru, M. V. Predoi, G. E. Stan, and N. Buton, Synthesis, characterization, and antimicrobial activity of magnesium-doped hydroxyapatite suspensions, Nanomaterials, vol.9, 1295.

H. Zhang, C. Zhao, J. Wen, X. Li, and L. Fu, Synthesis and structural characteristics of magnesium and zinc doped hydroxyapatite whiskers, Ceram. Silik, vol.61, pp.244-249, 2017.

E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri et al., Biomimetic Mg-substituted hydroxyapatite: From synthesis to in vivo behaviour, J. Mater. Sci. Mater. Med, vol.19, pp.239-247, 2008.

J. Singh, H. Singh, and U. Batra, Magnesium doped hydroxyapatite: Synthesis, characterization and bioactivity evaluation, Biomaterials Science: Processing, Properties, and Applications V: Ceramic Transactions

R. Narayan, S. Bose, and A. Bandyopadhyay, Chapter, vol.254, pp.161-174, 2015.

D. Bernardini, A. Nasulewic, A. Mazur, and J. A. Maier, Magnesium and microvascular endothelial cells: A role in inflammation and angiogenesis, Front. Biosci, vol.10, pp.1177-1182, 2005.

T. Xu, X. He, Z. Chen, L. He, M. Lu et al., Effect of magnesium particle fraction on osteoinduction of hydroxyapatite sphere-based scaffolds, J. Mater. Chem. B, vol.7, pp.5648-5660, 2019.

A. Bigi, G. Falini, E. Foresti, M. Gazzano, A. Ripamonti et al., Magnesium influence on hydroxyapatite crystallization, J. Inorg. Biochem, vol.49, pp.69-78, 1993.

C. S. Ciobanu, S. L. Iconaru, F. Massuyeau, L. V. Constantin, A. Costescu et al., Synthesis, structure, and luminescent properties of europium-doped hydroxyapatite nanocrystalline powders, J. Nanomater, 2012.

D. Predoi, S. L. Iconaru, and M. V. Predoi, Dextran-coated zinc-doped hydroxyapatite for biomedical applications, Polymers, vol.11, 2019.

D. Predoi, S. L. Iconaru, M. V. Predoi, M. Motelica-heino, R. Guegan et al., Evaluation of antibacterial activity of zinc-doped hydroxyapatite colloids and dispersion stability using ultrasounds, Nanomaterials, vol.9, 2019.
URL : https://hal.archives-ouvertes.fr/insu-02088572

C. S. Ciobanu, S. L. Iconaru, C. L. Popa, M. Motelica-heino, and D. Predoi, Evaluation of samarium doped hydroxyapatite, ceramics for medical application: Antimicrobial activity, J. Nanomater, vol.849216, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01160556

L. Rodriguez and J. Matou?ek, Preparation of TiO 2 sol-gel layers on glass, Ceram. Silik, vol.47, pp.28-31, 2003.

A. C. Popa, G. E. Stan, M. A. Husanu, I. Pasuk, I. D. Popescu et al., Multi-layer haemocompatible diamond-like carbon coatings obtained by combined radio frequency plasma enhanced chemical vapor deposition and magnetron sputtering, J. Mater. Sci.: Mater. Med, vol.24, pp.2695-2707, 2013.

V. R. Patel and Y. K. Agrawal, Nanosuspension: An approach to enhance solubility of drugs, J. Adv. Pharm. Technol. Res, vol.2, pp.81-87, 2011.

H. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr, vol.2, pp.65-71, 1969.

M. Markovic, B. O. Fowler, and M. S. Tung, Preparation and comprehensive characterization of a calcium hydroxyapatite reference material, J. Res. Natl. Inst. Stand. Technol, vol.109, pp.553-568, 2004.

A. C. Mocanu, M. Miculescu, T. Machedon-pisu, A. Maidaniuc, R. C. Ciocoiu et al., Internal and external surface features of newly developed porous ceramics with random interconnected 3D channels by a fibrous sacrificial porogen method, Appl. Surf. Sci, vol.489, pp.226-238, 2019.

L. Duta, N. Mihailescu, A. C. Popescu, C. R. Luculescu, I. N. Mihailescu et al., Comparative physical, chemical and biological assessment of simple and titanium-doped ovine dentine-derived hydroxyapatite coatings fabricated by pulsed laser deposition, Appl. Surf. Sci, vol.413, pp.129-139, 2017.

G. E. Stan, D. A. Marcov, I. Pasuk, F. Miculescu, S. Pina et al., Bioactive glass thin films depositd by magnetron sputtering technique: The role of working pressure, Appl. Surf. Sci, vol.256, pp.7102-7110, 2010.

H. K. Can, S. Kavlak, S. P. Khosroshahi, and A. Guner, Preparation, characterization and dynamical properties of dextran-coated iron oxide nanoparticles (DIONPs), Artif. Cell. Nanomed. Biotechnol, vol.46, pp.421-431, 2018.

M. H. Vettori, S. M. Franchetti, and J. Contiero, Structural characterization of a new dextran with a low degree of branching produced by Leuconostoc mesenteroides FT045B dextransucrase, Carbohydr. Polym, vol.88, pp.1440-1444, 2012.

N. N. Siddiqui, A. Aman, A. Silipo, S. A. Qader, and A. Molinaro, Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides, Carbohydr. Polym, vol.99, pp.331-338, 2014.

Z. Mitic, G. M. Nikolic, M. Cakic, S. Mitic, G. S. Nikolic et al., Spectroscopic characterization of cobalt (II) complexes with reduced low-molar dextran derivatives, Acta Fac. Med. Naiss, vol.35, pp.37-48, 2018.

S. Glisic, G. Nikolic, M. Cakic, and N. Trutic, Spectroscopic study of copper(II) complexes with carboxymethyl dextran and dextran sulfate, Russ. J. Phys. Chem. A, vol.89, pp.1254-1262, 2015.

C. M. Topala and L. D. Tataru, ATR-FTIR of thyme and rosemary oils extracted by supercritical carbon dioxide, Rev. Chem, vol.67, pp.842-846, 2016.

A. C. Solan-valderrama and G. C. Rojas-de, Traceability of active compounds of essential oils in antimicrobial food packaging using a chemometric method by ATR-FTIR, Am. J. Anal. Chem, vol.8, pp.726-741, 2017.

H. Schultz, R. Quilitzsch, and H. Kruger, Rapid evaluation and quantitative analysis of thyme, oregano and chamomile essential oils by ATR-IR and NIR spectroscopy, J. Mol. Struct, pp.299-306, 2003.

G. E. Stan, D. A. Marcov, A. C. Popa, and M. A. Husanu, Polymer-like and diamond-like carbon coatings prepared by RF-PECVD for biomedical application, Dig. J. Nanomater. Biostruct, vol.5, pp.705-718, 2010.

A. I. Ibrahim, D. S. Moodley, L. Petrik, and N. Patel, Use of antibacterial nanoparticles in Endodontics, S. Afr. Dent. J, vol.72, pp.105-112, 2017.

A. Monzavi, S. Eshraghi, R. Hashemian, and F. Momen-heravi, In vitro and ex vivo antimicrobial efficacy of nano-MgO in the elimination of endodontic pathogens, Clin. Oral Investig, vol.19, pp.349-356, 2015.

L. Huang, D. Li, Y. Lin, M. Wei, D. G. Evans et al., Controllable preparation of nano-MgO and investigation of its bactericidal properties, J. Inorg. Biochem, vol.99, pp.986-993, 2005.

K. A. Hammer, C. F. Carson, and T. V. Riley, Antimicrobial activity of essential oils and other plant extracts, J. Appl. Microbiol, vol.86, pp.985-990, 1999.

K. Msaada, N. Salem, O. Bachrouch, S. Bousselmi, S. Tammar et al., Chemical composition and antioxidant and antimicrobial activities of wormwood (Artemisia absinthium L.) essential oils and phenolics, J. Chem, vol.804658, 2015.

M. Boskovic, N. Zdravkovic, J. Ivanovic, J. Janjic, J. Djordjevic et al., Antimicrobial activity of thyme (Tymus vulgaris) and oregano (Origanum vulgare) essential oils against some food-borne microorganisms, Procedia Food Sci, vol.5, pp.18-21, 2015.

K. A. Poelstra, N. A. Barekzi, A. M. Rediske, A. G. Felts, J. B. Slunt et al., Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies, J. Biomed. Mater. Res, vol.60, pp.206-215, 2002.

E. Seebach and K. F. Kubatzky, Chronic implant-related bone infections-Can immune modulation be a therapeutic strategy?, Front. Immunol, vol.10, 1724.

W. Zimmerli and P. Sendi, Orthopaedic biofilm infections, APMIS, vol.125, pp.353-364, 2017.

W. Zimmerli, A. Trampuz, and P. E. Ochsner, Prosthetic-joint infections, N. Engl. J. Med, vol.351, pp.1645-1654, 2004.

C. Pan, Z. Zhou, and X. Yu, Coatings as the useful drug delivery system for the prevention of implant-related infections, J. Orthop. Surg. Res, vol.13, 2018.

T. Akiyama, H. Miyamoto, Y. Yonekura, M. Tsukamoto, Y. Ando et al., Silver oxide containing hydroxyapatite coating has in vivo antibacterial activity in the rat tibia, J. Orthop. Surg. Res, vol.31, pp.1195-1200, 2013.

M. Ueno, H. Miyamoto, M. Tsukamoto, S. Eto, I. Noda et al., Silver-containing hydroxyapatite coating reduces biofilm formation by methicillin-resistant Staphylococcus aureus in vitro and in vivo, Biomed. Res. Int, vol.8070597, 2016.

X. Lian, K. Mao, X. Liu, X. Wang, and F. Cui, In vivo osteogenesis of vancomycin loaded nanohydroxyapatite/collagen/calcium sulfate composite for treating infectious bone defect induced by chronic osteomyelitis, J. Nanomater, 2015.

L. Townsend, R. L. Williams, O. Anuforom, M. R. Berwick, F. Halstead et al., Antimicrobial peptide coatings for hydroxyapatite: Electrostatic and covalent attachment of antimicrobial peptides to surfaces, J. R. Soc. Interface, vol.14, 2017.