B. Avdeev, N. Niemi, and M. K. Clark, Doing more with less: Bayesian estimation of 528 erosion models with detrital thermochronometric data Earth, Planet. Sci. Letts, vol.305, pp.385-529, 2011.

M. T. Brandon, Probability plots for fission-track grain-age samples, Rad. Meas, vol.26, pp.531-663, 1996.

J. Braun, L. Gemignani, and P. Van-der-beek, Extracting information on the spatial 533 variability in erosion rate stored in detrital cooling age distributions in river sands, Earth, vol.534, 2018.

, Surf. Dyn, vol.6, pp.257-270

J. Braun, P. Van-der-beek, P. Valla, X. Robert, F. Herman et al., , p.536

C. Perry, T. Simon-labric, and C. Prigent, Quantifying rates of landscape evolution and 537 tectonic processes by thermochronology and numerical modeling of crustal heat transport 538 using PECUBE. Tectonophysics, pp.524-525, 2012.

I. D. Brewer, D. W. Burbank, and K. V. Hodges, Modelling detrital cooling-age populations: 540 insights from two Himalayan catchments, Basin Res, vol.15, pp.305-320, 2003.

R. W. Brown, R. Beucher, S. Roper, C. Persano, F. Stuart et al., Natural age 542 dispersion arising from the analysis of broken crystals, part I. Theoretical basis and 543 implications for the apatite (U-Th)/He thermochronometer, Geochimica et Cosmochimica, vol.544, 2013.

. Acta, , vol.122, pp.478-497

A. Carter and C. S. Bristow, Detrital zircon geochronology: Enhancing the quality of 546 sedimentary source information through improved methodology and combined U-Pb and 547 fission-track techniques, Basin Res, vol.12, pp.47-57, 2000.

P. Copeland and T. M. Harrison, Episodic rapid uplift in the Himalaya revealed by 549 40 Ar, 1990.

, Ar analysis of detrital K-feldspar and muscovite, Bengal Fan, Geology, vol.18, pp.354-550

M. H. Dodson, Closure temperature in cooling geochronological and petrological 552 systems, Contrib. Mineral. Petrol, vol.40, pp.259-274, 1973.

T. A. Ehlers, A. Szameitat, E. Enkelmann, B. J. Yanites, and G. J. Woodsworth, , p.554, 2015.

, Identifying spatial variations in glacial catchment erosion with detrital thermochronology, p.555

, J. Geophys. Res. Earth Surf, vol.120, pp.1023-1039

T. A. Ehlers, K. A. Farley, M. E. Rusmore, and G. J. Woodsworth, Apatite (U-Th)/He 557 signal of large-magnitude accelerated glacial erosion, 2006.

, Geology, vol.34, pp.765-768

E. Enklemann and T. A. Ehlers, Evaluation of detrital thermochronology for 560 quantification of glacial catchment denudation and sediment mixing, Chem. Geol, p.411, 2015.

R. F. Galbraith, Statistics for Fission Track Analysis, vol.240, 2005.

K. Gallagher, Evolving thermal histories from fission track data, 1995.

. Letts, , vol.136, pp.421-435

K. Gallagher, Transdimensional inverse thermal history modelling for quantitative 584 thermochronology, J. Geophys Res, vol.117, p.2408, 2012.

K. Gallagher, T. Bodin, M. Sambridge, D. Weiss, M. Kylander et al., Inference of 586 abrupt changes in noisy geochemical records using Bayesian transdimensional 587 changepoint models, Earth Planet. Sci. Letts, vol.311, pp.182-194, 2011.

K. Gallagher, J. Stephenson, R. Brown, C. Holmes, and P. Fitzgerald, Low temperature 589 thermochronology and modelling strategies for multiple samples 1 : vertical profiles, p.590, 2005.

, Earth Planet Sci. Letts, vol.237, pp.193-208

J. I. Garver and M. T. Brandon, Fission-track ages of detrital zircon from Cretaceous strata, 592 southern British Columbia: Implications for the Baja BC hypothesis, Tectonics, vol.13, p.420, 1994.

C. Gautheron, L. Tassan-got, J. Barbarand, and M. Pagel, Effect of alpha-damage 595 annealing on apatite (U-Th)/He thermochronology, Chemical Geology, vol.266, pp.157-170, 2009.

L. Gemignani, P. A. Van-der-beek, J. Braun, Y. Najman, M. Bernet et al., , p.597

J. R. Wijbrans, Downstream evolution of the thermochronologic age signal in the 598, 2018.

, Brahmaputra catchment (eastern Himalaya): Implications for the detrital record of 599 erosion, Earth. Planet. Sci. Letts, vol.499, pp.48-61

J. Gómez, N. E. Montes, Á. Nivia, and H. Diederix,

, Scale 1:1 000 000. Servicio Geológico Colombiano, 2 sheets, Colombia 2015

P. F. Green, The relationship between track shortening and fission track age reduction in 603 apatite: combined influences of inherent instability, annealing anisotropy, length bias and 604 systems calibration, Earth Planet Sci Lett, vol.89, pp.335-352, 1988.

P. F. Green, I. R. Duddy, G. M. Laslett, K. A. Hegarty, A. J. Gleadow et al., , 1989.

, Thermal annealing of fission tracks in apatite 4. Quantitative modeling techniques and 607 extension to geological timescales, Chem Geol, vol.79, pp.155-182

K. W. Huntington and K. V. Hodges, A comparative study of detrital mineral and bedrock 609 age-elevation methods for estimating erosion rates, J. Geophys. Res, vol.111, p.610, 2006.

A. J. Hurford and P. F. Green, The zeta age calibration of fission-track dating: 612 Isotope Geoscience, pp.285-317, 1983.

R. A. Ketcham, A. Carter, R. A. Donelick, J. Barbarand, and A. J. Hurford, Improved 614 modeling of fission-track annealing in apatite, American Mineralogist, vol.92, pp.799-810, 2007.

R. A. Ketcham, R. A. Donelick, and W. D. Carlson, Variability of apatite fission-track 616 annealing kinetics. III. Extrapolation to geological timescales, American Mineralogist, vol.84, pp.617-1235, 1999.

D. Kim, S. Sra, and I. S. Dhillon, A non-monotonic method for large-scale non-negative 619 least squares, Optimization Meth. & Software, vol.28, pp.1012-1039, 2013.

M. G. Malusà and E. Garzanti, The Sedimentology of Detrital Thermochronology, IN : 621 Fission-Track Thermochronology and its Application to Geology, pp.123-143, 2019.

M. G. Malusà and P. G. Fitzgerald, Application of Thermchronology to Geologic 624 Problems : Bedrock and Detrital Approaches, P.G, vol.625, pp.191-200, 2019.

M. Parra, S. Echeverri, A. M. Patiño, J. C. Ramírez-arias, A. Mora et al., , p.628

A. Pardo and A. , Cenozoic Evolution of the Sierra Nevada de Santa Marta, p.629

J. Gómez-tapias, M. F. Almanza, and A. Ochoa, The Geology of Colombia Book, p.630

C. Servicio-geológico,

A. M. Patiño, M. Parra, J. C. Ramírez, E. R. Sobel, J. Glodny et al., , p.632

S. Echeverri, Thermochronological constraints on Cenozoic exhumation along 633 the southern Caribbean: The Santa Marta range, northern Colombia, p.634, 2019.

A. L. Read, Linear 635 interpolation of histograms, Nucl. Instr. and Methods in Physics Res. A, vol.425, pp.357-360, 1999.

P. W. Reiners and T. A. Ehlers, Low-Temperature thermochronology : Techniques, p.637, 2005.

. Interpretations and . Applications, Reviews in Mineralogy and Geochemistry, vol.58, p.1

. Ross, . M. Gh, and S. A. Bowring, Detrital Zircon Geochronology of the Windermere 640, 1990.

, Supergroup and the Tectonic Assembly of the Southern Canadian Cordillera, J. Geology, vol.641, issue.98, pp.879-893

K. W. Ruhl and K. V. Hodges, The use of detrital mineral cooling ages to evaluate steady 643 state assumptions in active orogens: An example from the central Nepalese Himalaya, 2005.

, Tectonics, vol.24, pp.1-14

B. Schoene, Treatise on Geochemistry, vol.4, pp.341-378, 2014.

G. M. Stock, T. A. Ehlers, and K. A. Farley, Where does sediment come from? Quan-648 tifying catchment erosion with detrital apatite (U-Th)/He thermochronometry, Geology, vol.649, pp.725-728, 2006.

L. M. Tranel, J. A. Spotila, M. J. Kowalewski, and C. M. Waller, Spatial variation of erosion 651 in a small glaciated basin in the Teton Range, 2011.

, Th)/He thermochronology, Basin Research, vol.23, pp.571-590

P. G. Valla, F. Herman, P. A. Van-der-beek, and J. Braun, Inversion of 654 thermochronological age-elevation profile to extract independent estimates of denudation 655 and relief history I: Theory and conceptual model, Earth Planet. Sci. Letts, vol.295, pp.511-522, 2010.

D. Villagomez, R. ;. Spikings, A. Mora, G. Guzman, G. Ojeda et al., Vertical tectonics at a continental crust-oceanic plateau plate boundary zone: 658 Fission track thermochronology of the Sierra Nevada de Santa Marta, p.659, 2011.

. Tectonics, , vol.30

G. A. Wagner and G. M. Reimer, Fission track tectonics: The tectonic interpretation of 661 fission track apatite ages, Earth Planet. Sci. Letts, vol.14, issue.2, pp.263-268, 1972.

G. A. Wagner, G. M. Reimer, and E. Jager, Cooling ages derived by apatite fission track, p.663, 1977.

K. Mica-rb-sr, dating: the uplift and cooling history of the central Alps

, Inst. Geol. Mineral. Univ. Padova, vol.30, pp.1-27

D. M. Whipp, . Jr, T. A. Ehlers, J. Braun, and C. D. Spath, Effects of exhumation 666 kinematics and topographic evolution on detrital thermochronometer data, J. Geophys, 2009.

. Res, , vol.114, p.4021

C. D. Willett, M. Fox, and D. L. Shuster, A helium-based model for the effects of radiation 669 damage annealing on helium diffusion kinetics in apatite, Earth. Planet. Sci. Letts, vol.477, pp.670-195, 2017.

, The predictions are shown by 714 the dashed lines. The predicted AFT ages also include those for the dummy samples and the 715 horizontal lines show the 95% credible range on the predicted age at each elevation for all 716 accepted thermal histories, b) Observations and predictions using the thermal history in (a

, assuming the 718 topographic sampling function (TSF) is the present day hypsometry (see figure 2). The 719 histogram and light blue line represent the observed detrital AFT ages. The red line is the 720 predicted distribution for the thermal history in (a), and the black line is the average of the 721 predicted detrital distributions for all accepted thermal histories. a) Inferred thermal history from just the detrital sample at the outlet of the Fundación 725 catchment. See the caption for figure 3 for more details, Predicted detrital AFT age distribution using the thermal history in (a), vol.726

, assuming the 728 topographic sampling function (TSF) is the present day hypsometry. a) Inferred thermal history from both the in situ samples and the detrital sample at the outlet 732 of the Fundación catchment. See the caption for figure 3 for more details, Predicted detrital AFT age distribution using the thermal history in (a), vol.733

, assuming the 735 topographic sampling function (TSF) is the present day hypsometry. ) Inferred thermal history from both the in situ samples and the detrital sample at the outlet 739 of the Fundación catchment, Predicted detrital AFT age distribution using the thermal history in (a)

, Observations and predictions using the thermal history in (a) and the inferred TSF shown 742 in (c)

, Predicted detrital AFT age distribution using the thermal history in (a), together with the 744 inferred TSF, estimated with a non-negative least squares method, using the present day 745 hypsometry as a starting model