Bridging the depleted MORB mantle and the continental crust using titanium isotopes - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Geochemical Perspectives Letters Year : 2018

Bridging the depleted MORB mantle and the continental crust using titanium isotopes

Abstract

The mechanisms driving the chemical complementarity between depleted MORB mantle (DMM) and continental crust (with an average 'andesitic' composition) remain unclear. By investigating Archean komatiites, and modern enriched (E) and normal (N) MORB samples, we demonstrate that partial melting of the mantle does not fractionate Ti isotopes, whereas intracrustal differentiation causes significant Ti isotopic fractionation between melts and minerals, specifically Fe-Ti oxides. Thus, Ti isotope ratios are tracers of these two magmatic regimes. N-MORB and late Archean (2.9-2.7 Ga) komatiites are depleted in the heavier Ti isotopes compared to E-MORB and middle Archean (3.5-3.3 Ga) komatiites. We show that the depletion in the heavier Ti isotopes of the DMM is due to mantle recycling of the isotopically light residues from the generation of felsic continental crust over 3.5-2.7 Ga. This process must have reached a steady state by ≈ 2.5 Ga, based on the uniform Ti isotopic composition of contemporary N-MORBs and late Archean komatiites. This change is likely due to a decrease in the mantle potential temperature related to the emergence of plate tectonics.

Domains

Geochemistry
Fichier principal
Vignette du fichier
GPL1831_noSI.pdf (1.68 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

insu-02283779 , version 1 (11-09-2019)

Identifiers

Cite

Z. Deng, F. Moynier, P.A. A Sossi, M. Chaussidon. Bridging the depleted MORB mantle and the continental crust using titanium isotopes. Geochemical Perspectives Letters, 2018, 9, pp.11-15. ⟨10.7185/geochemlet.1831⟩. ⟨insu-02283779⟩
129 View
112 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More