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Abstract. We propose a new algorithm for calibrating de ni- encompass signals of a few hundred metres and less than a
tive observatory data with the goal of providing users with day wavelengths.

estimates of the dqta error standard deviatior!s (SDs). Th?(eywords. Geomagnetism and paleomagnetism (instru-
algorithm has been implemented and tested using Chambor}ﬁents and techniques)

la-Forét observatory (CLF) data. The calibration process uses

all available data. It is set as a large, weakly non-linear, in-
verse problem that ultimately provides estimates of baseline

values in three orthogonal directions, together with their ex-1  Introduction

pected standard deviations. For this inverse problem, abso-

lute data error statistics are estimated from two series of abSeomagnetic eld models have drastically improved over
solute measurements made within a day. Similarly, variomelihe last decades because of the availability of satellite data
ter data error statistics are derived by comparing variometefe-9. Olsen et al., 2006, 2014; Lesur et al., 2008, 2015;
data time series between different pairs of instruments ovePabaka et al., 2015; Finlay et al., 2016). Observatory data
few years. The comparisons of these time series led us to usd/® nonetheless necessary because satellites are never sam-
an autoregressive process of order 1 (AR1 process) as a pri¢¥ing the magnetic eld at the same point twice, and that of

for the baselines. Therefore the obtained baselines do ndiourse limits our ability to separate spatial and temporal vari-
vary smoothly in time. They have relatively small SDs, well ations of the magnetic eld. To the contrary, in observatories
below 300 pT when absolute data are recorded twice a weeke €ld is sampled at a single place and its temporal varia-

— i.e. within the daily to weekly measures recommended bytions are continuously recorded on timescales ranging from
INTERMAGNET. The algorithm was tested against the pro- seconds to decades. Therefore most of the modellers utilise
cess traditionally used to derive baselines at CLF observaobservatory data to derive their eld models — e.g. they are
tory, suggesting that statistics are less favourable when thi§eavily used in the level 2 products of the European Space
latter process is used. Finally, two sets of de nitive data wereAgency magnetic satellite mission: Swarm (Macmillan and
calibrated using the new algorithm. Their comparison showsQlsen, 2013).

that the de nitive data SDs are less than 400 pT and may When using exclusively observatory data (e.g. Wardinski
be slightly overestimated by our process: an indication tha@nd Holme, 2006; Wardinski and Lesur, 2012; Lesur et al.,
more work is required to have proper estimates of absolute2017), or when combining them with satellite data to model
data error statistics. For magnetic eld modelling, the resultsthe different contributions to the geomagnetic eld, it is al-
show that even on isolated sites like CLF observatory, therevays dif cult to estimate the level of noise in the data. This

are very localised Signa|s over a |arge span of tempora| frejS because we are unable to model some contributions to

guencies that can be as large as 1 nT. The SDs reported hefae eld that ultimately get into the error budget (e.g. Fin-
lay et al., 2016). However, as the scienti c community pro-
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940 V. Lesur et al.: Error statistics for de nitive observatory data

gresses in its modelling effort, it becomes increasingly dif - variations of the temperature are damped, or actively con-
cult to separate genuine magnetic large- or medium-scale sigrolled, for the drift of the instruments to remain relatively
nals in observatory data from drifts and discontinuities gen-smooth and small.

erated by local signals or, possibly, observatory operations. Another characteristic of the variometer is that it is most
In order to robustly model the rapid core magnetic eld vari- accurate on a limited range of values. Therefore, the ux-
ations, or describe the external eld variations during mag- gates are traditionally oriented so that they are aligned along
netic quiet times, the scientists, engineers or technicians ithe magnetic north, east and vertical-down directions. The
charge of observatory operations should provide their dataecorded values have therefore to be rotated in the local
with estimates of their accuracy. This is of course very chal-geodetic north, east, down reference frame. This is also part
lenging because observatory data are combinations of magf the calibration process. In the local geodetic north, east,
netic measurements, where calibration operations — the sadown reference frame, the magnetic eld components are re-
called baseline estimations, play a crucial role. spectively calleK, Y andZ components.

The goal of this paper is to describe an algorithm for base- In 1936, the CLF observatory instruments were set in a
line estimations that provides information on the observatoryvault. This vault was still housing in 2015 two pairs of in-
de nitive data error statistics. Of course, as input this processstruments that are referenced here as CL1 and CL2. Their
needs an estimation of the accuracies of the different data agositions are indicated on the site plan — Fig. 1. The types
quired, and these depend on the observatory setup. The algand characteristics of the instruments are given in Table 1.
rithm was applied to provide error estimates for the FrenchThe notation CLx refers to a combination of location, pillar
national observatory in Chambon-la-Forét (CLF) for the yearand instrument, since a modi cation of any of these elements
2016. This time period was chosen because three sets of irchanges the characteristics of the measurements. Due to the
struments were available on site, recording simultaneoushageing of the building, water in Itration became a dif cult
data for most of the year. It should be noted that the observaissue in recent years. Therefore, two new shelters were es-
tory setup has been signi cantly modi ed during that same tablished to house the magnetometers. CL1 remained in the
year, introducing several jumps and dif culties. In the next same place, in the vault, as a reference. CL2 instruments were
section is described the instrument setting in CLF and thenmoved to CL4. A new pair of instruments was set in CL3.
in Sect. 3, is explained how the noise in each individual data The CL1 has been continuously recording the mag-
type collected on site has been estimated. The fourth sectionetic eld throughout 2014 to 2016, but pumping (on
is dedicated to the description of the baseline calculation. Fi-L7 March 2016 and 26 July 2016) was necessary to keep
nally, the results are discussed and our conclusions given ithe water at low level inside the vault. The pumping gen-
the last two sections. erates only a small amount of noise visible in CL1 data, but

it is likely that the water level itself has an in uence on the
recorded values. On 23 September 2016, perturbations in the
2 Observatory setup data series are associated with building works done to restore
the ventilation system of the vault.
Chambon-la-Forét magnetic observatory (CLF) has been The CL3 instruments were running for more than 6 months
running since 1936 as a replacement of the Val-Joyeuxn 2015 — during that time we tested the performances of the
(1901-1935) and previously St. Maur (1883—1900) observanew shelters. The CL3 instruments were set in their nal po-
tories. They had to be closed because of the increasing leveditions on 8 January 2016 and not further disturbed before
of noise in the data due to the construction of urban electriche end of November 2016.
train lines nearby the observatories. The CL2 set of instruments that were originally in the vault

In 1936 the instruments used to measure continuously the few metres away from CL1 were moved to their new po-
magnetic eld were photographic recorders of the eld di- sition in CL4 on 17 February 2016. However, it took some
rection, but at the beginning of the 1970s, digital instrumentstime for the instruments to settle in their new locations. Var-
were installed. They became the reference instruments onljometers were re-oriented on 25 March 2016. We consider
in 1986 (Bitterly et al., 1986). Typically they consist in a pair that the data are reliable for CL4 from 13 April 2016. The
of magnetometers: a “variometer” made of uxgates along CL2 instruments up to 17 February 2016 and the CL4 in-
three orthogonal axes and an absolute scalar instrument meatruments from 13 April 2016 are the CLF observatory main
suring the strength of the eld. These instruments are com-instruments — in between, data have been patched with the
bined with a data recording system that also controls the elec€L3 instrument outputs.
tric power provided. The uxgates and parts of the recording Absolute measurements used to calibrate variometer data
system are sensitive to temperature variations and possiblgre collected on a pillar roughly mid-way between CL1 and
other environmental variables such as humidity. The outpuiCL3 — see green labels in Fig. 1. During normal operations,
values of the uxgates are therefore prone to drifts that haveabsolute measurements are made twice a week, during the
to be accounted for when deriving de nitive (i.e. calibrated) quietest days, early in the morning or late in the afternoon
observatory data. The observatory buildings are such thato avoid rapid variations of the magnetic eld strength and
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Table 1.List of instruments in place at CLF observatory in 2016. CL1-4 correspond to the different sets of instruments described in the main
text; Abs. is the set of instruments used to acquire absolute data.

Vector (Fluxgate) \ Scalar (Overhauser)
Type Start End | Type Start End
CL1 triaxial uxgate 03/1990 - SM100 01/2002 -
MAGNOLIA
CL2 VM-391 10/2004 02/201 SM100 01/2008 02/2016
HOMOCENTRIC
CL3 VM-391 04/2015 12/2016 SM100 04/2015 12/2016
HOMOCENTRIC
CL4 VM-391 02/2016 - SM100 02/2016 -
HOMOCENTRIC
Theodolite \ Fluxgate \ Scalar
Abs. ZEISS-010A | BARTINGTON | SM90

direction associated with ionospheric signals. Again, the in-
struments used are listed in Table 1.

3 Observatory data

In order to estimate baseline values (i.e. calibration param-
eters) that are used to compute nitive observatory data
values, the following data are available:

>=

— Absolute measurements of the declinatibra], incli-
nation (a) and strengthK a) of the magnetic eld on
the absolute pillar. These values are measured nearly in-
dependently, and therefore it is assumed that the errors
associated with these data are not correlated.

336200
36200

— Vector variometer dataX(,; Yv; Zv). These data are not
fully independent since the three uxgates are not ex-
actly orthogonal, but the correlation of the associated
errors is likely to be small and will be neglected here.

— Absolute scalar measurements in the variometer build-
ing (Fv). The errors for these data are clearly indepen-
dent from other data types. It can be noted that these

‘L—-—-—-—-—f:'_'_'_'_ data are generally not used for the baseline estimations.

i— + l_+_+___+_+__.|, 4.7 +—+-—:

’ Our goal is to use all these data in a large inverse problem,

- and derive from them the baseline values together with an
. R . .. estimate of their variances. To be able to achieve this, we

Figure 1, Plan of the Chambor_l-la-Foret ob_ser\_/atory site. Positions o0 4 st to estimate the raw data error statistics. We describe

of the instruments used in this study are indicated. Distances ar

shown on the picture side in metres. Roughly 200 m separate CL?OW that has been done in the two following subsections.
from CLA4.

36000

3.1 Absolute measurement

Absolute measurements are made twice a week in CLF, typi-
cally once in the morning and once in the late afternoon. Dif-
ferent types of errors are associated with these measurements
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— e.g errors in pointing the reference mark, levelling errors,the variometer data, but they contribute signi cantly to the
collimation errors, timing errors and errors associated withbudget error of absolute measurements.
the changes in magnetic eld strength and direction during In 2016, we made twice a series of 24 absolute measure-
measurements; the list is not exhaustive. Studying indepenments within a 24 h period. The rst series, hereinafter Se-
dently all these sources of errors is a complex task, so herées 1, started on 29 August 2016 at 15:07, and nished at
we tried to estimate an overall error budget for absolute meai4:00 on 30 August 2016. The magnetic activity remained
surements. weak during this period with a Dst index staying between
Of course, the acquisition of absolute measurements hag and 7nT. Over the 24 measurements of this series, two
been going on for years and there is a large collection of datappeared to be anomalous and have not been used to esti-
that can be used to estimate their noise level. Measurementmate statistics. They correspond to time intervals when the
are made of the declination, inclination and total intensity magnetic eld varied rapidly at CLF observatory. The second
but are reported in yearbooks (http://www.bcmt.fr/bulletins. time series, hereinafter Series 2, started on 27 October 2016
html) as declination, horizontal component and vertical com-at 07:30 and nished the same day at 11:30. The Dst index
ponent time series. When compared with variometer datasstayed between 34 and 45nT. All 24 measurements are
and estimated baselines, these absolute measurements appealid. For both time series we used variometer data from
to be contaminated by errors with zero means and standar@L4. Results are summarised in Table 2. The absolute mea-
deviation (SD) values around 2 arcsec for the declination,surements over these 2 days have been made in the same way
0:2nT for the horizontal component andL®T for the verti-  as absolute measurements are made throughout the year.
cal component. Estimates of the SD for the total intensity er- Although the estimated SDs actually represent the cumu-
rors are also available, with values aroun? @T. Of course, lated errors of the absolute measurements and those of the
these values vary along the years and also depend on theariometer data, in the following these estimates are used
observers and equipment used. It should be rst noted thats the SDs of the absolute measurements alone. Further-
these errors estimates are correlated and redundant since ontyore, having less than 50 samples to estimate the SDs is
three measurements are really done. Finally, these estimatetearly not enough, and other campaigns of measurements
rely on strong assumptions on the baseline behaviour (it hawill have to be organised. In this work, the following val-
always been assumed that the baseline variations should hees are used:p, D 1:4 10 3deg (i.e.' 5arcsec), 1, D
smooth in time). Although these values give us an idea of thed:6 10 3deg (i.e! 2:2arcsec) andg, D 0:3nT. These val-
absolute measurement noise level, alternative ways of deriveies correspond to the estimates derived from Series 2 even if
ing error SDs should be investigated. the eld was more active for that day. We made this choice
In this work, the approach used to derive estimates of thebecause for this series the observations were made exclu-
SDs associated with absolute measurement errors rely on thavely during daylight, as is usually the case during normal
record of several absolute measurements in a single day anabservatory operations. Finally, it should be pointed out that
the hypothesis that baselines have constant values over th#tese values are valid only for CLF observatory and can be
day. To estimate these error SDs it is rst necessary to com-used here because the data set of absolute observations is ho-
pute for each absolute measurement a difference relative tmogeneous. However, in the algorithm described below there
variometer data. The daily mean of differences give an ideds no dif culty in introducing different SD values, if that is
of the baseline value for that day. Deviations from that meannecessary, for some of the observations.
value lead to an estimate of the SD. There are two dif culties
associated with these calculations. The rstis due to the ori-3.2 Variometer data
entation of the variometers that is only partially known. To
solve this problem it is assumed that the vertical componenfThe uxgates provide data in millivolts (mV). These data
is truly aligned with the local vertical, and we impose that need to be scaled to obtain the usual nanotesla (nT). Fur-
the daily mean declination given by the variometer matchegher, the three orthogonal uxgates forming the variometer
the mean observed absolute declination — i.e. we apply a roare not exactly orthogonal, and this has to be corrected using
tation on the variometer data around #saxis so that the so-called “non-orthogonality” angles. Scaling values and an-
mean declination differences between absolute and variomegles have to be estimated in an independent calibration pro-
ter data are zero. The second dif culty is associated with thecess that we do not consider here. We note that any errors in
time necessary to take absolute measurements: absolute ithese estimates affect the quality of the data and enter in their
clination data are obtained a few minutes (typically 3 min) error budget, as would do a poor levelling of the variometer
after declination data. Furthermore, it takes a few minutes tan the process described below.
make the four measurements entering in the estimation of the Variometer and scalar instruments have a very good reso-
inclination and declination. Finally, total intensity measure- lution but the vector components and total intensity data are
ments are made either during the inclination measurementnly reported with 10 pT resolution. The true level of noise in
or after. These time shifts are corrected by tracking tempo-the data is, however, much higher. To nd SDs for these data
ral variations of the horizontal and vertical components of errors, variometer data sets obtained with the different pairs
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Figure 2. Mean differences (in red) and SDs (in blue) of the three components of CL1 and CL2 variometers and associated scalar instruments
for year 2014. The red crosses can be seen as the cumulated baseline values of the CL1 and CL2 instruments.

Table 2. Statistics obtained from series of absolute magnetic data during 2016, assuming constant baselines for all data of a series. The
number of valid data for each time seried\is

Inclination
(arcsec)

Declination Intensity
Start End N (arcsec) (nT)

Mean SD| Mean SD| Mean SD

Series1 2908 15:07 360814:.05 22 D 31 311 1.8 152 03
Series2 2#1007:30 2#1011:30 24 B8 50 349 22 155 03

of instruments available on CLF site are compared. These opa mean value of the differences between the studied instru-
erations are easily done but again it is necessary to make th@ents pair, and a SD.
hypothesis that baseline values are constant over a day for Figure 2 presents the results obtained for the CL1 and CL2
all instruments. As for absolute data, variometer data havepair for the year 2014. The obtained mean values can be seen
to be realigned so that they can be compared. Again it is asas the cumulated baseline drifts of the two sets of instru-
sumed that vertical components are always truly vertical, andnents. These mean values vary relatively smoothly in time,
the Xy andY, components are rotated so that the measuredind are in the range of 3nT maximum drift per year for the
declinations are the same for the two compared variometersX andZ components. For th¥ component, the variations
Ultimately, for each magnetic eld component of the vari- remain very small. This is an effect of the way the two var-
ometers, and for the total eld intensity, we obtain per day iometers are re-aligned. Differences between scalar instru-
ments present a drift in time that does not exceed 100 pT,

www.ann-geophys.net/35/939/2017/ Ann. Geophys., 35, 939-952, 2017
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Figure 3. Mean differences (in red) and SDs (in blue) of the three components of CL3 and CL4 variometers and associated scalar instruments
for year 2016. The red crosses can be seen as the cumulated baseline values of the CL3 and CL4 instruments.

with very small SDs, typically less than 50 pT. However, for between sets of instruments. Clearly, the distance between
these instruments there is a noticeable tendency to presetite absolute pillar and the CL4 set of instruments is one of
large outliers, leading for some days to large SDs (outsidehe main parameters controlling the noise level in CLF ob-
the range of values presented here). Over that year the meaervatory data. In the remainder of this work, the follow-
SDs are 89, 98, 84, 34 pT, for tikg Y, Z components and ing values are used for the SDs;, D vy, D z, D 0:2nT,
respectively. r, D 0:06 nT. As for the absolute measurements, the SD es-

The results presented in Fig. 2 differ from those obtainedtimates provided here are valid only for CLF observatory, and
in 2016 between CL3 and CL4, and presented in Fig. 3. Be-are assumed constant through the year because the same in-
fore day 104 of that year, the CL4 instruments were not yet instruments, in the same con guration, are used. Of course, as
their optimal settings. It is nonetheless clear that the drifts beindicated before, the algorithm presented in the next section
tween CL3 and CL4 instruments are much larger than thoseloes not preclude modifying the error statistics of some of
observed in 2014 between CL1 and CL2. Also, the cumu-the provided data.
lated baselines that represent the mean differences are no
longer smooth. Finally, the SDs are at least twice as large
than those obtained in 2014. The obtained averaged SDs ar Baseline estimation
204, 199, 204, 63 pT, for th¥, Y, Z components an re-
spectively. 4.1 Theory

Intercomparisons between CL1, CL4 and CL3 show that
the large drifts observed are mainly due to CL3 instrumentsBaseline values are quantities that are added to variometer
However, the increases of the SDs and the roughness of thdata to correct for potential drifts of the instruments and ac-
cumulated baselines are associated with the increase distangeunt for the site differences between the variometer building

and the absolute pillar. The de nitive data provided to the sci-
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enti c community are nothing else than variometer data thatthe problem, and at each step small perturbations of the base-
have been calibrated by adding baseline values, and rotatdéhe values have to be estimated. Then Eg. (2) becomes

to be set in the local geodetic reference frame. 2 3 2 3 2
On the other hand, absolute data are snapshot values, con- X 5 Xa Xy C Xg
taminated by noise, of the direction and strength of the mag4 Ya5 D4 Ya® R 4 Y,CY$S
netic eld as measured on the absolute pillar. Absolute data Z 4 Za ZyCZ¢
are declination, inclination and total intensity data that can be 2 X b3
transformed in absolutg, Y, Z data through the relations DR 4 Yp5C ys; (5)

Xa D Facosl g/ cosD 4/
Ya D Facosl g/ sin.D 5/ Q)

e.ye.ze H H
Z.D Fasinl o/ where XYy, Z,- are estimates of the baseline values. The

equation corresponding to relation (4) is

Therefore the vectorial relation linking variometer data,

baseline values and absolute data is FvD F, FJCFg

> 3 2 3 D XCXE ), c WOy o2 CZ, o, ©
Xa XVbe FV Fv Fv

4 YaS DR 4 YvCYp 5¢C Xyz (2) q
Za ZyCZ, where F$D Xy CX§/?C.Y,CY§/?2C.Z,CZ§/? and

} . _Fgis an estimate of the baseline value Fy. In vector no-
whereXy, Yp, Z are the baseline values estimated at the timetstion these equations correspond to a linear problem:
the absolute data were recorddt. is the rotation matrix

that rotates variometer data in the geodetic reference frame.yp 4 mc - @)
Finally, is the cumulated noise contributions from the ab-
solute and variometer data. This relation implies that the ab‘l’his underdetermined problem is solved in the usual way

solute total intensity data are such that (see Eq. 41 in Tarantola and Valette, 1982):

p

mD CEH' HCEH!'C64 ~ d; (8)

and it follows that the absolute scalar data measured in the o i
variometer buildingy are such that yvhere the super;crlmtls |nd!cat|ng a transpose matrlficﬁ1
is the prior covariance matrix of the model perturbatiom,
Fy D P XvCXp/2C YyCYo/2C .ZyCZp/2 FuC r: (4) whereass 4 is the covariance matrix of the data errors. This
solution ts the data to its expected level while minimising

whereF,, is a site difference, but we refer to it as a baselinethe norm:8 D m' C& * m. Since the problem is under-

value for the variometer scalar data because it varies witifletermined, the de nition of the prior covariance matrix of

time — e.g see Figs. 2 and 3. The misclosure ergois the ~ the model perturbation has a very strong impact on the so-

cumulated contributions of the,; Xy:Yy:Zy data errors. It lution. The matriceC§, and 6 4 are described in the next

is often calledLF by the observers. subsections. The information carried by the data allows up-
In the following, the relations (2) and (4) are used to derive dating the prior covariance matrix of the model perturbation

estimates of the baseline valuég, Y, Zp andFp. To solve  Using the relation

this inverse problem, the same hypothesis as for the SD esti-

mation is considered and it is assumed that a good descripm D C&, C&H! HCEH!C64 'HCE; 9)

tion of baseline evolution is possible by taking one constant

value per day. During a year there are therefore 365 (or 366vhere Cy, is the posterior covariance matrix of the model

for leap years) unknowns to estimate for each baseline. Irperturbation m (see Eq. 42 in Tarantola and Valette, 1982).

vector notation, all these values are organised in a veuotor

of maximum lengttM D 4  366. Since the inverse problem is non-linear, the maltfixle-
There are typically two sets of absolute measurements pepends on the a priori baseline valu¥g; Y Z 5 FF. Re-

week, and one value &, every second. There is no need to grouping these values in the vectoF, the iterative process

have so many, values, and to have an inverse problem of leading to our best estimate of the baseline valnestarts

acceptable size, thé, data are decimated to one value per by choosing an initial vectan® and de ning the matri>Cg,.

day. All these data are collected in a data vedtdt is clear ~ Both quantities are updated for the next iteration by estimat-

that the inverse problem is heavily underdetermined. ingm D m®C m andCy, through Egs. (8) and (9). This it-
The relation betweem andd is non-linear because of erative process stops when the baseline values do not change

Eq. (4). An iterative approach is therefore necessary to solvesigni cantly from one iteration to the next.
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4.2 Prior covariance matrix of the baselines the errorsiDg, 13, Fa andXy, Yy, Zy, Fy data. These quan-

tities are listed again below (angle values are given in degrees
In this section we explain how we set the prior covarianceput are transformed into radians to be used in the equations):
matrix for the baselinesC§,. When starting this work, it

was planned to derive the prior covariance matrix for the p, D 1:410 3deg |, D 0:610 3deg r, D 0:3nT

new baselines from the baselines calculated over the last few x, D 0:2nT y, D 0:2nT z, D02nT

years. However, this appears to be unwise because compari- F, D 0:06NT

son of the CL3 and CL4 data in Fig. 3 suggests that the base-

line curves, which can be seen as the red dots, should not bé iS assumed that these errors are uncorrelated between
smooth. Therefore, our hypothesis is that the baselines arhemselves and in time. Therefore, the three-component var-
autoregressive processes of order 1 (AR1 processes). SucH@neter dataXy, Yy, Zy, measured at a given time, have a

process follows the recursive equation diagonal 3 3 error correlation matrixCy in the instrument
reference frame, withZ , 2, 2 on its diagonal. In the
VictD C V;C; (10) geodetic north, east, vertical-down reference frame, this co-

variance matrix is no longer diagonal and is calculated by
where theV; are elements of a time series,is a constant
and is a random variable. The scalingcan be related to CxyzDR CyR'; (12)
the time decay of an exponentialD 1 L, where't is the
time interval between two samples of the time series, and WhereR is de nedin Eq. (2).
is the time decay — see for example Evensen (2003). In this Similarly, the absolute dat®a, la, Fa, measured at a
application is set to 50 days. It mainly controls how fast 9iven time, have a diagonal covariance ma@f with =

the time series of the baseline values goes back to its initial 2, ,?a on its diagonal, but the covariance matrix of the ab-

values, setimé, in the absence of absolute data. solute Vector elemenx,, Ya, Z5 is such that
The correlation between two points of a time series fol- a a -t
lowing an AR1 process is Cayz DT Cgie T (13)
Cij D it i (11)  WhereT is the matrix that transforms small perturbations in

declination, inclination and total intensity, in perturbations of
For the speci ¢ case of baseline estimation, there are fourvector elements:

series of baseline valueX§, Yy, Z, andFyp). Under the hy- 2 7 % X 3
pothesis that these series are not correlated, the prior cor- Ya aza 28
relation matrixC§, is block diagonal if the unknowns are Ha Fa
properly organised in the vectom. In each of these blocks 1 p Xa ﬁ E : (14)
the correlation coef cients take the form of Eq. (11), but are Ha Fa
scaled such that the prior on the baseline variation amplitudes H Za
a

corresponds to chosen values. Here, these values are the ob-
served variations of the baseline estimates (the red dots) in
F|g 2 around their average — i.e. variations are expected t(bt follows that the 3 3 covariance matrix of errors associated
be of the order of 1 nT foXp, Yy, and Zp. Of course, in  With Xa; Ya; Z4inEq. (5)is
Fig. 2, the variations in th& component are much smaller

i ; e i c? D C&,C Cyyz: (15)
but, as explained in Sect. 3.2, that is likely an effect of the™~ xy z Xyz = =Xyz

data processing. Féi, values, the variations should be much To estimate the variance associated with Eq. (6), we have

smaller, around B nT (again, see Fig. 2). . ; o .
The hypothesis that the different baseline time series arerSt to estimate the variance G, errors. The latter is

not correlated may not be valid, particularly if the baseline
variations are due to temperature changes. If the baseline aré\; D
correlated, the matrix is no longer block-diagonal. In princi-

ple the covariance matrix should carry the prior information Therefore the variance of y errors in Eq. (6) is

we have regarding the baselines. The one we used here is par 5 5

ticularly simple as we know little about what should be the £,D £,C g (16)
baseline temporal behaviours at CLF observatory.

Fa

XvCXE x, 2c YWCY vy, 2(: ZyCZ¥ 2, ?

Fe Fe Fe

Since the temporal correlation of the errors is ignored, the
4.3 Covariance matrix of the data errors covariance matrix of the data erroBg is block diagonal,
where, depending upon a proper organisation of the data in
In this section we show how the covariance matrix for thethe vectorb, the blocks are de ned either by Eq. (15) or
data errors 4 is de ned. In Sect. 3, SD values were set for Eq. (16).

Ann. Geophys., 35, 939-952, 2017 www.ann-geophys.net/35/939/2017/



V. Lesur et al.: Error statistics for de nitive observatory data 947

Figure 4. Estimated baseline values in black for eY, Z components ang values. The 1 interval is shown in light blue. Differences
between absolute and variation data are shown in red. Series 1 and Series 2 were made dOri6@86jend mjd 6144 respectively.

4.4 Application and are reduced to less thaB @T for Xy, Yy, 0:23 nT forZy
and 015nT for Fp when absolute measurements are avail-

. : . . _able. These baselines are rough compared to those normally
The algorithm described above has been applied to estimaté™ " . .
. ) . set in CLF observatory. This roughness is controlled by the
baseline values associated with CL4 for the year 2016. Therég : . . o )
ata and their associated variances; this is in agreement with

were no CL4 variometer data before 17 February 2016, an ¢ choi f orior covariance matrix for the model. Ch
absolute data after 16 November 2016 were not used. Thesa ' c10IC€ ot prior covariance ma or the model. Lhoos-

features give the possibility to describe the effect of the lack9 @ ba_selme by drawing a smoo_th curve through the set of
: : . data points may lead locally to differences as large as 1 nT
of different types of data on the baseline values and their SDs. . .
4 . Iy compared with a rough baseline.
For the iterative process, the initial values for the : .
; Up to 19 February (mj® 5893) there are no data avail-
Xb, Yo, Zp and Fp baselines were constants set to

9:0; 0:5; 0:0; 156nT respectively. To align variometer able. The estimated baselines slowly drift from a value close

data to the geodetic local reference frame, the rotation anglé0 their initial values on 1 January (mipi5844) to reach the

was imposed to D 0:272465 deg. There is some freedom on rst values_ imposed by the data on 19 February. Meanwhile
. o . the associated SDs decrease. The rate of change of the base-
the way this angle can be de ned. In principle, it should be

co-estimated with the baselines such as to minimise the sca{i-ne"S during this period is fully controlled by the decay time
imposed — here, D 50 days. In a more general way, during

ter of data. However, with the linearised approach we use . . )
here (see Egs. 5 and 6), small variations of the baselines 0?0 ﬁf\Zﬁdir\lli\fnlig}?/l:atljgssoggg Shaetziéltjzeir??rseilsneez tigdt;gi":;ﬁg
of the angle cannot be distinguished. The angle value given . " . b
L scale the prior covariance matrix of the model (here 1 nT for
here was set such that the mean declination value of the vaiy
Y, Z,and 05nT forF).

iometer data matches the mean absolute declination values’ .
After mjdD 6164 (16 November) no absolute data are
measured. . " . X .
used, but total intensities are still measured in the variome-

Figure 4 shows the calculated baseliXes Yy, Zp andFy, . ) . )
with their 1 interval. The latter are always less than 1nT, ter shelter. These data partially constrain the baselines which
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ify that the baseline calculations are correct. They also give
an idea of the level of noise in the observatory data. The
baseline values have been calculated for the CL4 data, and
the estimatedF values are shown in Fig. 5. Values remain
small, less than:8 nT, with large variances, but also with a
clear bias. This is not a problem linked with the algorithm
but comes from the fact that only one value per day of scalar
variometer dataHy) has been used to estimate the baseline.
The values used correspondBb estimates that are shown

in red on Fig. 5. For these values, it is clear that there is no
bias, and thatF estimates are very small. This suggests that
it would be more appropriate to use several scalar variometer
data per day to estimate the baselines. However, it is clear
that the estimatelF are well inside their expected errors.

5.2 Comparison with other baseline estimates
Figure 5. Estimates of thdF values (see Eg. 4) for 150 days in

2016. In black is ondF value per hour, in light blue is their 1 In the algorithm that has been used this last decade in CLF
interval, and in red are theF values that have been minimised opservatory, thél, andZp, baseline values are calculated in-
during the optimisation process leading to the baseline values. dependently for the magnetic north direction (this is Xqe
direction) andz, direction, respectively. Then, rather than
estimating the baseline in th§ direction and applying a ro-
tation of angle , a baselindy, is estimated (in degrees) as

a rotation angle around tt#, axis. The relation linking the
variometer reading and baseline values to the absolute values

slowly change in time in agreement with the prior set through
the covariance matrix of the model. Tiébaseline seems not
to be affected by these data. This is not a surprise since the
component is very small comparedXoandZ components
in CLF observatory and therefore it has only a very small p
contribution to the total intensity of the eld. HaD . XyCHp/2CY2

Finally, it should be recalled that the CL4 data used D, D DyCtan l.Yy=.X, CHp// a7)
here are not the observatory main instruments before Z, D Z, C Z:
13 April 2016 (mjdD 5947) and therefore signi cant discon- o ) )
tinuities are possible. The large jump in thébaseline on the For each set of absolute data, it is straightforward to derive

mjd D 5971 (6 May 2016) is due to a change of the scalar in-P@seline valuesip, Dy andZy,. Over a year, a smooth spline
strument. is drawn through the cloud dfip, Dy, Zp values to serve

as daily calibration parameter (Silverman, 1985). In this ap-
proach, the continuous recording of the total eld intensity in
5 Discussion the variometer house is used to check that the baseline esti-
mates are correct.
The algorithm described and applied in the previous sections In Fig. 6, the baselines calculated using both methods, for
is giving as output a set of baseline values. The time serie¢he CL4 set of instruments, are compared. General trends
of the baseline values is not smooth in time. However, theseare similar, but differences are signi cant and within a range
values have been derived accounting for absolute and variof T 1MO:86LNT for Hp; Z, andT 6 V11Uarcsec foDp. At
ometer data errors that have been estimated independenti§everal epochs, the baselines based on splines stay for a few
so there is no reason to reject this rough baseline. In thélays outside the 3interval of the baseline de ned by the
following we verify that the baseline values are appropriate.new algorithm. These large differences are only due to the
First are given thaF values (see Eq. 4) obtained using CL4 assumption of smoothness that goes with the traditional way
data. Second the baseline values are compared with those oBf computing baselines.
tained with the algorithm used in CLF observatory for sev-  The results shown in Figs. 2 and 3 strongly support a rough

eral years. This a|gorithm is based on smoothing sp|ines 5i|baseline. This is not due to the variometer building or to the
verman (1985). Then, nally, de nitive values obtained with instruments themselves, but rather to the distance of the vari-

CL3 and CL4 sets of instruments are compared. ometer building to the absolute pillar. The larger the distance,
the rougher the baseline is likely to be. Of course this rela-
5.1 1F estimates tionship is also dependent on the observatory environment.

Following our choice of prior on the baseline, a question
ThelF estimates — i.e. the misclosure errors de ned abovearises on the information carried by observatory data. Most
in Eq. (4) — are often used in observatory operations to ver-of the signal recorded can be associated with relatively large-
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Figure 6. Estimated baseline values in black for tHe D, Z components an& values. Their 3 interval shown in light blue. In red are
shown the provisional baselines as estimated with smooth splines in CLF observatory.

scale sources of the magnetic eld variations — e.g. the core5.3 Comparison of CL3 and CL4 de nitive data
ionosphere and magnetosphere. Nonetheless, recorded sig-

nals _at two places a few hundred metres away differ W't.hThe baseline estimation algorithm described in Sect. 4 has
amplitudes of the order of a few nanotesla — see e.g varia;

tions of the red dots in Fig. 3. It is very dif cult for mod- been applied to compute de nitive values for the CLF obser-

. . vatory from both the CL3 and the CL4 set of instruments. In
ellers to handle such signals unless they have some idea % o
. . . . oth cases a SD for the de nitive data can be calculated from
their amplitudes and their frequency content. Such signal

with large amplitudes on yearly timescales would be a difﬁhe_combination of the baseline SDs obtai.ned thrpugh our al-
culty for modelling rapid variations of the core eld. Sig- gont.hm' and the varlomgtgr data SDS.’ estlma'ted in Sect. 3.2.
nals with signi cant amplitudes and frequency content of a In principle, the two de nitive data series ob'galned from CL.3
few tenths of a hertz would not be a major problem for coreand CL4 should nearly agree, and the qual_|ty .Of the basehr_]e
eld studies, but may be a limiting factor for external eld or cglculatlon can be estimated through the distribution of their
space weather studies. It would be bene cial for the Scien_dlfferences. .

For these days where both CL3 and CL4 data are available,

ti c community to better characterise in space and time the . .
. - the time series were subsampled to one value per hour lead-
local signals contributing to observatory data. The SDs val-.

ues provided here give an idea of the strength of the signal%ng to two sets of 6777 de nitive vector data with the same
for spatial and temporal wavelengths of 100-200m and les Ime sampling. (The sets are large enough for the statistics ul-

than a day, respectively. ?imately obtained to be robust. Ther_e is no need to use the fu_II
' 1 Hz data set.) For each sample, differences between de ni-
tive values obtained from CL3 and CL4 data were estimated
together with a SD. Figure 7 presents the histograms of these
differences, divided by their SDs (these ratios have no dimen-
sion). These histograms agree reasonably well with a Gaus-
sian distribution of S 0:9. This value is lower than 1, in-
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Figure 7. Rescaled histograms of weighted differences between CL3 and CL4 de nitive vector data series. The weights used are the inverse
of the estimated difference SDs. In black are shown the corresponding Gaussians for a:3DNaft® that there are no units here since
differences have been divided by their SDs and both are in nanotesla.

dicating that the SDs of differences, and therefore the SDs ofhe expected Gaussian distribution show the necessity to have
the de nitive values, have been slightly overestimated. Thisa good control on the baseline evolution through regular ab-
is possibly a consequence of the way SDs have been estsolute data measurements.

mated for the absolute and variometer data, or a consequence

of the relatively small number of absolute data available to

estimate their variances. 6 Conclusions

In these histograms, thécomponent seems to have nearly ) ) ) »
A new algorithm for producing calibrated de nitive obser-

the expected distribution. For tbeandZ, the main anoma- h ) he algorith |
lies are associated with an excess of values for slightly neg?atory data has been described. The algorithm sets a large

ative scaled differences in the direction, and slightly posi- inverse problem for the estimation of the baselines where all
tive scaled differences in the direction ,This is clearly due available data —i.e. absolute data, variometer data and scalar

to the magnetic activity. The fact that the baseline is assume&iata acquired in the variometer building — are used as input.

to be a constant during a day has a strong in uence here|© proceed, data error SDs have been estimated. The SDs are

On the same histograms, there is a small bia®:@) that is ~ 'calistic for the variometer datax, D vy, D z, D 0:2nT,

due to the last 20 days of the time series where no absoluteFv B 0:06 nT), but more work is required for the absolute
data were used (the baselines are then only controlled by thgata. For th_e Iatter,. the data set from which the error statis-
F, values). Also, after mj 6178 there are still CL4 vari- t|cs_ are estimated is, for now, too small. Furthermore, our
ation data — and therefore a small control on the baseline€Stimates of these absolute data SDs also account partly
whereas there are no further CL3 variation data. The absenc" the variometer data errors. Overall, the absolute data er-
of control on the baseline affects the baseline SDs and make®®' SPS (b, D 5arcsec, ;, D 2:2arcsec, andg, D 0:3nT)
baseline drifts possible. It therefore generates the bias in th8'€ Probably overestimated as the statistics for the baseline,

distributions of differences shown here. The deviations fromom{)udt of the inversion process, are also slightly overesti-
mated.
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Another important input to our algorithm is the prior co- vestigate the small-scale spatial and temporal content of the
variance matrix of the baselines. To build it, we assumedgeomagnetic signal in the vicinity of the observatory site.
that the baselines are stochastic auto-regressive processes of
order 1 (AR1). These processes were tuned by choosing a
decay time D 50 days. This roughly corresponds to poste- Data availability. All data used in this study are available on the
rior least-squares estimates of this quantity although the fouBCMT website (http://www.bcmt.fr/).
baselines do not give exactly the same value. The choice of
an AR1 process for a baseline is supported by the observed
daily mean differences between three sets of variometer inAuthor contributions.VL designed the study, made the computa-

struments. Ultimately, our obtained baselines are not smoot/{ONS and wrote the paper. BH and AT made the series of absolute
in time observations and handled raw data. XL contributed to the design and

As an output to our algorithm, each day a baseline valu to the overview of technical aspects of the project. AS contributed

. . . eto the design of the study. He discussed the mathematical aspect at
is set for theX, Y_’ z dlr?ctlons, and~ S(,:alar dat"’," These an early stage of the project, and proposed an implementation for
values are associated with a large baseline covariance matrix, appjication to Russian observatories. All authors discussed tech-

that is far from being diagonal — i.e. the baseline estimatesical and practical dif culties during the realisation of the project,

are correlated in time. In a more mathematical view, our so-as well as reading and agreeing on the content.

lution is actually a set of acceptable baseline values de ned

by a Gaussian distribution characterised by a mean and a co-

variance. The variance associated with one baseline value faLompeting interestsThe authors declare that they have no con ict

a given day depends mainly on the density and quality of ab-of interest.

solute data recorded in the few previous and following days.

With systematically two absolute measurements per week,

the baseline SDs for CLF observatory are less th@8m0 Special issue statementhis article is part of the special issue

in the horizontal components, and slightly less for the ver-The Earth's magneti(; eld: measurem.ents,.data, and applications
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