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We study experimentally the case of steady-state simultaneous two-phase flow in a quasi two-
dimensional porous medium. The dynamics is dominated by the interplay between a viscous pressure
field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast to
more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking.
The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size
distribution as well as the relation |∇P | ∝

√
Ca between the pressure gradient in the system and

the capillary number.

PACS numbers: 47.56.+r,47.55.dd,47.55.Ca,89.75.Fb

Different types of immiscible multi-phase fluid flow in
porous media play an important role in many natural
and commercial processes [1–3]. The complex fluid pat-
terns observed in such processes have been extensively
studied and modeled over the last decades, see [1–5] and
references therein.

The vast majority of work up to now has focused on
invasion processes; either pure drainage or pure imbibi-
tion. These inherently transient processes give different
displacement patterns and are classified into capillary fin-
gering [6], viscous fingering [5, 7–12], and stable front dis-
placement [13, 14]. These are non-stationary processes,
and to understand them in a broader context there is
a need to understand the stationary case which has re-
ceived far less attention: steady-state flow, which is in
equilibrium in the sense that average flow properties and
distribution functions are invariant in time. This sta-
tionary system is in statistical equilibrium although it is
a dissipative process; an external energy input balances
the internal energy loss to maintain the equilibrium.

With some notable exceptions there is to our knowl-
edge very little pore scale experimental data available for
such problems [15]. The Payatakes group did pore scale
steady-state experiments using network models etched in
glass [16], and later theoretical modeling predicting the
non-linearity of such flows [17]. In addition some numer-
ical work has focused on a steady-state regime; a pore
scale Lattice-Boltzmann study by Rothman et al. [18]
and network simulations at larger scales by Knudsen et

al. and Ramstad et al. [19–22].

In this Letter we experimentally demonstrate that an
equilibrium flow situation results after simultaneous in-
jection of two fluids into a porous medium. This allows
for the combination of mean-field approximations of local
quantities and energy dissipation considerations. As a re-
sult we analytically obtain the highly non-trivial steady-

state pressure-flowrate relationship. Furthermore, in
contrast to transient flows, steady-state mass conserva-
tion gives a normalization condition based on flowrate
rather than saturation. From this we derive a scaling
law of the cluster size distributions of nonwetting fluid.

FIG. 1: Depicted inside the model frame (L×W=85×42 cm2)
is the initial transient stage of an experiment. There are 15
independent inlet holes with tubes and syringes attached. Ev-
ery second syringe injects the wetting phase, the others inject
the nonwetting one. An outlet channel with four exit holes
allows the fluid mix to leave the system. Three SensorTech-

nics 26PC0100G6G flow-through pressure sensors (indicated
by the solid rectangles) are attached alongside the model at
the positions y = 0, L/2, L. Additionally one pressure sensor
is attached to the first ”air”-tube from the bottom.

Our system is shown in Fig. 1. The horizontal porous
model consists of a mono-layer of glass beads of diameter
a=1 mm, which are randomly spread between two trans-
parent contact papers [7, 13]. The model dimensions
are L × W=85 × 42 cm2, with thickness a and volume
V = aLW . The porosity and absolute permeability are
measured to be φ = 0.63 and κ0 = (1.95±0.1)×10−5cm2

respectively. The wetting fluid used is a 85% − 15%
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by weight glycerol-water solution dyed with 0.1% Ne-
grosine, and has a viscosity µw = 0.11 Pa · s at room
temperature. Air is used as the nonwetting fluid with
viscosity µnw=1.9 × 10−5 Pa · s, giving a viscosity ratio
M=µnw/µw∼10−4. The surface tension is measured to
be γ = 6.4 × 10−2 N · m−1.

The tuning parameter in the experiments is the total
flow-rate, i.e. the sum of the flow-rate of the wetting and
nonwetting fluid, and can during steady-state be written
as Qtot = Qw + Qnw = (8 + 7)Q0, where Q0 is the flow-
rate from every single syringe.

Gray scale images of the flow structure are taken at
regular intervals with a Pixelink Industrial Vision PL-

A781 digital camera. An image contains 3000×2208 pix-
els, corresponding to a spatial resolution of ∼0.19 mm
per pixel (27 pixels in a pore of size 1 mm2). All anal-
ysis is done on the basis of black and white thresholded
images [14], and the measured pressure signals.

The porous model is initially saturated with the wet-
ting phase. An experiment is started by injecting the
fluid pair from every other inlet hole. The initial struc-
ture consists of bubbles or clusters of air distributed over
various sizes, but always much smaller than the system
size. The clusters are embedded in a background field of
percolating wetting fluid. Usually the smallest air clus-
ters are immobile and trapped, whereas larger clusters
are mobile and propagate in the porous medium. How-
ever, trapped clusters can be mobilized when they coa-
lesce with larger migrating clusters and migrating clus-
ters can be fragmented and thereby trapped.

We divide an experiment into two regimes. A transient

regime where the mix of nonwetting clusters and wetting
fluid gradually fills up the model, as seen in Fig. 1. Dur-
ing this time the measured average pressure difference
between y = 0 and y = L, ∆PL increases. This is due
to the presence of more and more air clusters trapped in
the system, effectively lowering the relative permeability
for the viscous wetting fluid. At some characteristic time,
shortly after both phases are produced at the outlet, ∆PL

starts to fluctuate around a constant value. This marks
the start of the steady-state (or statistically stationary)
regime. The whole model now contains a homogeneous
mix of the two phases, transported through the model
without “long time” flow parameter changes.

Through six experiments we have studied how the mea-
sured steady-state pressure difference ∆PL varies with
the Capillary number Ca, defined as

Ca =
µwQwa2

γκ0A
, (1)

where A = Wa is the cross-sectional area. This is shown
in Fig. 2, for a span in the Ca-number of roughly two
decades. It is evident that the pressure is consistent with
a power law in the Ca-number, ∆PL ∝ Caβ, where the
exponent is found to be β = 0.54 ± 0.08. This is a non-
trivial result, and we will return to the discussion shortly.
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FIG. 2: Mean value of the pressure difference ∆PL during
steady-state as a function of Ca. The fluctuations in ∆PL are
of the order of 1 kPa, i.e. very small compared to the mean
values. A power law dependence is found, with exponent β =
0.54 ± 0.08.

A general trend in the experiments, in passing from
high to low Ca-numbers, is that the size or area of the
largest air clusters increases. This means that the geom-
etry of the clusters depends on the steady-state pressure
gradient. To quantify this, we have found the normalized
probability distributions of cluster extension in the x-
and y-direction, P (lx) and P (ly) respectively (see Fig. 3).
We define the extension lengths lx and ly as the sides of
the smallest rectangle (bounding box) that can contain
a cluster. For clarity, ly lays parallel to the average flow
direction, whereas lx lays transverse to the average flow
direction.

Analysis shows that for a cluster of a given area s, the
extension lengths have well defined means 〈lx〉 and 〈ly〉
increasing monotonically with s [23]. The corresponding
standard deviations are small and proportional to these
means (relatively 20%) for all 〈lx〉 and 〈ly〉 values [23].
Furthermore we find that 〈lx〉=〈ly〉 up to a characteris-
tic length scale in the system l∗. Above l∗, 〈ly〉 > 〈lx〉,
as shown in the upper right inset of Fig. 3. The exact
same behaviour is seen in the distributions P (lx) and
P (ly). Fig. 3 shows, for the same Ca-numbers used pre-
viously, a collapse of the P (lx) and P (ly) distributions
by the rescaling l∗φP (li) vs. li/l∗. The scaling exponent
φ = 2.8 ± 0.3 is taken as the value that gives the best
collapse. Apart from the expected crossover when the
extension lengths reaches the pore length scale, a, the
collapse is very good. The above results reveal impor-
tant information of our system; particularly that there is
only one length scale l∗, dependent on the pressure dif-
ference ∆PL, that controls the steady-state displacement
structure.

In the following we shall give a simple and minimal
scaling theory for the purpose of predicting the exponents
β and φ from Fig. 2 and 3 respectively.

Consider a nonwetting cluster in the porous medium
surrounded by flowing viscous wetting fluid. The cluster
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FIG. 3: Air cluster extension length distributions P (ly) (filled
markers) and P (lx) (empty markers), collapsed by the rescal-
ing l∗φP (li) vs. li/l∗, where i ∈ {x, y} and φ = 2.8. The
dashed vertical line at li = l∗ indicates the start of the dif-
ferent cutoff behaviour in the two directions. Lower left inset
shows (solid line) ∆PL ∝ 1/l∗ with the corresponding exper-
imental values (squares). Upper right inset shows ∆l/〈ly〉 vs.
〈lx〉〈ly〉/l∗2, where ∆l = 〈ly〉 − 〈lx〉.

perimeter is made up of several menisci standing in differ-
ent pores. A single meniscus at a particular position has
a surface pressure given by the pressure difference of the
nonwetting and wetting fluid on each side. The nonwet-
ting fluid pressure is assumed constant inside the cluster
due to its low viscosity, whereas the wetting fluid pressure
is position dependent, decreasing in the y-direction. The
neighbouring pores inside and outside the meniscus can
be either imbibed or drained respectively if the surface
pressure exceeds one of the capillary pressure thresholds
for imbibition or drainage. The imbibition and drainage
threshold pressures depend on pore geometry, and are
thus distributions due to the randomness of the porous
medium [24].

If all menisci along the perimeter are in mechanical
equilibrium, the cluster is immobile. This is typically the
case for clusters with only a small ly extension. However,
for large enough ly, the viscous pressure drop on the wet-
ting side of the perimeter is sufficient for a migration step
to take place. Migration is the process of drainage in one
pore and imbibition in another along the perimeter. The
result of several migration steps is that the cluster moves,
and perhaps also changes shape. The onset of migration
will depend on the difference between the mean thresh-
old pressure for drainage and imbibition [24]; a pressure
we denote P̄t. Furthermore, P̄t predicts a characteristic
length of extension l∗ for cluster mobility

|∇P | l∗ = ∆PL
l∗

L
= P̄t , (2)

where we make the mean field assumption that the pres-
sure gradient |∇P | is constant. The scaling of the last
equality in Eq. (2) is verified experimentally, as shows the

lower left inset in Fig. 3. Note that l∗ also determines
when clusters become unstable against breakup, since the
mechanism of cluster mobilization is the same as that of
cluster fragmentation. This is important because it links
the single crossover length that collapses both P (li) dis-
tributions in Fig. 3 to the extension of mobilized clusters.
Particularly, it means that the characteristic lx-extension
of mobilized clusters is l∗.

Equilibrium conditions require the total dissipation in
the system to be balanced by the work rate done through
the external pressure drop: Qtot∆PL = Df . In obtain-
ing Df , we assume that the main contribution to dissi-
pation is in the volume of the wetting fluid, and that the
dissipation in the nonwetting fluid is negligible. Visual
observation indicates that most of the wetting fluid is re-
stricted to flow through narrow channels at some typical
spacing. The motion and configuration of the nonwet-
ting clusters seem to show that the channel width is of
the order of a pore size ∼ a, and that the permeability in
between channels is made relatively low by the presence
of lowly mobile nonwetting clusters. Motivated by these
observations we define a dissipative wetting fluid volume.

Vdis = LAdis = La2 W

l∗
=

aV

l∗
, (3)

where l∗ is taken as the spacing between channels, mak-
ing W/l∗ the number of channels through the system.
This simplification of channel flow of the wetting fluid
is a strong assumption but supporting numerical simula-
tions also show that the dissipative volume is constrained
to a small fraction of the total volume, changing with the
flowrate.

Since the overall interface area between the wetting
and nonwetting phase is fluctuating around a constant
value in steady-state, changes in the potential energy
stored in the interfaces do not contribute to the average
dissipation, and we are justified in writing

Qtot∆PL = Df = −
∫

Vdis

dV u|∇P | =
µw

κ0

∫
Vdis

dV u2 ,

(4)

where we have applied Darcy’s law locally, in the dissi-
pative part of the wetting fluid. Taking the local Darcy
velocity u = (Qw/A)(V/Vdis) as a constant, and using
Eqs. (3), (1) and (2) respectively we obtain

∆PL =
8γV l∗

15a3A
Ca ⇒ |∇P |2 =

8γP̄t

15a3
Ca , (5)

i.e. |∇P | ∝
√

Ca, consistent with the exponent β in
Fig. 2. An alternative interpretation of this result is that
the wetting fluid experiences an effective permeability,
assuming a Darcy law κeff(Ca) = µwQw/A|∇P |, due to
the flow of air:

κ2
eff =

15γ

8aP̄t
κ2

0Ca . (6)
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We turn now to the distributions of cluster extension
lengths, and the found exponent φ. From the collapses
in Fig. 3 it is seen that the distributions can be written

Pi(l) = l−φhi(l/l∗) , (7)

where the cutoff functions hi(x) are dominating. Note
that this scaling form should only be expected to hold
for l above the lower cutoff scale ∼ a. To obtain φ we
use the fact that the nonwetting flowrate is an imposed
quantity, and must in steady-state be equal to the accu-
mulated flow of all mobile clusters on the average. The
contribution of a single cluster of extent l to the total
nonwetting flowrate is alU(l), where U(l) is the average
centre of mass velocity. Further, the average number of
clusters of extension (l, l + dl) that intersects any given
cross section A, is given as dlPi(l)Nl/L. Hence we can
write

Qnw =
aN

L

∫
∞

a

dl l2U(l)Pi(l) , (8)

where N is the total number of clusters. This number
is measured and found to depend only weakly, at most
logarithmic, on Qnw. For simplicity, N will be treated as
a constant in the following.

To obtain U(l) we make the general assumption that
it is linear in Qnw and has some functional dependence
on l/l∗

U(l) =
Qnw

A
f(l/l∗) . (9)

As a first order approximation f(x) would be a step func-
tion, since clusters of size l < l∗ usually are immobile. By
Eqs. (7) and (9) and the substitution x = l/l∗, Eq. (8) can
be written

1 = l∗(3−φ) aN

V

∫
∞

a/l∗
dxx2−φf(x)hi(x) . (10)

Since the right hand side of Eq. (10) must be independent
of l∗, we obtain φ = 3 consistent with the experimental
value in Fig. 3.

In conclusion, experiments have been done on two-
phase flow in a porous medium under steady-state con-
ditions. In contrast to invasion processes and other in-
herently transient phenomena of two-phase flow, steady-
state is in a statistical sense an equilibrium situation.
Whereas the description of transient behaviour is a
whole range of separate loosely attached cases, depend-
ing on flow parameters, the description and formalism
for steady-state should be more integrated and universal.
Our work explores a part of its parameter space and we
find a robust power law behaviour: pressure increases as
∆PL ∝ Ca0.5, alternatively for permeability κeff ∝ Ca0.5.

The power law is valid over roughly two decades, but
there should be cutoffs for large and small flow rates.

For high flow rate, the cutoff cluster size will approach
the pore size, and from that point the permeability must
reach a plateau. The same is the case for flow rates low
enough that the largest clusters are limited by the system
size. These limits were not realized experimentally, but
in numerical work these cutoffs have been seen [20, 22].

The scaling behaviour of the system was explained by
theoretical arguments, relying on a high viscosity ratio.
Numerical work with a lower viscosity ratio (steady-state
but somewhat different boundary conditions) indicates a

lower exponent: ∆PL ∝ Caβ′

, where β′ < 0.5 [20]. We
conjecture that the presented theory is a limiting case,
thus suitable as a starting point for further theoretical
developments, aiming at incorporating the more complex
case where the two fluids have more similar viscosities.
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MAKS, a CNRS PICS, an ANR ECOUPREF project
and a regional REALISE program. A special thanks to
Alex Hansen for useful comments.
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