K. Zhou, C. Dong, X. Zhang, L. Shi, Z. Chen et al., Preparation and characterization of nanosilver-doped porous hydroxyapatite scaffolds, Ceram. Int, vol.41, pp.1671-1676, 2015.

X. Bai, K. More, C. M. Rouleau, and A. Rabiei, Functionally graded hydroxyapatite coatings doped with antibacterial components, Acta Biomater, vol.6, pp.2264-2273, 2010.

M. Rai, A. Yadav, and A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv, vol.27, pp.76-83, 2009.

Y. Huang, W. Wang, X. Zhang, X. Liua, Z. Xua et al., A prospective material for orthopedic applications: Ti substrates coated with a composite coating of a titaniananotubes layer and a silver-manganesedoped hydroxyapatite layer, Ceram. Int, vol.44, pp.5528-5542, 2018.

M. A. Surmeneva, A. A. Sharonova, S. Chernousova, O. Prymak, K. Loza et al., Incorporation of silver nanoparticles into magnetron-sputtered calcium phosphate layers on titanium as an antibacterial coating. Colloid Surf, vol.156, pp.104-113, 2017.

Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, A. Suzuki et al., Acidic extracellular microenvironment and cancer, Cancer Cell Int, vol.13, p.89, 2013.

A. Dubnika, D. Loca, V. Rudovica, M. B. Parekh, and L. Berzina-cimdina, Functionalized silver doped hydroxyapatite scaffolds for controlled simultaneous silver ion and drug delivery, Ceram. Int, vol.43, pp.3698-3705, 2017.

H. Baradari, C. Damia, M. Dutreih-colas, E. Laborde, N. Pecout et al., Calcium phosphate porous pellets as drug delivery systems: Effect of drug carrier composition on drug loading and in vitro release, J. Eur. Ceram. Soc, vol.32, pp.2679-2690, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00709454

M. A. Rauschmann, T. A. Wichelhaus, V. Stirnal, E. Dingeldein, L. Zichner et al., Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections, Biomaterials, vol.26, pp.2677-2684, 2005.

D. Mack, H. Rohde, L. G. Harris, A. P. Davies, M. A. Horstkotte et al., Biofilm Formation in Medical Device-Related Infection, Int. J. Artif. Organs, vol.29, pp.343-359, 2006.

P. E. Vaudaux, P. L. Daniel, and F. A. Waldvgel, Host factors predisposing to and influencing therapy of foreign body infections, In Infections Associated with Indwelling Medical Devices

A. L. Bisno and F. A. Waldvogel, , 1994.

J. M. Steckelberg and D. R. Osmon, Prothetic joint infections, In Infections Associated with Indwelling Medical Devices

A. L. Bisno and F. A. Waldvogel, , pp.1-436, 1994.

M. Shirkhanzadeh, M. Azadegan, and G. Q. Liu, Bioactive delivery systems for the slow-release of antibiotics-Incorporation of Ag+ ions into micro-porous hydroxyapatite coatings, Mater. Lett, vol.24, pp.7-12, 1995.

D. W. Williams, R. P. Jordan, X. Q. Wei, C. T. Alves, M. P. Wise et al., Interactions of Candida albicans with host epithelial surfaces, J. Oral Microbiol, vol.5, 2013.

G. Ciobanu, S. Ilisei, and C. Luca, Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold, Mater. Sci. Eng. C Mater. Biol. Appl, vol.35, pp.36-42, 2014.

D. Campoccia, L. Montanaro, and C. R. Arciola, The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials, vol.27, pp.2331-2339, 2006.

X. M. Liu, Y. A. Mou, S. L. Wu, and H. C. Man, Synthesis of silver-incorporated hydroxyapatite nanocomposites for antimicrobial implant coatings, Appl. Surf. Sci, vol.273, pp.748-757, 2013.

C. S. Ciobanu, S. L. Iconaru, I. Pasuk, B. S. Vasile, A. R. Lupu et al., Structural properties of silver doped hydroxyapatite and their biocompatibility, Mater. Sci. Eng. C Mater, vol.33, pp.1395-1402, 2013.

V. Stanic, S. Dimitrijevi?, S. B. Tanaskovi?, M. Mitri?, M. S. Pavlovi? et al., Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering, Appl. Surf. Sci, vol.257, pp.4510-4518, 2011.

A. Costescu, C. S. Ciobanu, S. L. Iconaru, R. V. Ghita, M. C. Chifiriuc et al., Fabrication, characterization, and antimicrobial activity, evaluation of low silver concentrations in silverdoped hydroxyapatite nanoparticles, J. Nanomater, issue.5, 2013.

S. L. Iconaru, P. Chapon, P. Le-coustumer, D. Predoi, D. Predoi et al., Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method, Medical Coatings and Deposition Technologies, vol.8, pp.131-180, 2014.

B. Singh, S. Kumar, N. Saha, B. Basu, R. Gupta et al., In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10?xAgx(PO4)6(OH)2 (0.0 ? x ? 0.5) hydroxyapatites, Mater. Sci. Eng. C Mater, vol.31, pp.1320-1329, 2011.

N. Rameshbabu, T. S. Sampath-kumar, T. G. Prabhakar, V. S. Sastry, K. V. Murty et al., Antibacterial nanosized silver substituted hydroxyapatite: Synthesis and characterization, J. Biomed. Mater. Res. A, vol.80, pp.581-591, 2007.

C. S. Ciobanu, F. Massuyeau, L. V. Constantin, and D. Predoi, Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100 °C, ImageJ Website. Available online, vol.6, p.10, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00849703

S. L. Iconaru, A. M. Prodan, C. S. Turculet, M. Beuran, R. V. Ghita et al., Enamel Based Composite Layers Deposited on Titanium Substrate with Antifungal Activity, J. Spectrosc, 2016.

A. V. Fuchs, S. Ritz, S. Pütz, V. Mailänder, K. Landfester et al., Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combining antifouling and antibacterial properties, ASTM International. ASTM E2149-13a, vol.1, pp.470-477, 2013.

D. Predoi, S. L. Iconaru, M. V. Predoi, N. Buton, and M. Motelica-heino, Zinc Doped Hydroxyapatite Thin Films Prepared by Sol-Gel Spin Coating Procedure, vol.9, p.156, 2019.
URL : https://hal.archives-ouvertes.fr/insu-02058905

H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystallite and Amorphous Materials, 1974.

C. S. Barrett, J. B. Cohen, J. Faber, R. Jenkins, D. E. Leyden et al., Advances in X-ray Analysis, vol.29, 1986.

N. V. Sipsasa and D. P. Kontoyiannis, Invasive fungal infections in patients with cancer in the intensive care unit, Int. J. Antimicrob. Agents, vol.39, 2012.

J. K. Chow, Y. Golan, R. Ruthazer, A. W. Karchmer, Y. Carmeli et al., Risk factors for albicans and non-albicans candidemia in the intensive care unit, Crit. Care Med, vol.36, 1993.

D. Predoi, S. L. Iconaru, M. V. Predoi, G. E. Stan, N. Buton et al., Synthesis, Characterization, and Antimicrobial Activity of Magnesium-Doped Hydroxyapatite Suspensions, Evaluation of Antibacterial Activity of Zinc-Doped Hydroxyapatite Colloids and Dispersion Stability Using Ultrasounds. Nanomaterials, vol.9, p.515, 1295.

M. Miranda, A. Fernandez, S. Lopez-esteban, F. Malpartida, J. S. Moya et al., Ceramic/metal biocidal nanocomposites for bone-related applications, J. Mater. Sci, vol.27, pp.1655-1622, 2012.

S. Tobudic, C. Kratzer, A. Lassnigg, and E. Presterl, Antifungal susceptibility of Candida albicans in biofilms, Mycoses, vol.55, pp.199-204, 2012.

A. Penk and L. Pittrow, Role of fluconazole in the long-term suppressive therapy of fungal infections in patients with artificial implants, Mycoses, vol.42, pp.91-96, 1999.

G. Ramage, J. P. Martinez, and J. L. Lopez-ribot, Candida biofilms on implanted biomaterials: A clinically significant problem, FEMS Yeast Res, vol.6, pp.979-986, 2006.

C. S. Ciobanu, A. Groza, S. L. Iconaru, C. L. Popa, P. Chapon et al., Antimicrobial activity evaluation on silver doped hydroxyapatite/polydimethylsiloxane composite layer, BioMed Res. Int, 2015.

A. Groza, C. S. Ciobanu, C. L. Popa, S. L. Iconaru, P. Chapon et al., Structural Properties and Antifungal Activity against Candida albicans Biofilm of Different Composite Layers Based on Ag/Zn Doped Hydroxyapatite-Polydimethylsiloxanes, Polymers, vol.8, p.131, 2016.

S. L. Iconaru, M. C. Chifiriuc, and A. Groza, Structural and Antimicrobial Evaluation of Silver Doped Hydroxyapatite-Polydimethylsiloxane Thin Layers, p.7492515, 2017.