Skip to Main content Skip to Navigation
Journal articles

Is the recovery of stratospheric O3 speeding up in the Southern Hemisphere? An evaluation from the first IASI decadal record (2008-2017)

Abstract : In this paper, we present the global fingerprint of recent changes in middle-upper stratosphere (MUSt; < 25 hPa) ozone (O 3) in comparison with lower stratosphere (LSt; 150-25 hPa) O 3 derived from the first 10 years of the IASI/Metop-A satellite measurements (January 2008-December 2017). The IASI instrument provides vertically resolved O 3 profiles with very high spatial and temporal (twice daily) samplings, allowing O 3 changes to be monitored in these two regions of the stratosphere. By applying multivari-ate regression models with adapted geophysical proxies on daily mean O 3 time series, we discriminate anthropogenic trends from various modes of natural variability, such as the El Niño-Southern Oscillation (ENSO). The representativeness of the O 3 response to its natural drivers is first examined. One important finding relies on a pronounced contrast between a positive LSt O 3 response to ENSO in the extratropics and a negative one in the tropics, with a delay of 3 months, which supports a stratospheric pathway for the ENSO influence on lower stratospheric and tropospheric O 3. In terms of trends, we find an unequivocal O 3 recovery from the available period of measurements in winter-spring at middle to high latitudes for the two stratospheric layers sounded by IASI (>∼ 35 • N-S in the MUSt and >∼ 45 • S in the LSt) as well as in the total columns at southern latitudes (>∼ 45 • S) where the increase reaches its maximum. These results confirm the effectiveness of the Montreal Protocol and its amendments and represent the first detection of a significant recovery of O 3 concurrently in the lower, in the middle-upper stratosphere and in the total column from one single satellite dataset. A significant decline in O 3 at northern mid-latitudes in the LSt is also detected, especially in winter-spring of the Northern Hemisphere. Given counteracting trends in the LSt and MUSt at these latitudes, the decline is not categorical in total O 3. When freezing the regression coefficients determined for each natural driver over the whole IASI period but adjusting a trend, we calculate a significant speeding up in the O 3 response to the decline of O 3-depleting substances (ODSs) in the total column, in the LSt and, to a lesser extent, in the MUSt, at high southern latitudes over the year. Results also show a small significant acceleration of the O 3 decline at northern mid-latitudes in the LSt and in the total column over the last few years. That, specifically, needs urgent investigation to identify its exact origin and apprehend its impact on climate change. Additional years of IASI measurements would, however, be required to confirm the O 3 change rates observed in the stratospheric layers over the last few years.
Complete list of metadata

Cited literature [112 references]  Display  Hide  Download
Contributor : Catherine Cardon Connect in order to contact the contributor
Submitted on : Thursday, November 21, 2019 - 8:18:46 PM
Last modification on : Thursday, June 23, 2022 - 3:16:17 AM


Publisher files allowed on an open archive



Catherine Wespes, Daniel Hurtmans, Simon Chabrillat, Gaétane Ronsmans, Cathy Clerbaux, et al.. Is the recovery of stratospheric O3 speeding up in the Southern Hemisphere? An evaluation from the first IASI decadal record (2008-2017). Atmospheric Chemistry and Physics, European Geosciences Union, 2019, 19, pp.14031 - 14056. ⟨10.5194/acp-19-14031-2019⟩. ⟨insu-02375194⟩



Record views


Files downloads