A. S. Curtis and C. Wilkinson, Nanotechniques and approaches in biotechnology, Trends Biotechnol, vol.19, pp.97-101, 2001.

A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, vol.26, pp.3995-4021, 2005.

D. L. Dragu, L. G. Necula, C. Bleotu, C. C. Diaconu, and M. Chivu-economescu, Therapies targeting cancer stem cells: Current trends and future challenges, World J. Stem Cells, vol.7, pp.1185-1201, 2015.

A. H. Lu, E. L. Salabas, and F. Schuth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chem. Int, vol.46, pp.1222-1244, 2007.

Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D-Appl. Phys, vol.36, pp.167-181, 2003.

L. Barbosa-barros, S. García-jimeno, and J. Estelrich, Formation and characterization of biobased magnetic nanoparticles double coated with dextran and chitosan by layer-by-layer deposition, Colloids Surf. A Physicochem. Eng. Asp, vol.450, pp.121-129, 2014.

C. Tassa, S. Y. Shaw, and R. Weissleder, Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imaging, molecular diagnostics, and therapy, Acc. Chem. Res, vol.44, pp.842-852, 2011.

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic et al., Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physico-chemical characterizations, and biological applications, Chem. Rev, vol.108, pp.2064-2110, 2008.

A. Brunsen, S. Utech, M. Maskos, W. Knoll, and U. Jonas, Magnetic composite thin films of FexOy nanoparticles and photocross linked dextran hydrogels, J. Magn. Magn. Mater, vol.324, pp.1488-1497, 2012.

I. Hilger, R. Hergt, and W. A. Kaiser, Use of magnetic nanoparticle heating in the treatment of breast cancer, IEEE Proc. Nanobiotechnol, vol.152, p.33, 2005.

R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrot et al., Selective inductive heating of lymph nodes, Ann. Surg, vol.146, pp.596-606, 1957.

M. Babincova, F. Babinec, and C. Bergemann, High-gradient magnetic capture of ferrofluids: Implications for drug targeting and tumor immobilization, Z. Nat. C, vol.56, pp.909-911, 2001.

Y. X. Wang, S. M. Hussain, and G. P. Krestin, Superparamagneticiron oxide contrast agents: Physicochemical characteristics and applications in MR imaging, Eur. Radiol, vol.11, pp.2319-2331, 2001.

B. Bonnemain, Superparamagneticagents in magneticresonanc e imaging: Physiochemical characteristics and clinical applications-A review, J. Drug Target, vol.6, pp.167-174, 1998.

A. M. Prodan, S. L. Iconaru, M. C. Chifiriuc, C. Bleotu, C. S. Ciobanu et al., Magnetic properties and biological activity evaluation of iron oxide nanoparticles, J. Nanomater, pp.1-7, 2013.
URL : https://hal.archives-ouvertes.fr/insu-00843607

M. Mahdavi, M. B. Ahmad, M. J. Haron, F. Namvar, B. Nadi et al., Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications, Molecules, vol.18, pp.7533-7548, 2013.

X. Q. Xu, H. Shen, J. R. Xu, J. Xuc, X. J. Li et al., Core-shell structure and magnetic properties of magnetite magnetic fluids stabilized with dextran, Appl. Surf. Sci, vol.252, pp.494-500, 2005.

H. Syusaburo and H. Masalatsu, Magnetic Iron Oxide-Dextran Complex and Process for Its Production, vol.101, 1978.

R. S. Molday and D. Mackenzie, Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells, J. Immunol. Methods, vol.52, pp.353-367, 1982.

J. P. Bunn, D. C. Chan, D. M. Kirpotin, and . Microparticles, , vol.411, 1995.

J. Y. Parka, J. S. Kima, and Y. S. Nama, Mussel-inspired modification of dextran for protein-resistant coatings of titanium oxide, Carbohydr. Polym, vol.201, pp.753-757

V. Shubayev, T. R. Pisaniv, and S. Jin, Magnetic nanoparticles for theragnostics, Adv. Drug Deliv. Rev, vol.61, pp.467-477, 2009.

D. Predoi, S. L. Iconaru, and M. V. Predoi, Dextran-coated zinc-doped hydroxyapatite for biomedical applications, Polymers, vol.11, 2019.

A. S. Teja and P. Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth. Ch, vol.55, pp.22-45, 2009.

S. Layek, A. Pandey, A. Pandey, and H. C. Verma, Synthesis of ?-Fe2O3 nanoparticles with crystallographic and magnetic texture, Int. J. Eng. Sci. Technol, vol.2, pp.33-39, 2010.

R. Y. Hong, B. Feng, L. L. Chen, G. H. Liu, H. Z. Li et al., Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles, Biochem. Eng. J, vol.42, pp.290-300, 2008.

B. D. Cullity, Elements of X-ray Diffraction, 2000.

S. A. Cumber and J. R. Lead, Particle size distributions of silver nanoparticles at environmentally relevant conditions, J. Chromatogr. A, vol.1216, pp.9099-9105, 2009.

J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su et al., Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf, Nanotechnology, vol.18, 2007.

V. M. Khot, A. B. Salunkhe, N. D. Thorat, R. S. Ningthoujam, and S. H. Pawar, Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia, Dalton Trans, vol.42, pp.1249-1258, 2013.

K. W. Kim, Biomedical applications of stereoscopy for three-dimensional surface reconstruction in scanning electron microscopes, Appl. Microsc, vol.46, pp.71-75, 2016.

T. O. Ahmed, P. O. Akusu, S. A. Jonah, and R. Nasiru, Morphology and composition of nanocrystalline stabilized zirconia using SEM-EDS system, Leonardo J. Sci, vol.19, pp.81-92, 2011.

, ImageJ. Available, vol.online, 2019.

R. Rahbari, T. Sheahan, V. Modes, P. Collier, C. Macfarlane et al., A novel L1 retrotransposon marker for HeLa cell line identification, Biotechniques, vol.46, pp.277-284, 2009.

M. Rezaei, H. Mafakheri, K. Khoshgard, A. Montazerabadi, A. Mohammadbeigi et al., The cytotoxicity of dextran-coated iron oxide nanoparticles on Hela and MCF-7 cancerous cell lines. Iran, J. Toxicol, vol.11, pp.31-36, 2017.

H. A. Jeng and J. Swanson, Toxicity of metal oxide nanoparticles in mammalian cells, J. Environ. Sci. Health Part A, vol.41, pp.2699-2711, 2006.

J. S. Kim, T. Yoon, K. N. Yu, B. G. Kim, S. J. Park et al., Toxicity and tissue distribution of magnetic nanoparticles in mice, Toxicol. Sci, vol.89, pp.338-347, 2006.

H. L. Karlsson, J. Gustafsson, P. Cronholm, and L. Möller, Size-dependent toxicity of metal oxide particles-a comparison between nano-and micrometer size, Toxicol. Lett, vol.188, pp.112-118, 2009.

S. Dwivedi, M. A. Siddiqui, N. N. Farshori, M. Ahamed, J. Musarrat et al., Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells, Colloids Surf. B, vol.122, pp.209-215, 2014.

H. L. Karlsson, P. Cronholm, J. Gustafsson, and L. Moller, Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes, Chem. Res. Toxicol, vol.21, pp.1726-1732, 2008.

A. Villanueva, M. Canete, A. G. Roca, M. Calero, S. Veintemillas-verdaguer et al., The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells, Nanotechnology, vol.20, p.115103, 2009.

B. Ankamwar, T. Lai, J. Huang, R. Liu, M. Hsiao et al., Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells, © 2019 by the authors. Licensee MDPI, vol.21, p.75102, 2010.