Microcosm-scale biogeochemical stabilization of Pb, As, Ba and Zn in mine tailings amended with manure and ochre

Abstract : Mine tailings are major sources of metals and metalloids in the environment, making the physical and geochemical stabilization of tailings a serious environmental challenge. With a view to facilitate the development of covering vegetation and of decreasing the mobility of Pb in the acid tailings of a former Ag–Pb mine, laboratory microcosm experiments were performed to enable comparison of the effectiveness of several treatments. Tailings were mixed with 5% by weight of ochre, an iron-rich material produced during the treatment of a coal mine water, and with cow manure (0, 0.15, 1 and 2% by weight), either solely or in combination. They were then submitted to weekly watering over 84 days. All treatments raised the pH values from 4 to values between 7 and 8 and induced a strong decrease in the total dissolved Pb concentration in the percolating water (from 13 to 15 mg.L−1 to less than 0.5 mg.L−1). Several processes seemed to be involved in the immobilization of Pb by the amendments: precipitation as hydroxide, sulfate, carbonate and phosphate, and adsorption on iron hydroxides. A transient increase was observed in both Pb mobility and functional microbial diversity with 1% and 2% manure, with a peak after 28 days of incubation. This peak corresponded to an Average Well Color Development (AWCD) in Biolog™ Ecoplates increase from 0.5 to 0.8 with 1% manure and from 0.6 to 1.5 with 2% manure. However, at the end of experiment, Pb immobilization was strengthened by 2% manure and microbial functional biodiversity fell back, with AWCD values of 0.5 and 0.8 for 1% and 2% manure, respectively. Other toxic elements present in the tailings, namely As, Zn and Ba, were not strongly mobilized by the treatments, although cow manure slightly increased the leaching of Ba and As, which maximum concentrations in the leaching water reached 65 μg.L−1 Ba and 9 μg.L−1 As. All amendments improved the growth of ryegrass, which maximum dry biomass ranged from 38 mg/microcosm without amendment to 155 mg/microcosm with 0.15% manure. The results provide key information about the biogeochemical processes driving the mobility of Pb, As, Zn and Ba in acid mine tailings during the first 84 days following their amendment with iron-rich ochre and manure.
Document type :
Journal articles
Complete list of metadatas

Cited literature [93 references]  Display  Hide  Download

https://hal-insu.archives-ouvertes.fr/insu-02308558
Contributor : Nathalie Pothier <>
Submitted on : Tuesday, October 8, 2019 - 3:46:41 PM
Last modification on : Wednesday, October 9, 2019 - 1:37:16 AM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2020-04-08

Please log in to resquest access to the document

Identifiers

Collections

Citation

Hugues Thouin, Marie-Paule Norini, Lydie Le Forestier, Pascale Gautret, Mikael Motelica-Heino, et al.. Microcosm-scale biogeochemical stabilization of Pb, As, Ba and Zn in mine tailings amended with manure and ochre. Applied Geochemistry, Elsevier, In press, pp.104438. ⟨10.1016/j.apgeochem.2019.104438⟩. ⟨insu-02308558⟩

Share

Metrics

Record views

43