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S U M M A R Y
We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere.
We use a numerical model based on the quasi-geostrophic approximation for the velocity field,
whereas the temperature field is 3-D. This approximation allows us to perform simulations
for Ekman numbers down to 10−8, Prandtl numbers relevant for liquid metals (∼10−1) and
Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form
as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed,
the zonal velocity is larger than the convective velocity despite the presence of boundary
friction. The convective structures and the zonal jets widen when the thermal forcing increases.
Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which
correspond to weak potential vorticity gradients) the convection transports heat efficiently and
the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde
jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated
by the propagation of Rossby waves, resulting in the formation of steep mean temperature
gradients and the dominance of conduction in the heat transfer process. Consequently, in
quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the
heat transfer.

Key words: Core; Numerical modelling; Planetary interiors; Heat generation and transport.

1 I N T RO D U C T I O N

Convection is the main heat transport process in the liquid cores
of planets and is thought to be responsible for the generation of
planetary magnetic fields. Convection is strongly affected by the
rapid rotation of the planet via the action of the Coriolis force.
Owing to the very low fluid viscosity, the convective flows are tur-
bulent, although the nonlinear inertial effects are relatively weak
compared with the Coriolis force. Under these conditions, and in
the absence of magnetic fields, the primary dynamical balance is
established between the Coriolis force and the pressure gradient
and is called geostrophic balance. Geostrophic flows are invariant
along the rotation axis, and so, in spherical geometry, they can
only be axisymmetric and azimuthal (i.e. zonal). Convective flows,
which are directed along the direction of gravity, cannot be exactly
geostrophic, but nevertheless form tall columnar flows aligned with
the rotation axis (Jones 2015); such flows are commonly referred to
as ‘quasi-geostrophic’ (QG). These columnar convective flows pro-
duce coherent Reynolds stresses that drive geostrophic zonal flows
(Gilman 1977; Busse & Hood 1982). Stress-free boundary condi-
tions, where boundary friction is absent, favour the emergence of
strong zonal flows (e.g. Aurnou & Olson 2001). In models with

relatively small viscosity (which can be measured by the Ekman
number, the ratio of the rotation period to the global viscous
timescale), the zonal flows develop persistent multiple jets of al-
ternating sign inside the tangent cylinder (e.g. Heimpel et al. 2005;
Gastine et al. 2014). The observation of intense jets in geophys-
ical and astrophysical objects (e.g. Schou et al. 1998; Porco
et al. 2003; Livermore et al. 2017) has prompted much effort ded-
icated to their study, and in particular, their width and amplitude
(e.g. Christensen 2002; Gillet et al. 2007; Read et al. 2015; Cabanes
et al. 2017). Although zonal flows (and shear flows in general) do not
transport heat outwards, they strongly affect the convection because
they can deflect and shear the convective flows, thereby reducing
the efficiency of the heat transfer (e.g. Aurnou et al. 2008; Goluskin
et al. 2014; von Hardenberg et al. 2015; Yadav et al. 2016). In the
present paper, we explore the effect of intense, multiple zonal jets
on the convective heat transport in turbulent rotating convection for
small Ekman numbers.

The numerical modelling of turbulent rotating flows is extremely
challenging as it necessitates a wide range of dynamical length and
time scales. Numerical models must therefore employ Ekman num-
bers that are several orders of magnitude larger than those found
in natural objects. However, in the absence of magnetic fields, the
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lengthscale of the convective flows scales with the Ekman num-
ber, at least at the linear onset of convection. The coherence of the
Reynolds stresses, and hence the width and amplitude of the zonal
flows, might well be affected by the convective lengthscale, and
thus by the Ekman number. In order to approach turbulent rotation-
ally constrained convection at small Ekman numbers, we alleviate
part of the computational limitations by using a QG approximation
that was developed by Busse & Or (1986) for thermal convection
in the annulus geometry of Busse (1970) with curved boundaries.
The model neglects the variations of the axial vorticity of the flow
along the rotation axis, which allows to compute the velocity in
2-D. This is an important limitation to the full dynamics of rotating
convection (e.g. Calkins et al. 2013), but the rationale of using this
QG model is that it allows the exploration of currently inaccessible
regions of the parameter space, thereby informing future 3-D stud-
ies. Variations of the QG model have been successfully applied in
numerous studies in spherical geometry (e.g. Cardin & Olson 1994;
Morin & Dormy 2004; Calkins et al. 2012). Where possible, results
from these studies have been successfully benchmarked against
asymptotic theories (Gillet & Jones 2006; Labbé et al. 2015), 3-D
numerical models (Aubert et al. 2003; Plaut et al. 2008), and labo-
ratory experiments (Aubert et al. 2003; Schaeffer & Cardin 2005;
Gillet et al. 2007).

Following the model constructed in Guervilly & Cardin (2016),
we use a hybrid numerical model that couples the QG velocity to
a 3-D implementation of the temperature in the whole sphere, in
order to account for the spherical symmetry of the basic tempera-
ture background. The buoyancy driving is controlled by the tem-
perature averaged along the direction of the rotation axis, which,
contrary to QG models using a 2-D temperature field (Busse &
Or 1986), is not assumed to be equal to the temperature in the
equatorial plane. Solving the temperature in 3-D will allow us to
assess the influence of the 3-D temperature on the QG dynam-
ics. This implementation is particularly appropriate to model flu-
ids with small Prandtl numbers (the ratio of the viscosity to the
thermal diffusivity) that are typical of liquid metals (O(10−1)) by
permitting the use of a 3-D grid for the temperature that is coarser
than the 2-D grid used for the velocity. For simplicity, we con-
sider only thermal convection in a full sphere without a solid inner
core. The thermal convection is driven by a homogenous internal
heating, which is more relevant for the early history of the Earth’s
core.

The existence of a so-called strong branch of convection driven by
internal heating, as first suggested by the weakly nonlinear analysis
of Soward (1977), was recently found numerically by Guervilly &
Cardin (2016) with the hybrid QG-3D model and by Kaplan et al.
(2017) with a fully 3-D model for Ekman numbers smaller than
O(10−7) and Prandtl numbers smaller than unity. The bifurcation
is subcritical at the onset of convection and the strong branch is
characterized by Reynolds numbers greater than 1000 near the onset
and strong zonal flows. In this paper, we focus on the production
of zonal flows on this strong branch of convection for Ek ∈ [10−8,
10−7] and Pr ∈ [10−2, 10−1].

The layout of the paper is as follows. In Section 2, we detail the
formulation of the hybrid QG-3D model. In Section 3, we describe
the radial dependence of the convection and zonal flows and quantify
the dependence of the jet width, convective lengthscale and zonal
flow velocity on the model parameters. The drift and stability of the
zonal flows is discussed in Section 4 and their mechanism of forma-
tion in Section 5. The effect of the zonal flows on the heat transport is
presented in Section 6. Finally, a discussion of the results is given in
Section 7.

2 M AT H E M AT I C A L F O R M U L AT I O N

We study Boussinesq thermal convection driven by internal heating
in a rotating sphere. The rotation vector is �ez , where � is constant.
The acceleration due to gravity is radial and linear, g = g0r er . The
radius of the sphere is ro and no inner core is present. The fluid has
kinematic viscosity ν, thermal diffusivity κ , density ρ, heat capacity
at constant pressure Cp, and thermal expansion coefficient α, all of
which are constant. We consider a homogeneous internal volumetric
heating S. In the absence of convection, the static temperature profile
Ts is calculated by solving the diffusive heat equation and can be
written as

Ts(r ) = To + S

6κρCp
(r 2

o − r 2), (1)

where To is the imposed temperature at the boundary, r = ro. The
governing equations are solved in dimensionless form, obtained
by scaling lengths with ro, times with r 2

o /ν, and temperature with
νSr 2

o /(6ρCpκ
2). The system of dimensionless equations is:

∂u

∂t
+ (u · ∇) u + 2

Ek
ez × u = −∇ p + ∇2u + Ra�r er , (2)

∇ · u = 0, (3)

∂�

∂t
+ u · ∇� − 2

Pr
rur = 1

Pr
∇2�, (4)

where u is the velocity field, p the pressure and � the temperature
perturbation relative to the static temperature (1).

The dimensionless numbers are, the Ekman number,

Ek = ν

�r 2
o

, (5)

the Rayleigh number,

Ra = αg0 Sr 6
o

6ρCpνκ2
, (6)

and the Prandtl number,

Pr = ν

κ
. (7)

At r = ro, the boundary condition for the velocity is no-slip and
impenetrable and the temperature is fixed,

u = 0, � = 0 at r = ro. (8)

Throughout this paper, we use both spherical coordinates (r, θ ,
φ) and cylindrical polar coordinates (s, φ, z). The mathematical
formulation and the numerical method are described in detail in
Guervilly & Cardin (2016), where the linearized version of the
code is benchmarked against theoretical and previous numerical
results at the onset of convection. The governing equations and the
assumptions of the model are briefly described below.

2.1 Governing equation for the non-axisymmetric flow

To model the system of eqs (2)–(4) for small Ekman and Rossby
numbers, we use the QG approximation to model the evolution of the
velocity field (e.g. Or & Busse 1987; Cardin & Olson 1994; Gillet &
Jones 2006). The QG approximation reduces the 3-D system to a
2-D system by taking advantage of the small variations of the flow
along z compared with variations in s and φ due to the rapid rota-
tion. This approximation is only justified in the case of small slope
of the boundaries, such as the Busse (1970) annulus. In the case
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of a sphere, the approximation is therefore not rigorously justified
in any asymptotic limit. Consequently, our QG model is intended
as a simplified model of convection in a rapidly rotating sphere
that allows us to investigate unexplored regions of the parameter
space. When possible, comparisons with theoretical, experimen-
tal and 3-D numerical models show that the QG model correctly
reproduces key properties of the full system (Aubert et al. 2003;
Morin & Dormy 2004; Gillet & Jones 2006; Gillet et al. 2007; Plaut
et al. 2008).

The QG model assumes that the fluid dynamics is dominated
by the geostrophic balance, that is, the Coriolis force balances the
pressure gradient at leading order. The leading-order velocity ug

is invariant along z and ug = (ug
s , ug

φ, 0) in cylindrical polar coor-
dinates. By taking the z-component of the curl of the momentum
eq. (2) and averaging it along z, we obtain the equation for the axial
vorticity, ζ g = (∇ × ug) · ez ,

∂ζ g

∂t
+ (ug · ∇) ζ g −

(
2

Ek
+ ζ g

) 〈
∂uz

∂z

〉
= ∇2

e ζ g − Ra

〈
∂�

∂φ

〉
,

(9)

with

∇2
e A ≡ 1

s

∂

∂s

(
s
∂ A

∂s

)
+ 1

s2

∂2 A

∂φ2
, (10)

and

〈A〉 ≡ 1

2H

∫ +H

−H
Adz, (11)

where H = √
1 − s2 is the axial distance from the spherical bound-

ary to the equatorial plane.
The velocity ug can be described by a streamfunction ψ that

models the non-axisymmetric (i.e. φ-dependent) components with
the addition of an axisymmetric azimuthal flow,

ug = 1

H
∇ × (Hψez) + ug

φeφ, (12)

where

Ā ≡ 1

2π

∫ 2π

0
Adφ. (13)

We choose this formulation for the streamfunction to account for
the non-zero divergence of ug in the equatorial plane due to the
return axial flow at the sloping boundaries,

∇e · ug = −βug
s , (14)

where

∇e · A ≡ 1

s

∂s As

∂s
+ 1

s

∂ Aφ

∂φ
, (15)

and

β = 1

H

d H

ds
= − s

H 2
. (16)

The axial velocity uz is assumed to be linear in z. The third term
on the left-hand side of eq. (9) requires us to determine uz at the
boundary z = ±H:

uz |±H = ± 1

H
u · n|±H ± β Hug

s , (17)

where the normal vector at the boundary is n = er . The normal
component, u · n|±H , is the Ekman pumping induced by the viscous
boundary layer and is determined by asymptotic methods for a linear
Ekman layer, u · n|z=±H = Ek1/2 P(s, ug

s , ug
φ) (Greenspan 1968).

The analytical function P is derived for a spherical boundary in
Schaeffer & Cardin (2005).

The numerical code solves the evolution equation of the non-
axisymmetric streamfunction ψ . The no-slip and impenetrable
boundary conditions imply that ψ = ∂ sψ = 0 at s = 1. We use
the regularity condition ψ̂m = O(sm) at s = 0, where ψ̂m(s, t) is
the Fourier mode of azimuthal wavenumber m (see Guervilly &
Cardin 2016, for more detail).

2.2 Governing equation for the zonal flow

In our model, the streamfunction ψ only describes the non-
axisymmetric motions, so the axisymmetric azimuthal flows, or
zonal flows, are treated separately. We take the φ- and z-averages of
the φ-component of the momentum equation to obtain

∂ug
φ

∂t
+ ug

s

∂ug
φ

∂s
+ ug

s ug
φ

s
+ 2

Ek
〈us〉 = ∇2ug

φ − ug
φ

s2
. (18)

Note that the geostrophic balance imposes that ug
s = 0. The fourth

term on the left-hand side of (18) involves the z-dependent radial
velocity, which corresponds to the Ekman pumping term. Using the
incompressibility of the fluid, it can be shown (Aubert et al. 2003)
that

〈us〉 = Ek1/2

2H 3/2
ug

φ. (19)

The no-slip boundary condition at the outer sphere and the symme-
try at the centre imply that ug

φ = 0 at s = 0, 1.

2.3 Governing equation for the temperature

The dimensionless equation for the evolution of the temperature
perturbation in 3-D is

∂�

∂t
+ u3d · ∇� = 1

Pr

(
2ru3d

r + ∇2�
)
. (20)

where u3d is the velocity in 3-D. In cylindrical polar coordinates,

u3d = (
ug

s , ug
φ, Ek1/2z P + βzug

s

)
. (21)

The temperature is fixed at the outer boundary so � = 0 at r = 1.
At the centre of the sphere, the non-spherically symmetric compo-
nents of � are zero by symmetry and the spherically symmetric
component of ∂ r� is zero.

2.4 Numerical method

In the following, the superscripts g are removed for clarity. The
evolution equations for ψ and uφ are solved on a 2-D grid in the
equatorial plane. A second-order finite difference scheme is im-
plemented in radius with irregular spacing (finer near the outer
boundary). In the azimuthal direction, the variables are expanded
in Fourier modes. The evolution equation for the temperature is
solved on a 3-D grid. Similarly to the 2-D grid, a finite difference
scheme is used in radius. The temperature is expanded in spherical
harmonics Y m

l in the angular coordinates with l representing the
latitudinal degree and m the azimuthal mode. Further detail about
the numerical interpolations between the 2-D and 3-D grids used to
compute the buoyancy term and the advection of the temperature
can be found in Guervilly & Cardin (2016) and Guervilly (2010).

Table 1 gives the list of the simulations presented in this pa-
per with some output quantities and the numerical resolutions. To
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Table 1. List of input and output parameters for all the simulations presented in the paper. Rec and Re0 are the convective and zonal Reynolds numbers,
respectively. The columns labelled (N u

s , Mu
max) and (N t

r , Mt
max, Lt

max) give the numerical resolutions on the 2-D and 3-D grids, respectively. The last column
gives the integration time used to compute the time averages in units of 1/� and, in brackets, in units of a convective turnover timescale, lc/Uc, where Uc is
the r.m.s. convective velocity (equivalent to Rec in our dimensionless units) and lc is the convective lengthscale computed from eq. (23) and averaged between
0.1 ≤ s ≤ 0.8.

Ek Pr Ra Ra/Rac Rec Re0 (N u
s , Mu

max) (N t
r , Mt

max, Lt
max) Integration time

10−7 10−1 6 × 109 1.19 1012 445 (1100, 200) (500, 150, 150) 3 × 105 (479)
10−7 10−1 1 × 1010 1.99 2070 1110 (1100, 200) (500, 150, 150) 3 × 105 (794)
10−7 10−1 2 × 1010 3.97 3663 2994 (1200, 200) (500, 150, 150) 105 (414)
10−7 10−1 3 × 1010 5.96 5093 5064 (1200, 200) (500, 150, 150) 104 (54)
10−7 10−1 4 × 1010 7.95 6243 6840 (1200, 200) (500, 150, 150) 104 (61)
10−7 10−1 5 × 1010 9.94 7731 9515 (1500, 260) (600, 180, 180) 104 (73)

10−7 10−2 1.9 × 109 1.05 5215 5710 (1000, 160) (400, 96, 96) 2 × 104 (90)
10−7 10−2 3 × 109 1.65 9027 11708 (1000, 160) (400, 96, 96) 104 (67)
10−7 10−2 4.8 × 109 2.64 11487 21834 (1200, 180) (400, 96, 96) 104 (82)
10−7 10−2 8.5 × 109 4.68 17548 40009 (1400, 200) (400, 96, 96) 104 (105)

10−8 10−1 7.45 × 1010 0.96 855 243 (1600, 256) (700, 200, 200) 2 × 106 (633)
10−8 10−1 7.8 × 1010 1.01 1047 291 (1600, 256) (700, 200, 200) 2 × 106 (785)
10−8 10−1 1.5 × 1011 1.93 3393 1128 (1800, 280) (700, 200, 200) 5 × 105 (400)
10−8 10−1 2 × 1011 2.58 4876 1893 (1800, 280) (700, 200, 200) 5 × 105 (506)
10−8 10−1 3 × 1011 3.87 7108 4724 (1800, 280) (700, 200, 200) 2 × 105 (286)
10−8 10−1 5 × 1011 6.44 9920 9341 (1900, 300) (700, 200, 200) 105 (191)
10−8 10−1 7 × 1011 9.02 12023 13176 (2000, 320) (750, 200, 200) 2 × 106 (4453)

10−8 10−2 2 × 1010 0.68 7200 4753 (1400, 220) (500, 128, 128) 2 × 105 (216)
10−8 10−2 3 × 1010 1.01 13498 10598 (1400, 220) (500, 128, 128) 105 (177)
10−8 10−2 5 × 1010 1.69 23288 23309 (1500, 240) (500, 128, 128) 4 × 104 (108)
10−8 10−2 8 × 1010 2.70 33163 43609 (1600, 260) (500, 128, 128) 5 × 104 (191)

quantify some of the global properties of convection, we often use
the Reynolds number, which is calculated from the output of the
simulations and corresponds to the time-averaged root mean square
(r.m.s.) value of the velocity in dimensionless unit,

Re = 1

�t

∫
�t

(
3

4π

∫ 2π

0

∫ 1

0

(
u2

s + u2
φ

)
2H (s)sdsdφ

)1/2

dt, (22)

where uφ includes the zonal velocity. We measure the convective
Reynolds number, Rec, as in eq. (22) but including only the non-
axisymmetric velocity. Similarly, we measure the zonal Reynolds
number, Re0, including only the axisymmetric velocity. The integra-
tion time over which the time averages are calculated is indicated
in Table 1 for each simulation.

3 S T RU C T U R E O F T H E C O N V E C T I V E
A N D Z O NA L F L OW S A N D S C A L I N G
O F T H E V E L O C I T Y

3.1 Radial dependence of the convection

In this section, the Ekman and Prandtl numbers are fixed to
Ek = 10−8 and Pr = 10−1. For these parameters, the stable solution
is located on a strong branch of convection, which is discontinu-
ous at the onset of convection (Guervilly & Cardin 2016; Kaplan
et al. 2017). All cases presented in this paper are located on the
strong branch. This branch is distinct from the weak branch of con-
vection, which occurs for EkPr � O(10−8) and is continuous at the
onset of convection. At the onset of convection, solutions on the
weak branch take the form of propagating structures that are tilted
in the prograde direction. These structures are known as thermal
Rossby waves and have been extensively studied in the literature
(e.g. Busse 1970; Zhang 1992). Near the onset of convection, the

flows on the strong branch are starkly different and are described in
detail below.

For Ek = 10−8 and Pr = 10−1, the nonlinear convection is main-
tained below the linear onset of convection (quantified by the critical
Rayleigh number Rac), down to a value Ra = 0.96Rac (Guervilly
& Cardin 2016). We vary the Rayleigh number from this lower
value to approximately 9Rac. Fig. 1 shows snapshots of the radial
and azimuthal velocities in the equatorial plane for Ra/Rac = 0.96,
Ra/Rac = 1.93 and Ra/Rac = 9.02. In all three cases, two dy-
namical regions can be distinguished: an inner region, where the
convection is vigorous with values of the radial velocity up to 3000
for the lowest Ra and up to 30 000 for the largest Ra, and an outer
region, where the radial flow has smaller amplitude and the flow has
finer structures that are tilted in the prograde direction. This radial
dependence of the convection, sometimes referred to as dual convec-
tion, was previously described in laboratory experiments (Sumita &
Olson 2000) and QG (Aubert et al. 2003) and 3-D numerical mod-
els (Miyagoshi et al. 2010). The limit between the two regions is
located around s = 0.5 for the lowest Ra and s = 0.8 for the largest
Ra, so the limit moves outwards when the convection becomes more
vigorous. In the inner region, the convective flows are strongly time
dependent, especially for large Ra, and are subject to frequent non-
linear interactions. The contours of the radial velocity tend to be
directed radially, contrary to the tilted contours of the outer region.
For large Ra, the azimuthal lengthscales of the radial flow decreases
with increasing radius. This is likely due to the increase of the slope
of the boundary β with radius: the vortex stretching term in the
axial vorticity equation, which depends on β, impedes the radial
motion of wide vortices. The azimuthal extent of the convective
flows clearly increases with Ra, which indicates the presence of
an upscale energy transfer as expected in β-plane turbulence (e.g.
Davidson 2013). For all Rayleigh numbers, the radial velocity is
weak in the central region because the gravity goes to zero at the
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Multiple zonal jets and convective heat transport barriers 459

Figure 1. Snapshots of the radial velocity (left) and the azimuthal velocity (right) in the equatorial plane for Ek = 10−8 and Pr = 10−1 for (a) Ra/Rac = 0.96,
(b) Ra/Rac = 1.93 and (c) Ra/Rac = 9.02.
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460 C. Guervilly and P. Cardin

Figure 2. Radial profile of the zonal flow (time average) for different Rayleigh numbers (indicated at the top of each subplot) and Ekman and Prandtl numbers
(indicated at the bottom). The vertical axis is the radius. The range of the horizontal axis is different for each subplot: the maximum of the zonal flow increases
80-fold between the smallest and largest Rayleigh numbers for Ek = 10−8 and Pr = 10−1.

centre. In the outer region, β is large and the vortex stretching term
is the dominant source of the axial vorticity, so this outer region
is dominated by the propagation of Rossby waves. The nonlinear
interactions are weaker in this region.

For all Ra, the azimuthal flow has a visible axisymmetric
(i.e. zonal) component. Fig. 2 shows the time-averaged profiles of
the zonal flow for different Ra. The zonal flow is prograde in the out-
ermost region for all Ra. In the outer region dominated by Rossby
waves, the Reynolds stresses due to the correlation of the velocity
along the tilted contours produce a prograde jet in the outer part
and a neighbouring inner retrograde jet (e.g. Busse & Hood 1982).
The behaviour of the zonal flow in the inner convective region is
different depending on Ra. For the lowest Ra in Fig. 1, azimuthal
flows appear to spiral inward from mid-radius. These flows have
an axisymmetric average that is positive in the centre and negative
near s = 0.4. The time-averaged profile of the zonal flow for this Ra
has therefore three jets of alternating sign. For Ra/Rac = 1.93, the
azimuthal flows consist in a multitude of meandering narrow jets.
Around mid-radius, the azimuthal average of the narrow meander-
ing jets is not well-defined. Their axisymmetric average is mostly
negative because the retrograde jets have stronger amplitude. In
the centre, the azimuthal flow has a clear prograde direction and is
wider than the meandering jets at larger radius. For Ra/Rac = 9.02,
the multiple azimuthal jets have stronger velocity than the radial
flow and they do not meander so their net axisymmetric average is
well-defined. The radial profile of the zonal flow shows persistent
multiple jets. The central jet remains prograde and is wider than the
jets located at larger radius. Overall, for Ra > 3Rac, the zonal flows
develop persistent multiple jets and the innermost and outermost jets
always remain prograde. The region occupied by the in-between jets
becomes wider as Ra increases and the limit between inner convec-
tive region and outer Rossby wave region moves outwards. A thin
viscous boundary layer can be observed on the profiles of the zonal
flow of the largest Rayleigh number as the boundary condition is

no-slip at s = 1. This thin boundary layer is well resolved in our
model as the radial grid is refined near the boundary.

For large Ra, the zonal velocity is larger than the radial velocity.
In this case, the radial shear exerted by the zonal flow can be faster
than the vortex turnover timescale, so the zonal flow has a dominant
role in the dynamics of the convective vortices. The radial flow has
a smaller radial extent at the larger Ra due to the presence of the
multiple zonal jets of strong amplitude. The convective structures
then change from narrow in φ and extended in r to fatter in φ and
shortened in r as Ra increases.

3.2 Zonal jet width and convective lengthscale

To study the influence of the zonal jets on the convective flow and
vice versa, we compare the width of the zonal jet and the convective
lengthscale. We expect these two lengthscales to be correlated: on
the one hand, the radial shear exerted by the zonal flow on the radial
velocity limits the size of the convective flow; on the other hand,
the size of the most energetic convective eddies controls the width
of the zonal jet by controlling the mixing length—this mechanism
is discussed in detail in Section 5. To give an estimate of the typical
lengthscale of the convection, we compute the integral lengthscale
of the non-axisymmetric flow, which is defined as

lc(s) = πs

⎛
⎜⎜⎜⎝

Mu
max∑

m=1
E(m, s)

Mu
max∑

m=1
m E(m, s)

⎞
⎟⎟⎟⎠ , (23)

where E(m, s) is the time-averaged kinetic energy of a mode m
of the Fourier decomposition. The axisymmetric mode (m = 0) is
excluded from this definition. The convective lengthscale lc and the
width of the jets (denoted lj) are plotted as a function of the radius
in Fig. 3 for Ra/Rac = 9.02. The regions of retrograde zonal jets are
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Figure 3. Radial profiles of the Rhines scale lR, the integral scale of the convective flow lc and the width of the jets lj for Ek = 10−8, Ra/Rac = 9.02 at
Pr = 10−1. The grey bands correspond to the regions where the zonal flow is retrograde.

indicated in grey. Both the jet width and the convective scale tend to
decrease with radius in the inner convective region (s < 0.8). lc takes
local minimum values in the core of the jets and maximum values in
the flanks of the jets where the radial shear is largest. lc corresponds
to an azimuthal lengthscale, so this indicates that the shear from the
zonal flow elongates the convective flow in the azimuthal direction
as expected. The values of lc and lj are comparable, although the
convective scale is slightly smaller than the jet width. We have thus
verified that a strong correlation exists between the convective scale
and the jet width.

In the framework of β-plane turbulence, a fundamental length
scale of the flow is the Rhines scale (Rhines 1975), which is given by

lR(s) = π

(
EkU

2|β|
)1/2

, (24)

where U is the r.m.s. velocity of the flow. In the literature, U is inter-
preted as either an eddy velocity, a jet velocity or a total velocity (In-
gersoll & Pollard 1982; Dritschel & McIntyre 2008). Here we will
first consider that U is the r.m.s convective velocity, and later discuss
how our results differ when using the total velocity instead. Note that
Ek appears in this formula due to our choice of dimensional units.
The Rhines scale may be considered as the scale separating dynam-
ical regimes dominated by either the turbulence (at smaller scales)
or by Rossby waves (at larger scales). The width of the zonal jets is
often thought to be closely related to the Rhines scales, although this
notion has been called into question (e.g. Sukoriansky et al. 2007;
Scott & Dritschel 2012). Here we are interested in the predicted de-
pendence of the Rhines scale on β and U (rather than on the actual
value of lR given by (24) that arbitrarily includes a factor π/

√
2) as

this dependence can be compared with the lengthscales computed
from our data set. We first compare the radial dependence of the
Rhines scale to lc and lj. We plot lR in Fig. 3, where we used the r.m.s
value of the non-axisymmetric velocity (which varies in radius) to
estimate U. In the inner convective region, the convective scale is ap-
proximately 2 times larger than the Rhines scale on average but the
decreasing trends observed for each of the lengthscales is similar:
between s = 0.3 and s = 0.7, lj, lc and lR are all approximately divided
by two. The ratio lc/lR is approximately constant in the inner convec-
tive region, which shows that the Rhines scale adequately predicts
the radial dependence of the convective scale and the jet width.

As the Rayleigh number (and thus U) increases, the Rhines scale
predicts that the most energetic convective eddies become larger.

This is indeed what we observe qualitatively on the snapshots of
Fig. 1. This increase of the convective scale should be accompanied
by an increase of the jet width. Fig. 2 shows that the jets indeed tend
to become wider when the Rayleigh number increases. However
this increase might be due to the widening of the inner convective
region as it pushes the outer region outwards. Larger Ra, currently
out of reach of our computational capabilities, would be necessary
to observe a sizeable increase in the size of the jets.

We can extend our study on the zonal and convective lengthscales
and the predictive value of the Rhines scale from the results of
simulations performed at different Ek and Pr. We cannot presently
run simulations at Ek < 10−8, so this study is restricted to higher
Ek, namely Ek = 10−7. Our QG-3D model allows us to explore
small Pr, so we also use results from calculations at Pr = 10−2.
The two panels on the right of Fig. 2 shows the zonal velocity for
(Ek, Pr) = (10−8, 10−2) and (Ek, Pr) = (10−7, 10−1) at the largest
Ra performed (see Table 1). For (Ek, Pr) = (10−7, 10−1), the zonal
flow has 5 jets of alternating sign. The zonal jets widen when the
Ekman number increases if this leads to a larger r.m.s. convective
velocity EkU according to the Rhines scale (24).

For (Ek, Pr) = (10−8, 10−2), the time-averaged zonal flow also
has five alternating jets. By visual inspection of the snapshots of the
velocity, it appears that meandering azimuthal flows are present in
the inner region, similarly to the case Ra = 1.93 for (Ek, Pr) = (10−8,
10−1). This suggests that larger Rayleigh numbers would be neces-
sary to get multiple persistent jets. However, we were not able to
perform calculations at larger Ra to confirm this. Smaller values of
Pr lead to larger values of the convective velocity (see Table 1), and
hence, to wider jets.

To compare more systematically the convective lengthscale with
the Rhines scale, Fig. 4 shows the values of lc versus lR that have
been radially averaged in the inner convective region (between
0.1 ≤ s ≤ 0.8), for increasing values of Ra and different Ek and
Pr. Both lengthscales vary significantly with radius so we also indi-
cate the standard deviation with vertical and horizontal bars. All the
simulations are located on the strong branch of convection, which
is discontinuous at the onset of convection, and lc is always larger
than the wavelength of the linear instability. The best fit to all the
points is lc ∼ l0.73(±0.04)

R . Our simulations therefore indicate that the
convective lengthscale increases with the convective flow speed,
but it follows a power law of smaller exponent (namely lc ∼ U0.37)
than predicted by the Rhines scale (namely lc ∼ U0.5). This result
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Figure 4. Convective lengthscale versus Rhines scale. Both quantities have
been averaged radially in the inner convective region between 0.1 ≤ s ≤ 0.8.
The horizontal and vertical bars indicate the standard deviation. The dotted
line indicates the best fit to all the data points.

is in agreement with the work of Gastine et al. (2016) using 3-
D numerical simulations of rotating convection in a spherical shell
with Pr = 1: they find that the convective lengthscale approaches the
power law given by the Rhines scale when the Ekman decreases, but
the exponent remains smaller than a half (0.45 for Ek = 3 × 10−7).
Here we fitted all the points from different sets of Ekman and Prandtl
numbers with one power law because, according to the Rhines scale
argument, the dependence of the convective lengthscale on the pa-
rameters can be explained by a power law dependence on the flow
velocity only, irrespective of the values of Ek and Pr. However there
are some visible variations of the power law exponent for the differ-
ent data sets, which is further indication that our data do not entirely
corroborate the Rhines scale argument.

We now return to the issue of the interpretation of the velocity
scale U in the Rhines scale formula (24). In our simulations, we
find that the convective lengthscale approximately follows a power
law lc ∼ U0.28 when U is interpreted as the r.m.s. total velocity. The
power law exponent is therefore further away from the Rhines scale
prediction when using the total velocity rather than the convective
velocity.

3.3 Scaling of the zonal flow velocity

To complete this section, we now discuss how the amplitude of
the zonal velocity scales with the convective velocity. Fig. 5(a)
shows the evolution of the zonal Rossby number, Ro0 = Re0Ek,
as a function of the convective Rossby number, Roc = RecEk, for
Ek ∈ [10−8, 10−7] and Pr = [10−2, 10−1]. In this section we use
the Rossby numbers to clarify the dependence of the velocity on
the viscosity. For EkPr ≤ 10−9, the nonlinear onset of convection
is subcritical (Guervilly & Cardin 2016). In this case, the zonal
and convective Reynolds numbers are discontinuous and Rec �
103. For each fixed value of Ek, the data points approximately fall
on a straight line, indicating a power law dependence on Roc. The
dashed line represents Ro0 = Roc. The data points cross this line for

moderate values of the Rayleigh numbers that depend on the Prandtl
number: at Ra ≈ 1.5Rac for Pr = 10−2 and Ra ≈ 6Rac for Pr = 10−1.
The zonal flows have therefore large amplitude for relatively modest
values of the Rayleigh numbers when Pr < 1, despite the presence of
the Ekman boundary friction in our model. They reach an amplitude
comparable to the amplitude of the convective flows for smaller Ra
as Pr is decreased. In this sense, lower Pr is favourable for the zonal
flows.

A scaling law for the zonal flow amplitude can be obtained by
considering that the dominant force balance in the zonal velocity
eq. (18) is established between the nonlinear interactions of the
convective velocities and the friction in the Ekman layer. This is
consistent with measurements of the contributions to the zonal en-
ergy budget in our simulations. For instance, in the case Ek = 10−8,
Pr = 10−1 and Ra/Rac = 9.02, we measured that the boundary
friction accounts for 90 per cent of the total viscous dissipation of
the axisymmetric flow. In terms of scaling arguments, this balance
implies

Ro0 ∼ Ek−1/2 Ro2
c

lc
. (25)

Using the scaling lc ∼ Ro0.37
c deduced from our data in Section3.2,

we obtain the scaling Ro0 ∼ Ro1.63
c . The best fit to all the data points

in Fig. 5(a) is Ro0 ∼ Ro1.64(±0.04)
c . This agreement is not surprizing

because all the global quantities are calculated from the same data
set, but it shows that our measurements of the global values of the
convective lengthscales and the velocities are consistent and that
eq. (25) is suitable to scale the zonal flow velocity.

It is interesting to compare the observed scaling of the zonal
velocity with predictive scaling laws based on physical arguments
that have been derived in the literature (e.g. Aubert et al. 2001).
To do so, we need to examine possible scaling arguments for lc.
Considering first that lc scales with the Rhines scale (24), lc ∼ Ro1/2

c ,
gives

Ro0 ∼ Ek−1/2Ro3/2
c . (26)

The exponent 3/2 is in good agreement with the results of the 3-D
numerical simulations of Kaplan et al. (2017) for Ek ∈ [10−7, 10−6]
and Pr ∈ [3 × 10−3, 10−1].

Gillet et al. (2007) proposed an alternative scaling for lc obtained
by using the zonal velocity as a typical flow velocity in the Rhines
scale. This gives lc ∼ Ro1/2

0 , and so,

Ro0 ∼ Ek−1/3Ro4/3
c . (27)

Gillet et al. (2007) found that this scaling law provides a good fit for
their numerical data obtained with a QG model at Ek = O(10−6)
and Pr = 0.025.

Finally, we can consider lc ∼ Ek1/3, which corresponds to the
scaling of the azimuthal lengthscale of the linear convective insta-
bility (Jones et al. 2000). This estimate is obviously not satisfactory
because the convective lengthscale must increase with the Rayleigh
number as shown in Figs 1 and 4. For this estimate, we deduce the
scaling law

Ro0 ∼ Ek−5/6Ro2
c . (28)

The power law (26) provides the closest exponent to our data best
fit and is based on plausible physical arguments. By contrast, the
power law (28) is too steep and the dependence of the pre-factor on
Ek is much weaker in the data. The power law (27) requires a much
stronger dependence of the convective lengthscale on Roc (namely
lc ∼ Ro2/3

c ) than observed. Figs 5(b) and (c) show the dependence
of Ro0 compensated by the power laws (26) and (27), respectively,
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Figure 5. (a) Zonal Rossby number Ro0 as a function of the convective Rossby number Roc. The dotted line shows the power law whose exponent best fits all
the data points. Ro0 compensated by the power laws of (b) eq. (26) and (c) eq. (27) as a function of Roc.

on Roc. The data points compensated by the power law (26) align on
a plateau, confirming that the exponent of this power law provides
a reasonable agreement with our data.

The pre-factor of the power law (26) predicts that a decrease of
Ek by a decade should lead to an increase of Ro0 by approximately a
factor 3. The dependence on the Ekman number cannot be estimated
accurately from our data points as they only sample one decade
of Ek. Fig. 5(b) tentatively suggests that the power law (26) does
not entirely explain the dependence on the Ekman number: in our
simulations, Ro0 only increases by approximately a factor 2 when
Ek decreases from 10−7 to 10−8.

4 D R I F T A N D S TA B I L I T Y O F T H E
Z O NA L J E T S

In the rest of the paper, we only consider simulations run at
Ek = 10−8 and Pr = 10−1, where we obtain the largest number
of zonal jets. The zonal flows have a strong influence on the con-
vective flows, and hence on the heat transport as we will discuss in
Section 6, so it is important to discuss the persistence of the zonal
jets. In this section, we examine the stability of the jets.

Using a QG model of thermal convection, Rotvig (2007) shows
that zonal jets drift inwards provided that the slope β has a significant
dependence on radius, while QG models with constant β produce
multiple jets that do not drift (e.g. Jones et al. 2003). Rotvig showed
that the drift also occurs in a 3-D spherical model, so this effect is
not restricted to QG models. The drift rate is found to increase with
β and with the Rayleigh number. The drift of zonal flows is also
observed in the rotating turntable experiment of Smith et al. (2014).
In the experiment, β is positive and the drift is observed outwards.
These studies thus indicate that the direction of the zonal jet drift is
related to the sign of β.

Fig. 6 shows the space–time diagram of the zonal velocity for
Ra/Rac = 0.96 and Ra/Rac = 9.02. For Ra = 0.96, the middle
retrograde zonal jet drifts inwards periodically. In our system β < 0

so this inwards migration of the zonal flows is in agreement with
the work of Rotvig (2007) and Smith et al. (2014).

For Ra/Rac = 9.02, the picture is completely different. For s > 0.4
the zonal jets do not drift and the standard deviation of their am-
plitude is of the order of 2000 (compared with a mean amplitude
of approximately 30 000) over the course of the simulation. How-
ever at radius s < 0.4, the central prograde jet and its retrograde
neighbour drift outwards. The retrograde jet initially forms around
s = 0.2 and eventually merges with the retrograde jet located at
s ≈ 0.35, closing off the prograde jet in the process. This sequence
is not quite periodic and takes between 5 and 20 zonal turnover
timescale (based on the time- and volume-averaged zonal velocity).
The central region of the equatorial plane has the smallest values of
β and dβ/ds, so the direction and the location of the drift indicates
that this mechanism is different from the inward drift observed for
smaller Ra and large β.

The drift might be related to instabilities of the prograde jets
near the centre, where β goes to zero. The Rayleigh-Kuo criterion
states that a necessary condition for the barotropic instability of a
shear flow in a inviscid Boussinesq fluid is that the quantity � =
2βEk−1 − dζ/ds, where ζ = duφ/ds + uφ/s, changes sign at some
radius (Kuo 1949). This indicates that large slopes have a stabilizing
effect on the zonal flow, so it is plausible that prograde zonal flows
near the centre are unstable. The criterion is valid for an inviscid
fluid, so it only provides an indication of the zonal flow stability
for small Ekman numbers. Nevertheless, Guervilly et al. (2012)
showed that the threshold of the instability obtained with numerical
simulations is in good quantitative agreement with the Rayleigh–
Kuo criterion for Ek < 10−7. As well as calculating the quantity �

in the time series of Ra/Rac = 9.02, we also compute the product of
uφ with the zonal average of the eddy momentum flux convergence
given in the zonal velocity eq. (18),

R = −
(

u′
s

∂u′
φ

∂s
+ u′

su′
φ

s

)
uφ, (29)
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464 C. Guervilly and P. Cardin

Figure 6. Space–time diagram of the zonal velocity for (a) Ra/Rac = 0.96 and (b) Ra/Rac = 9.02 (Ek = 10−8 and Pr = 10−1). The time interval corresponds
to (a) 106 rotation periods and 317 convective turnover timescales (as defined in Table 1) and (b) 1.2 × 106 rotation periods and 2672 convective turnover
timescales.

where the prime denotes the non-axisymmetric velocity component.
R is the only source of energy of the zonal flow, so we expect this
term to be positive when the eddies feed energy into the zonal ve-
locity. Fig. 7 shows the space–time diagram of R (colour), where
the isocontours of uφ = 0 (black line) and � = 0 (green line) have
been superposed. In the central region, R is negative in the inward
flank of the drifting prograde jet, meaning that the zonal flows lose
energy to the non-axisymmetric flows there. The instability criteria
(i.e. � > 0) is violated near the centre where β is small and in a few
places in the drifting prograde jet. This indicates that this prograde
jet might be marginally stable, leading to a transfer of energy from
the zonal flow to non-axisymmetric flows. As the zonal flow loses
energy in the inward flank of the prograde jet, we expect the fluid
parcels located there to move outwards to conserve their angular
momentum. This mechanism could explain why the prograde jet

moves outwards, and by doing so, pushes the neighbouring retro-
grade jet outwards.

5 DY NA M I C A L D I F F E R E N C E B E T W E E N
R E T RO G R A D E A N D P RO G R A D E J E T S

We now discuss the mechanism of formation of persistent zonal
flows based on the extensive literature on the subject, particu-
larly in the context of the ocean and atmosphere dynamics (e.g.
Vallis 2006). In our simulations, retrograde zonal flows are faster
and sharper than the rounded prograde zonal flows. This asymme-
try is indicative of an important dynamical difference between the
two types of zonal jets, related to their formation mechanism and
to the sign of β. The asymmetry is also observed in 3-D models
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Figure 7. Space–time diagram of R (colour) for Ra/Rac = 9.02 (Ek = 10−8, Pr = 10−1). The isocontours uφ = 0 and � = 0 have been represented in black
and green, respectively. The time interval corresponds to 3.5 × 104 rotation periods and 78 convective turnover timescales (as defined in Table 1).

of rotating spherical convection (e.g. Heimpel & Aurnou 2007;
Gastine et al. 2014) and in QG models with constant β (e.g. Teed
et al. 2012). In the 3-D simulations, the multiple zonal jets emerge
inside the tangent cylinder, where β is positive, so the prograde
flows are faster and sharper than the retrograde flows.

In QG flows, the zonal flows are directly related to the distribution
of potential vorticity (PV; e.g. McIntyre 2003). In our system, the
equation for the evolution of the PV, q, is

∂q

∂t
+ u · ∇q = D + F, (30)

where

q = ζ + 2Ek−1

H
, (31)

D represents the dissipation terms from the boundary and the bulk
and F the buoyancy source. ζ includes the axisymmetric and non-
axisymmetric components of the vorticity. In the absence of buoy-
ancy sources and dissipative effects, q is a materially invariant scalar
so it tends to be locally homogenized by the turbulence. The zonal
flows appear as a consequence of the mixing of PV with

uφ(s) = 1

s

∫ s

0
s ′ζds ′ = 1

s

∫ s

0
s ′ (Hq − 2Ek−1

)
ds ′. (32)

In a sphere (where H decreases with s, i.e. β < 0), regions of
weak PV gradients correspond to prograde zonal jets, while regions
of strong PV gradient correspond to retrograde zonal jets. The
PV distribution controls the QG dynamics and, in particular, the
propagation of Rossby waves. The equation for linear Rossby waves
is

∂ζ ′

∂t
+ us H

dq

ds
= 0, (33)

where ζ ′ = ζ − ζ and

dq

ds
= dζ/H

ds
− 2β

EkH
. (34)

The restoring mechanism of the Rossby waves is therefore stronger
in the retrograde jets than in the prograde jets. A strong mixing leads
to the formation of a staircase of PV, that is, a succession of regions

of homogeneous PV separated by regions of steep PV gradients
(e.g. Scott & Dritschel 2012). This occurs because perturbations to
strong PV gradients are radiated as Rossby waves, an effect referred
to as Rossby wave elasticity (McIntyre 2008). Perturbations are
therefore inhibited in the regions of strong PV gradients, while
they are intensified in regions of weak PV gradients. This leads to
a feedback mechanism that further steepens the gradients of PV
(Dritschel & McIntyre 2008). In a sphere, the relation between PV
and zonal flows (32) implies that wide regions of weak PV gradients
appear as large rounded prograde jets, whereas narrow regions of
steep PV gradients appear as sharp retrograde jets.

The radial profile of the axisymmetric PV is plotted in Fig. 8 for
Ra/Rac = 9.02. In the range s ∈ [0, 0.8], the succession of weak
and steep PV gradient regions is visible and forms a relatively mild
PV staircase for this value of Ra. Larger Ra are required to obtain
well mixed PV regions and a better formed staircase profile. The
asymmetry of the jets is clearly visible in our simulations but retro-
grade jets are not particularly narrower than the prograde jets. This
is because the chosen delimitation of the jets (uφ = 0) is, somewhat
arbitrarily, defined with respect to the planetary rotation. The profile
of q shows that the regions of steep PV gradients (which correspond
to the cores of the retrograde jets) are in fact much narrower than the
regions of weak PV gradients. Another characteristic of the zonal
flow is the robustness of the prograde jet at the centre in all our sim-
ulations: this is well explained by the mixing in the central region
that leads to a local increase of q. The PV mixing mechanism there-
fore provides a good explanation for the most notable features of
the zonal flows observed in our simulations. Nevertheless, we note
that alternative–although not mutually exclusive–mechanisms for
the formation of persistent zonal flows have been put forward in the
literature, such as resonant triad interactions (e.g. Pedlosky 1987).

The PV distribution indicates that the non-axisymmetric dynam-
ics inside the retrograde jets might be dominated by Rossby waves.
Assuming for simplicity ζ ′ = −∇2

e ψ (see equation 12), the disper-
sion relation of the Rossby waves is

ω = H
dq

ds

kφ

|k|2 , (35)
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Figure 8. Radial profile of (a) the zonal velocity and (b) the axisymmetric potential vorticity (time averages) for Ra/Rac = 9.02 (Ek = 10−8, Pr = 10−1). The
grey bands correspond to the regions where the zonal flow is retrograde.

where ω is the frequency of the wave and k = (ks, kφ) is the
wavenumber vector. Consequently, the azimuthal phase velocity,
vp, and azimuthal group velocity, vg, of the Rossby waves are

vp = H
dq

ds

1

|k|2 , vg = H
dq

ds

k2
s − k2

φ

|k|4 . (36)

In our system, the gradient of q is positive so the Rossby waves al-
ways have a positive azimuthal phase speed. To determine whether
Rossby waves are present in the retrograde jets, we can track the
direction of the azimuthal drift of the velocity patterns. Fig. 9 shows
the Hovmöller map (longitude–time) of the radial velocity us at a
fixed radius in a prograde jet (uφ = 11600) and in a retrograde
jet (uφ = −24600). The solid black line represents the azimuthal
drift due to the advection by the zonal velocity at this radius,
�t = s�φ/uφ . In the prograde jet, the radial velocity structures
move in the prograde direction at a rate that is consistent with the
advection by the zonal velocity, and even faster for some structures.
In the retrograde jet, the radial velocity patterns mainly move in
the prograde direction. These patterns must therefore correspond to
Rossby waves. The amplitude of the patterns of us is modulated as
they move in the prograde direction. These modulations appear on
neighbouring patterns and seem to travel in the retrograde direction.
This observation is consistent with Rossby waves for which ks < kφ

so their azimuthal group velocity is negative. In the frame of refer-
ence (i.e. rotating at the rotation rate �), the Rossby waves move at
a velocity vp + uφ . From Fig. 9(b), we estimate that this velocity is
approximately 20 000, which gives vp ≈ 45 000. By using the local
value of the gradient of q at this radius, we find that |k|2 ≈ 84 from
eq. (36). From Fig. 9(b) we estimate that the azimuthal wavenumber
is kφ = m/s ≈ 70, and so, we deduce that ks ≈ 46. This result is
consistent with a negative azimuthal group velocity.

We might expect that the dynamical difference between prograde
and retrograde jets affects the temperature distribution because the
Rossby waves might modify the transport properties of the flow. We
study this problem in the next section.

6 E F F E C T O F T H E Z O NA L F L OW S O N
T H E H E AT T R A N S P O RT

First, we can assess the effect of the zonal flow on the amplitude of
the radial flow by comparing the profile of the zonal velocity to the
radial profile of the r.m.s radial velocity, u∗

s , which is calculated as

u∗
s (s) = 1

�t

∫
�t

(
1

2πs

∫ 2π

0
u2

s (s, φ, t)sdφ

)1/2

dt. (37)

Fig. 10(a) shows these profiles for Ra/Rac = 9.02. The zonal flow
(black line) is plotted according to the left axis and u∗

s (blue line) is
plotted according to the right axis. Both profiles are time-averaged.
In the inner convective region (s � 0.8), the local maxima of u∗

s

correlates well with the extrema of uφ (the cores of the jets), that
is, the zeros of the radial shear |∂suφ |, while the local minima of
u∗

s correlates with maxima of |∂suφ | (the flanks of the jets). The
reduction of u∗

s in the flank of a jet can reach 30 per cent of its value
in the core of the neighbouring jets. The radial velocity is therefore
impeded by the radial shear and maximized in the cores of jets,
irrespective of their sign. Thus the dynamical difference between
prograde and retrograde jets cannot be directly diagnosed on this
profile.

To determine how the temperature field is affected by the zonal
flows, Fig. 11(a) shows a meridional slice of the axisymmetric
temperature, T = � + Ts , averaged in time for the same simulation.
The isotherms have an ellipsoidal shape which is elongated towards
the equator. To complement this figure, the radial profiles of the
axisymmetric temperature along the rotation axis, T (θ = 0), and in
the equatorial plane, T (θ = π/2), are plotted in Fig. 10(b). In the
equatorial plane, the temperature has a flatter profile than along the
rotation axis for s < 0.8, which explains the ellipsoidal shape of
the isotherms. The thermal boundary layer is more pronounced in
the equatorial plane. Nevertheless it remains thick (much thicker
than the Ekman layer) because Pr < 1 and the Rayleigh number is
moderate. The disparity between the temperature along the axial and
equatorial directions is due to preferential direction of the convective
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Figure 9. Hovmöller map (longitude–time) of the radial velocity us at a fixed radius: (a) s = 0.51 in a prograde jet (uφ = 11600) and (b) s = 0.58 in a
retrograde jet (uφ = −24600) for Ra/Rac = 6.44 (Ek = 10−8, Pr = 10−1). The solid black line shows the drift due to the advection by the zonal velocity. The
time interval corresponds to 2000 rotation periods and 4 convective turnover timescales (as defined in Table 1).

flows in rapidly rotating convection. This effect is also observed in
3-D models (e.g. Zhang 1991; Yadav et al. 2016), but is amplified
here by the use of a QG model.

On top of their ellipsoidal shape, the isotherms also have undula-
tions of small amplitude. These undulations are located at the same
distance from the rotation axis for each isotherm so they are likely
due to the presence of zonal flows. This causal link is visible in
Fig. 10(b) where we use the radial profile of T (θ = π/2) as a proxy
for the z-averaged axisymmetric temperature. The temperature pro-
file is relatively flat in the prograde zonal jets. By contrast it is
significantly steeper in the core of the retrograde jets. This indicates
that the mean temperature is affected by the PV distribution: in the
core of the retrograde jets, the inhibition of the turbulence and the
dominance of the Rossby waves imply that the temperature cannot
be efficiently homogenized.

This effect can be quantified by measuring the heat fluxes carried
by convection and conduction through the system. In the steady
state, the volume average of the heat equation implies that

1

S
∫
S

(Fcv + Fcd) dS = Fs, (38)

where the convective heat flux is

Fcv = �ur , (39)

the conductive heat flux,

Fcd = − 1

Pr

∂T

∂r
, (40)

the static heat flux,

Fs = − 1

Pr

dTs

dr
= 2

Pr2
r, (41)

and S is a spherical surface. Fig. 11 shows the meridional slices of
the axisymmetric averages of the convective heat flux, F cv, and of
the conductive heat flux, F cd. The fluxes are time-averaged. Both

fluxes have a banded structure aligned with z. The convective heat
flux is mainly concentrated around the equatorial plane and is weak
near the axis. The conductive heat flux is maximum near the equator.
For this simulation at Pr = 10−1, the conduction carries a larger part
of the heat than the convection in most of the domain, despite the
large values of the radial velocity (of the order of 104).

The thermal contrast between prograde and retrograde jets can be
clearly observed in the profiles of the axisymmetric heat fluxes in
the equatorial plane shown in Fig. 10(c). For comparison, the static
heat flux Fs is also shown. Note that the profile of F cv and F cd at
a given latitude are not representative of the spherical averages so
their sum is not equal to Fs at each radius. The local maxima of the
convective flux are located in the prograde zonal jets. The decrease
of the convective flux matches the decrease of u∗

s in the shear layers.
However the convective flux systematically reaches minima in the
core of the retrograde jets while the radial velocity recovers there.
The conductive flux is boosted in the shear layers, but even more
so in the retrograde jets, where it is much larger than the convective
flux. The balance between the thermal processes is very different
in the prograde and retrograde jets: the prograde jets are regions
where about half of the heat is carried by the convection and the
temperature is fairly uniform, whereas most of the heat is carried
by the conductive flux in the retrograde jets. This occurs despite
high values of the r.m.s radial velocity in the retrograde jets, so the
radial flow must not be well correlated with the temperature per-
turbation in these regions. Fig. 12 show the Hovmöller map for the
non-axisymmetric temperature perturbation, �′ = � − �, for the
same parameters and radius as Fig. 9. In both prograde and retro-
grade jets, the temperature perturbation drifts in the direction of the
zonal flow with a drift rate consistent with the advection by the zonal
velocity. In the core of the retrograde jets, which are dominated by
the propagation of Rossby waves, the radial velocity and tempera-
ture perturbation are visibly not well correlated. The inefficiency of
the Rossby waves at transporting heat outwards explains the weak
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Figure 10. Radial profile of (a) the zonal velocity (black line) and the r.m.s radial velocity (blue), (b) the axisymmetric temperature along the rotation axis
(black) and in the equatorial plane (blue), (c) the static heat flux (black), the conductive heat flux in the equatorial plane (blue) and the convective heat flux
in the equatorial plane (red). All the quantities have been time-averaged. The grey bands correspond to the regions where the zonal flow is retrograde. The
parameters are Ra/Rac = 9.02, Ek = 10−8 and Pr = 10−1.

Figure 11. Meridional cross-section of the axisymmetric average of (a) the temperature T = � + Ts , (b) the convective heat flux Fcv, and (c) the conductive
heat flux Fcd. All the quantities have been time-averaged. Same parameters as Fig. 10.
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Figure 12. Hovmöller map of the non-axisymmetric temperature perturbation, �′, at a fixed radius: (a) s = 0.51 in a prograde jet and (b) s = 0.58 in a
retrograde jet for the same parameters as Fig. 9. The solid black line shows the drift due to the advection by the zonal velocity. The time interval corresponds
to 2000 rotation periods and 4 convective turnover timescales (as defined in Table 1).

convective heat flux there. In the prograde jet, �′ is well correlated
with us, which is consistent with the high convective heat flux.

In summary, our results show that the core of the retrograde
jets—and not only the regions of intense shear—act as primary
bottlenecks to the convective heat transport.

7 D I S C U S S I O N

In this paper, we have studied the convective structures and zonal
flows that form in rotating thermal convection for values of the
Prandtl number relevant for liquid metals (Pr = O(10−1)) and low
Ekman (Ek = O(10−8)) and Rossby numbers (Roc < 10−2). In order
to reach low values of the Ekman number, we have used a hybrid
numerical model that couples a QG approximation for the velocity
to a 3-D temperature field. Convection is driven by internal heating
in a full sphere geometry. The model includes Ekman pumping to
mimic no-slip boundary conditions. We focus on the intense zonal
flows that emerge on the strong branch of convection, which was
described by Guervilly & Cardin (2016) using the same hybrid QG-
3D model and by Kaplan et al. (2017) in a fully 3-D model. Persistent
multiple zonal jets of alternating sign form due to the mixing of PV
and exert a strong feedback on the convection. An upscale energy
transfer takes place and the integral convective lengthscale increases
with the vigour of the convection. The convective lengthscale and
the zonal jet width are closely related: the radial shear exerted by
the zonal flow on the radial velocity limits the size of the convective
eddies, while the typical mixing length of the PV depends on the size
of the most energetic convective eddies. The convective lengthscale
varies radially in agreement with the Rhines scale (Rhines 1975),
that is, as the square root of β, where β measures the slope of the
boundaries. However the convective scale increases more slowly
with the convective speed (following a power law of exponent 0.37)
than predicted by the Rhines scale (power law of exponent 0.5).

In our QG model, convection carries heat mostly in the direction
perpendicular to the rotation axis. We have shown that the principal
barrier to this convective heat transport is located in the cores of the
retrograde zonal jets. This is due to the formation of a staircase of
PV: steep and weak gradients of the PV correspond to retrograde and
prograde zonal jets, respectively. The steep PV gradients inhibit the
eddies and favour the propagation of Rossby waves, which are inef-
ficient at carrying heat outwards. The occurrence of eddy-transport
barriers associated with strong zonal jets is well-documented in
the atmospheric dynamics context (Dritschel & McIntyre 2008). In
our simulations, these barriers lead to the steepening of the mean
temperature gradient in the core of the retrograde jets, and there,
the heat is largely carried by conduction. The unfavourable effect
of the shear layer in the flanks of the zonal jets on the convective
heat transport is secondary by comparison. To illustrate the thermal
signature of the retrograde jets at the surface, we plot in Fig. 13 the
latitudinal profile of the axisymmetric heat flux at r = 1. The most
noticeable feature is that the heat flux is maximal at the equator,
which is expected as the convective transport is largely perpendic-
ular to the rotation axis, and is also observed in 3-D models (e.g.
Zhang 1991; Yadav et al. 2016). This enhanced heat transport in
the equatorial regions compared with the polar regions is used in a
number of models of the Earth’s inner core growth to explain the
observed seismic anisotropy (e.g. Yoshida et al. 1996; Deguen &
Cardin 2009). Of greater interest here are the more subtle variations
of the surface heat flux at higher latitudes: the cores of the retro-
grade jets are characterized by local maxima of the (conductive)
surface heat flux. This occurs because the axisymmetric tempera-
ture gradient is steepest in these regions. To highlight the small-scale
anomalies of the surface heat flux and quantify their amplitude, we
filter out the coefficients of the spherical harmonics of degree l
smaller than 30. The filtered profile is plotted according to the right
axis of Fig. 13 in blue. It shows that the heat flux anomalies due to
the presence of the zonal flows are sharp and of a small amplitude,
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Figure 13. Latitudinal profile of the axisymmetric heat flux (black line) from
the North pole to the equator at the outer boundary r = 1 for Ek = 10−8,
Pr = 10−1 and Ra/Rac = 9.02. The blue line shows the axisymmetric
heat flux where the spherical harmonics coefficient of degrees l ≤ 30 have
been filtered out and is plotted according to the right axis. The grey bands
correspond to the regions where the zonal flow is retrograde.

approximately 1 per cent of the mean surface heat flux. The ther-
mal signal associated with zonal jets provides useful information
in the context of the gas giant planets because the power emitted at
the surface of the planet can be measured. For Jupiter and Saturn,
the emitted power is approximately uniform in latitude with vari-
ations of small amplitude that resemble the structure of the zonal
flows at the surface (Pirraglia 1984; Li et al. 2010).

For increasing thermal driving (out of reach of our current com-
putational resources), we expect the convective eddies to further
enhance the mixing of PV in the prograde jets. The PV staircase
would then become sharper with narrower regions of steep PV gradi-
ents, and hence narrower retrograde jets. This sharpening of the PV
staircase in rapidly rotating convection is observed by Verhoeven &
Stellmach (2014) at large Rayleigh numbers (20 times supercritical)
in 2-D numerical simulations using the anelastic approximation. In
their study, the β effect is due to the compressibility of the fluid
(Ingersoll & Pollard 1982; Glatzmaier et al. 2009) and leads to
the formation of multiple zonal jets, similarly to the topographic
β effect as studied here. They show that the sharpening of the PV
staircase results in the sharpening of the entropy staircase (analo-
gous to the temperature staircase in the Boussinesq approximation).
In QG systems with vigorous convection, we thus expect the heat
transport process to be heterogeneous with wide convective regions
separated by narrow conducting bands; the efficiency of the heat
transfer throughout the whole system would largely be controlled
by the efficiency of the conducting process across the retrograde
jets, and thus, by the width of these conducting bands. This process
is partly analogous to the occurrence of layering in double-diffusive
convection where the heat transfer is controlled by the flux through
the interface between overturning layers (Turner 1985).

The main features of the nonlinear QG dynamics discussed in
this paper do not crucially rely on the temperature being 3-D. Con-
sequently, we expect that QG models of rotating convection using a
2-D temperature field would be able to reproduce our observations
qualitatively. QG-2D models could be used to pursue this study at
lower Ekman numbers and larger Rayleigh numbers. The numerical
framework used in the hybrid QG-3D model is however well suited
to explore the possible existence of dynamos driven by QG flows at
low magnetic Prandtl numbers (e.g. Gillet et al. 2011). The dynamo
problem indeed requires to treat the magnetic field in 3-D. We shall
investigate QG dynamos in a forthcoming study.
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