S. P. Bachate, R. M. Khapare, K. M. Kodam, F. Garnier, C. Michel et al., Oxidation of arsenite by two ?-Challan-Belval, 2009.

, Enhancing pozzolana colonization by As(III)-oxidizing bacteria for bioremediation purposes

, Appl. Microbiol. Biotechnol, vol.84, pp.565-573

C. L. Chen, M. Liao, and C. Y. Huang, Effect of combined pollution by heavy metals on 711 soil enzymatic activities in areas polluted by tailings from Pb-Zn-Ag mine, J. Environ. Sci, vol.712, issue.4, pp.4-0637, 2005.

F. Cottard, Résultat des caractérisations complémentaires effectuées sur différents 714 milieux dans le district minier de Pontgibaud (63), BRGM/RP-58571-FR, 78 p., 12 fig., 8 715 tabl, 2010.

A. Courtin-nomade, T. Waltzing, C. Evrard, M. Soubrand, J. Lenain et al., , p.717

S. Ghorbel, C. Grosbois, and H. Bril, Arsenic and lead mobility: From tailing materials to 718 the aqueous compartment, Appl. Geochem, vol.64, pp.10-21, 2016.


J. E. Darland and W. P. Inskeep, Effects of pH and phosphate competition on the transport 721 of arsenate, J. Env. Qual, vol.26, pp.1133-1139, 1997.


J. Derome, Detoxification and amelioration of heavy-metal contaminated forest soils 724 by means of liming and fertilization, Environ. Pollut, vol.107, pp.79-88, 2000.

, , pp.183-186

S. Dixit and J. G. Hering, Comparison of Arsenic(V) and Arsenic(III) sorption onto iron 727 oxide minerals: implications for arsenic mobility, Environ. Sci. Technol, vol.37, pp.4182-4189, 2003.


M. Doi, G. Warren, and M. E. Hodson, A preliminary investigation into the use of ochre 730 as a remedial amendment in arsenic-contaminated soils, Appl. Geochem, vol.20, pp.2207-2216, 2005.


I. Douglas and N. Lawson, A Handbook of Industrial Ecology, 2000.

C. Ayers, M. Uk/northampton, and . Elgar, , pp.351-364

R. Fuge, F. M. Pearce, N. J. Pearce, W. T. Perkins, J. L. Garland et al., Classification and characterization of heterotrophic 738 microbial communities on the basis of patterns of community-level sole-carbon-source 739 utilization, Appl. Environ. Microbiol, vol.8, pp.2351-2359, 1991.

J. L. Garland, Analysis and interpretation of community-level physiological profiles in 742 microbial ecology, FEMS Microbiol. Ecol, vol.24, pp.289-300, 1997.

S. J. Gregory, C. W. Anderson, M. C. Arbestain, and M. T. Mcmanus, Response of 745 plant and soil microbes to biochar amendment of an arsenic-contaminated soil, 2014.

. Ecosyst and . Environ, , vol.191, pp.133-141

G. L. Guo, Q. X. Zhou, and L. Q. Ma, Availability and assessment of fixing additives for 748 the in situ remediation of heavy metal contaminated soils: a review, Environ. Monit. Assess, vol.749, pp.513-528, 2006.

N. Hattab, M. Motelica-heino, O. Faure, and J. L. Bouchardon, Effect of fresh and 751 mature organic amendments on the phytoremediation of technosols contaminated with high 752 concentrations of trace elements, J. Environ. Manage, vol.159, pp.37-47, 2015.


P. S. Hooda and B. J. Alloway, The effect of liming on heavy metal concentrations in 755 wheat, carrots and spinach grown on previously sludge-applied soils, J. Agric. Sci, vol.127, pp.289-756, 1996.

J. A. Ippolito and K. A. Barbarick, Biosolids affect soil barium in a dryland wheat 758 agroecosystem, J. Environ. Qual, vol.35, pp.2333-2341, 2006.

H. Insam and M. Goberna, Use of Biolog for the community level physiological profiling 760 (CLPP) of environmental samples, 2004.

, Molecular Microbial Ecology Manual. Detection, p.762

, Identification and Classification of Microbes Using Other Methods, pp.853-860

. Iso/ts, Soil quality -Leaching procedures for subsequent chemical and 766 ecotoxicological testing of soil and soil materials -Part 2: Batch test using a liquid to solid 767 ratio of 10 l/kg dry matter, 2007.

S. Klitzke, F. Lang, and M. Kaupenjohann, Increasing pH releases colloidal lead in a 769 highly contaminated forest soil, Eur. J. Soil Sci, vol.59, pp.265-273, 2008.

J. Kumpiene, A. Lagerkvist, and C. Maurice, Stabilization of As, Cu, Cr, Pb and Zn in 772 soils using amendments -a review. Waste Manage, vol.28, pp.2015-225, 2008.


A. H. Lahori, Z. Guo, Z. Zhang, R. Li, A. Mahar et al., , p.775

F. Kumbhar, P. Wang, and S. Jiang, Use of biochar as an amendment for remediation of 776 heavy metal-contaminated soils: prospects and challenges, Pedosphere, vol.27, pp.991-1014, 2017.

, , pp.60490-60499

L. Forestier, L. Motelica-heino, M. Le-coustumer, P. Mench, and M. , Phytostabilisation 779 of a copper contaminated topsoil aided by basic slags: assessment of Cu mobility and 780 phytoavailability, J. Soils Sediments, vol.17, pp.1262-1271, 2017.

M. Lebrun, C. Macri, F. Miard, N. Hattab-hambli, M. Motelica-heino et al., , p.783

S. Bourgerie, Effect of biochar amendments on As and Pb mobility and 784 phytoavailability in contaminated mine technosols phytoremediated by, 2016.

. Explor, , vol.182, pp.149-156

T. Lescure, J. Moreau, C. Charles, T. Ben-ali-saanda, H. Thouin et al., , p.787

I. Lamy and F. Battaglia-brunet, Influence of organic matters on AsIII oxidation by the 788 microflora of polluted soils, Environ. Geochem. Health, vol.38, pp.911-925, 2016.


Y. Li, R. L. Chaney, G. Siebielec, and B. A. Kerschner, Response of Four Turfgrass, p.791, 2000.

, Cultivars to Limestone and Biosolids-Compost Amendment of a Zinc and Cadmium, vol.792

, Contaminated Soil at Palmerton, Pennsylvania, J. Env. Qual. Abstract, vol.29, pp.1440-1447


K. L. Londry and B. L. Sherriff, Comparison of Microbial Biomass, p.795, 2005.

, Biogeochemistry in Three Contrasting Gold Mine Tailings Deposits, Geomicrobiol. J, vol.22, pp.237-247

P. Lu and C. Zhu, Arsenic Eh-pH diagrams at 25 °C and 1 bar, Environ. Earth. Sci, vol.62, pp.1673-1683, 2011.

B. A. Manning and S. Goldberg, Modeling Competitive Adsorption of Arsenate with 800 Phosphate and Molybdate on Oxide Minerals, Soil Sci. Soc. Am. J, vol.60, p.121, 1996.


T. A. Martin and M. V. Ruby, , 2003.

, , pp.21-32, 2003.

S. L. Mc-gowen, N. T. Basta, and G. O. Brown, Use of Diammonium Phosphate to 805, 2001.

, Reduce Heavy Metal Solubility and Transport in Smelter-Contaminated Soil, J. Env. Qual

. Abstract, , vol.30, pp.493-500

, Qualité des sols -Sols, sédiments -Mise en solution totale par attaque 808 acide, pp.31-147, 1996.

S. S. Nielsen, L. R. Petersen, P. Kjeldsen, and R. Jakobsen, Amendment of arsenic and 810 chromium polluted soil from wood preservation by iron residues from water treatment, 2011.

, Chemosphere, vol.84, pp.383-389

M. P. Norini, H. Thouin, F. Miard, F. Battaglia-brunet, P. Gautret et al., , p.813

L. Forestier, D. Morabito, S. Bourgerie, and M. Motelica-heino, Zn, p.814, 2019.

, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended 815 with biochar, J. Env. Manage, vol.232, pp.117-130

J. A. Olimah, L. J. Shaw, and M. E. Hodson, Does ochre have the potential to be a 817 remedial treatment for As-contaminated soils?, Environ. Pollut, vol.206, pp.150-158, 2015.


N. Oustrière, L. Marchand, W. Galland, L. Gabbon, N. Lottier et al., Influence of biochars, compost and iron grit, alone and in combination, vol.820, 2014.

. Environmental and Z. Pb, As and Sb in soccer field soils and 825 sediments from mine tailings: solid speciation and bioaccessibility, Environ. Sci. Pollut. R, vol.826, issue.21, pp.4254-4264

J. A. Paulson, The transport and fate of Fe, Mn, Cu, Zn, Cd, Pb and SO4 in a 828 groundwater plume and in downstream surface waters in the Coeur d'Alene Mining District, p.829, 1997.

U. S. Idaho, Appl. Geochem, vol.12, pp.13-22

A. Pérez-de-mora, P. Burgos, E. Madejón, F. Cabrera, P. Jaeckel et al., , 2006.

, Microbial community structure and function in a soil contaminated by heavy metals: effects 832 of plant growth and different amendments, Soil Biol. Biochem, vol.38, pp.327-341


S. Rahimi, R. M. Moattari, L. Rajabi, A. A. Derakhshan, and M. Keyhani, Iron 835 oxide/hydroxide (?,?-FeOOH) nanoparticles as high potential adsorbents for lead removal 836 from polluted aquatic media, J. Ind. Eng. Chem, vol.23, pp.33-43, 2015.


S. Sauvé, M. Mcbride, and W. Hendershot, Soil Solution Speciation of Lead(II): Effects 839 of Organic Matter and pH, Soil Sci. Soc. Am. J, vol.62, pp.618-621, 1998.


J. Schimel, T. C. Balser, and M. Wallenstein, Microbial stress-response physiology and 842 its implications for ecosystem function, Ecology, vol.88, pp.1386-1394, 2007.

H. Thouin, L. Le-forestier, P. Gautret, D. Hube, V. Laperche et al.,

F. Brunet, Characterization and mobility of arsenic and heavy metals in soils polluted 846 by the destruction of arsenic-containing shells from the Great War, Sci. Total Environ, vol.550, pp.658-669, 2016.

H. Thouin, F. Battaglia-brunet, M. P. Norini, L. Le-forestier, M. Charron et al., , p.849

P. Gautret, Influence of environmental changes on the biogeochemistry of arsenic in a 850 soil polluted by the destruction of chemical weapons: a mesocosm study, Sci. Total Environ, vol.851, pp.216-226, 2018.

E. X. Wang and G. Benoit, Mechanisms Controlling the Mobility of, p.853, 1996.

, Spodosols of a Northern Hardwood Forest Ecosystem, Environ. Sci. Technol, vol.30, pp.2211-2219


X. Wang, H. Cui, J. Shi, X. Zhao, Y. Zhao et al., Relationship between bacterial 856 diversity and environmental parameters during composting of different raw materials, 2015.

, Bioresour. Technol, vol.198, pp.395-402

K. Wang, X. Yin, H. Mao, C. Chu, and Y. Tian, Changes in structure and function of 859 fungal community in cow manure composting, Bioresour. Technol, vol.255, pp.123-130, 2018.


Z. Wu, Z. Gu, X. Wang, L. Evans, and H. Guo, Effects of organic acids on adsorption of 862 lead onto montmorillonite, goethite and humic acid, Environ. Pollut, vol.121, pp.469-475, 2003.

, , pp.272-277

F. Zeng, S. Ali, H. Zhang, Y. Ouyang, B. Qiu et al., The influence of 865 pH and organic matter content in paddy soil on heavy metal availability and their uptake by 866 rice plants, Environ. Pollut, vol.159, pp.84-91, 2011.

W. Zhong, T. Gu, W. Wang, B. Zhang, X. Lin et al., Ochre from coal mine water treatment increases pH of acid tailings ? Pb is stabilized and As is not mobilized in tailings by ochre and manure amendment ? Manure induces mobilization of Pb for 35 days then its stabilization ? Microbial functional biodiversity is transiently, Plant Soil, vol.869, pp.511-522, 2010.