

Geochemical and sulfate isotopic evolution of flowback and produced waters reveals water-rock interactions following hydraulic fracturing of a tight hydrocarbon reservoir

Florian Osselin, S. Saad, M. Nightingale, G. Hearn, M. Desaulty, E.C. Gaucher, C.R. Clarkson, Wolfram Kloppmann, B. Mayer

► To cite this version:

Florian Osselin, S. Saad, M. Nightingale, G. Hearn, M. Desaulty, et al.. Geochemical and sulfate isotopic evolution of flowback and produced waters reveals water-rock interactions following hydraulic fracturing of a tight hydrocarbon reservoir. Science of the Total Environment, 2019, 687, pp.1389-1400. 10.1016/j.scitotenv.2019.07.066 . insu-02270202

HAL Id: insu-02270202 https://insu.hal.science/insu-02270202

Submitted on 1 Apr 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Geochemical and sulfate isotopic evolution of flowback and produced waters reveals water-rock interactions following hydraulic fracturing of a tight hydrocarbon reservoir

F. Osselin^{a,b,*}, S. Saad^a, M. Nightingale^a, G. Hearn^c, A-M. Desaulty^d, E.C. Gaucher^e, C.R. Clarkson^a, W. Kloppmann^d, B. Mayer^a

^aDepartment of Geoscience, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
 ^bInstitut des Sciences de la Terre d'Orléans, 1A Rue de la Ferollerie, 45100 Orléans, France
 ^cSeven Generations Energy, 101,9601 - 113 St. Grande Prairie, Alberta, Canada T8V 6H2
 ^dBRGM, French Geological Survey, 2 Avenue Claude Guillemin, BP 6009, 45060 Orléans CEDEX 2, France
 ^eTOTAL CSTJF, Avenue Larribau, Pau F-64000, France

Abstract

Although multistage hydraulic fracturing is routinely performed for the extraction of hydrocarbon resources from low permeability reservoirs, the downhole geochemical processes linked to the interaction of fracturing fluids with formation brine and reservoir mineralogy remain poorly understood. We present a geochemical dataset of flowback and produced water samples from a hydraulically fractured reservoir in the Montney Formation, Canada, analyzed for major and trace elements and stable isotopes. The dataset consists in 25 samples of flowback and produced waters from a single well, as well as produced water samples from 16 other different producing wells collected in the same field. Additionally, persulfate breaker samples as well as anhydrite and pyrite from cores were also analyzed. The objectives of this study were to understand the geochemical interactions between formation and fracturing fluids and their consequences in the context of tight gas exploitation. The analysis of this dataset allowed for a comprehensive understanding of the coupled downhole geochemical processes, linked in particular to the action of the oxidative breaker. Flowback fluid chemistries were determined to be the result of mixing of formation brine with the hydraulic fracturing fluids as well as coupled geochemical reactions with the reservoir rock such as dissolution of anhydrite and dolomite; pyrite and organic matter oxidation; and calcite, barite, celestite, iron oxides and possibly calcium sulfate scaling. In particular, excess sulfate in the collected samples was found to be mainly derived from anhydrite dissolution, and not from persulfate breaker or pyrite oxidation. The release of heavy metals from the oxidation activity of the breaker was detectable but concentrations of heavy metals in produced fluids remained below the World Health Organization guidelines for drinking water and are therefore of no concern. This is due in part to the co-precipitation of heavy metals with iron oxides and possibly sulfate minerals.

Keywords: Tight gas, hydraulic fracturing, flowback geochemistry, persulfate breaker, heavy metals, stable isotopes

1 1. Introduction

Oil and gas production from unconventional hydrocarbon resources is now more important than ever in the global geopolitical and energy landscape. In 2018, the United States produced a total of 30 Tcf (trillion cubic feet) of natural gas with two-thirds of it coming from tight unconventional plays (~20 Tcf) [1] and the production of natural gas from unconventional plays is expected to reach 90% of the total production

^{*}Corresponding Author

Email address: florian.osselin@cnrs-orleans.fr (F. Osselin)

by 2050. In Canada, 34% of the total production of natural gas originated from the unconventional Mont-6 ney formation, with almost 2 Tcf produced in 2017 [2]. Other large Canadian tight gas plays such as the 7 8 Duvernay formation or the Horn River basin in northwestern Alberta and northeastern British Columbia 9 produced another 0.2 Tcf in 2018 [2]. The development and rapid expansion of these low permeability 10 hydrocarbon resources is closely linked to the development of horizontal drilling and multistage hydraulic fracturing over the past 20 years. Hydraulic fracturing techniques involve injecting a fluid (usually water 11 based) at very high pressure in order to fracture the reservoir and open paths for the hydrocarbons to flow 12 13 to the casing of the horizontal portion of the well. However, there are concerns about increasing freshwater 14 usage especially in zones where the water supply is already under stress [3, 4, 5]. After the hydraulic frac-15 turing operations, the well usually produces variable quantities of saline water along with the produced 16 gas [6]. This water is characterized by high TDS contents (Total Dissolved Solids) [7, 8, 9] and is consid-17 ered to be the result of mixing of low salinity injected fracturing fluids with high salinity formation brine 18 [10, 11]. Additionally, the flowback fluids are often characterized by a strong signature of water rock interactions, principally through the action of the hydraulic fracturing fluids and their additives [12, 13, 14] 19 on the host rock. Reactions highlighted in the literature include pyrite oxidation by either dissolved oxy-20 21 gen [15, 16, 17] or the oxidative action of the commonly used persulfate breakers; carbonate dissolution 22 [18]; and the precipitation of different sulfate-bearing minerals such as barite, gypsum or anhydrite [19]. 23 Other interactions such as cation exchange with clay minerals [20], ion diffusion [21] and osmosis may also contribute to changes in flowback and produced water geochemistry. The understanding of the causes of 24 25 changes in flowback and produced water compositions are of key importance in the design of more opti-26 mized and more environmental friendly hydraulic fracturing fluid recipes, while improving the potential of reuse and recycling of such waters, helping to reduce the stress on freshwater resources. 27 28 In this study, we present the analysis of a dataset based on 24 flowback water samples taken from

one well from a tight gas play in Alberta, Canada during the first week after hydraulic fracturing, and 29 30 one produced water sample taken from the same well after 14.5 months. These samples were analyzed for concentrations of major ions and traces elements, as well as various stable isotopic compositions. The 31 results were then compared to those of water samples from an additional 16 producing wells sampled 32 112 days to 3.7 years after commencement of production to determine if similar geochemical processes 33 are occurring in other reservoir portions across the field. These 16 produced water samples were obtained 34 35 from wells representing a wide spatial area and different stratigraphic intervals within the same target 36 formation to demonstrate that the identified processes were not constrained to one location or interval in 37 the investigated tight unconventional natural gas play.

A portion of this dataset has been previously described in [22] and the mixing behavior between forma-38 tion water and hydraulic fracturing fluids was demonstrated through the study of conservative species such 39 as Cl and oxygen and hydrogen isotopes of water. The objective of this second article is to build upon the 40 conclusions of the previous study and to develop a semi-quantitative model of the complex downhole geo-41 42 chemical interactions between formation water, injected fracturing fluids, and reservoir rocks. Chemical 43 and isotopic parameters, including the isotopic composition of sulfate, were used to elucidate the sources 44 of flowback and produced water constituents and to understand the interplay between hydraulic fracturing fluids, formation brine and reservoir minerals such as dolomite, pyrite and anhydrite. 45

46 2. Study site, well completions and sampling

47 Tight gas wells drilled in the Montney Formation in the provinces of Alberta and British Columbia 48 (Figure 1) remain among the top producers in Canada, with ~570 wells drilled in 2018. The Montney For-49 mation is a dark dolomitic siltstone interbedded with shale of lower Triassic age. This siltstone is composed 50 primarily of quartz, illite, dolomite and K-feldspar with a high pyrite contents (varying from <1.0% up to 4.0%) [23, 24]. Petrophysical properties associated with this formation are: 3% porosity, permeability of 10 51 52 μ D [25] and water saturation of 31% [26, 27]. The Montney Formation is overlain by the Doig Formation of Middle Triassic age, characterized by a phosphatic black shale unit; and is lying unconformably above the 53 Permian Belloy Formation [28]. The diagenetic history of the Montney Formation involves strong dolomi-54 55 tization of the calcite and reduction of the initial dissolved sulfate content to sulfide that was subsequently

Figure 1: Location of the Montney formation straddling Alberta and British Columbia.

converted to pyrite [29]. The Montney Formation also contains minor amounts (usually <1.0%, sometimes
up to several %) of early and late diagenetic anhydrite [30].

Previously, formation waters from tight gas reservoirs were not considered in the hydrogeological and geochemical studies of the area. However, in the Western Canadian Sedimentary Basin, formation waters are generally believed to originate from the evaporation of seawater past the point of halite saturation that were later diluted by various extents of less concentrated saline fluids, or even meteoric waters [31, 32]. In particular, it is believed that some high TDS formation waters in Alberta are sourced from residual brines

63 from the evaporite rich Charlie Lake Formation [28].

64 2.1. High-frequency sampling from a hydraulically fractured well

A well targeting the Middle Montney Formation was drilled to a true vertical depth of 3300 m before deviating to the 3000 m long horizontal section. The horizontal wellbore was completed using 28 fracture stages separated by approximately 106 m. Fracturing was conducted with a mixture of nitrogen (135,000 m³ under standard conditions per stage) and water (280 m³ per stage) at a pressure of around 9000 psi. Samples were collected once every 20 m³ until 100 m³ of flowback and once every 100 m³ until 1600 m³ of flowback. The last two samples were obtained at 2000 m³ of flowback (after 7 days) and 14.5 months after the hydraulic fracturing, corresponding to a total of 18,000 m³ of produced water.

Following the literature consensus, the term *flowback water* will be used in the following to characterize the 24 samples collected in the first week after commencement of production while *produced water* will be used to characterize the other samples collected months or years after hydraulic fracturing occurred.

75 2.2. Produced waters from multiple wells across the field

76 In addition, 16 samples of produced water were collected from 16 horizontal wells on four pads throughout the same tight unconventional natural gas play in northwestern Alberta. The total vertical depths of 77 78 the wells ranged from 2874 to 3212 m (mean 3030 m) and the horizontal sections were between 1508 m 79 and 3184 m long (mean 2438 m). The majority of the wells were fractured using slickwater, whereas five 80 wells were hydraulically fractured using a nitrogen foam approach. The number of fracture stages ranged from 19 to 60, with an average of 30 stages. The samples were collected from the separator between 3.7 and 81 82 45.3 months after the "on production" date. Producing zones represented in these produced water samples include the entire Montney Formation succession (i.e. Upper, Middle and Lower Montney). 83

84 2.3. Pyrite, anhydrite and persulfate samples

In addition to the flowback and produced water samples, a total of 12 core plugs were collected from a 222 m core extending from the base of the Doig Formation down to the Lower Montney Formation. Three samples from the Upper Montney, four from the Middle Montney and five from the Lower Montney Formation were collected for mineralogical, chemical and isotopic analyses. All plugs were preserved with three layers of protective wrapping.

Four persulfate breaker samples representing chemicals typically used in hydraulic fracturing operations were obtained from three service companies for geochemical and isotopic analyses. The samples represent potassium and sodium persulfate and were encapsulated with a water-resistant coating.

Finally, some additional core plugs were obtained from several wells within the area that penetrated the
Montney Formation and were used for determining the isotope composition of anhydrite.

95 3. Analytical Methods

96 3.1. Flowback and produced water samples

Flowback water and produced water samples were collected on site while minimizing exposure to oxygen and stored in 1 L plastic bottles. Bottles were then shipped within a few days to the University of

99 Calgary (Calgary, Alberta, Canada) for chemical and isotopic analyses.

100 3.1.1. Major ion analysis

101 Upon arrival at the laboratory, flowback and produced water samples were filtered through a 0.45μ m 102 nitrocellulose filter before acidifying cation samples to pH < 2, while samples for anion analysis were 103 not acidified. Cation concentrations were determined by ICP-OES (Inductively Coupled Plasma - Optical 104 Emission Spectrophotometer) on a Varian 725-ES, while anion concentrations were measured by ion chromatography (Dionex ICS 2000). Electric conductivity and pH were obtained with Orion Star instruments 105 and bicarbonate alkalinity was measured using an Orion 960 Titrator. The Total Dissolved Solid value was 106 calculated by adding all the measured concentrations of major ions. Consistency of the results was con-107 108 firmed by checking that the ionic balance is <5% for each sample. Analytical precision and accuracy for anion and cation analysis is typically \pm 5%. 109

110 *3.1.2. Trace elements*

Trace element concentrations on the flowback water samples were measured at the French Geological Survey (BRGM, France) on a Thermo Scientific XSERIES 2 ICP-MS (Inductively Coupled Plasma - Mass Spectrometry). Analytical quality was controlled by internal standard addition (In and Re) and regular international geo-standard (i.e. SLRS4) measurements. The precision for trace element concentrations is generally better than 5%.

116 3.1.3. Stable isotope compositions of dissolved sulfate (δ^{34} S and δ^{18} O)

Sulfur and oxygen isotope ratios of dissolved sulfate were measured on all flowback and produced water samples by first converting dissolved sulfate to pure BaSO₄, which was subsequently thermally decomposed in an elemental analyzer yielding SO₂ and a pyrolysis reactor yielding CO for isotope ratio mass sperctrometry. Results of the isotope ratio analyses are reported in the delta notation (δ) with V-SMOW (Standard Mean Ocean Water) as the reference for oxygen isotopes of sulfate, and V-CDT (Vienna Canyon Diablo Troilite) for sulfur isotope ratios. Analytical uncertainties are \pm 0.3 ‰ and \pm 0.5‰ for $\delta^{34}S$ and δ^{18} O values of sulfate, respectively.

124 3.2. Sulfur in core samples

Based on XRD, sulfur in the core samples occurred predominantly as pyrite (FeS₂). Total sulfur contents 125 ranges from 0.45% in the Upper Montney to 1.59% in the Lower Montney, with an average of 0.9% across 126 the entire Montney Formation. The $\delta^{34}S$ values of total sulfur, representing predominantly pyrite, were 127 determined on powdered core samples that were thermally decomposed in an elemental analyzer followed 128 by isotope ratio mass spectrometry in continuous flow mode. For anhydrite sulfur isotope ratio, small 129 powdered aliquots of the core samples were reacted with HCl and then filtered to separate the sulfate 130 (dissolved anhydrite) from the sulfide (pyrite). Barium chloride (BaCl₂) was then added to the solution and 131 the sample was heated for approximately 30 minutes to allow for the barium sulfate (BaSO₄) to precipitate. 132 The BaSO₄ samples were then placed into silver cups and the $\delta^{34}S$ value was measured using Continuous 133 Flow-Isotope Mass Spectrometry. Results are expressed relative to V-CDT with a measurement uncertainty 134 of $\pm 0.5\%$. 135

136 3.3. S and O isotope ratios of persulfate breakers

The isotopic composition of sulfate from the decomposition of the four persulfate breaker samples was also determined by thermal decomposition in an elemental analyzer yielding SO₂ and a pyrolysis reactor yielding CO for isotope ratio mass spectrometry with measurement uncertainties of \pm 0.3‰ and \pm 0.5 ‰ for $\delta^{34}S$ and δ^{18} O values of sulfate, respectively.

141 4. Results

142 4.1. Methodology

Similar to most previous flowback studies (e.g. [7, 8, 10]), the TDS of the flowback samples in this study increased quickly as the result of the mixing of low salinity hydraulic fracturing fluids with high salinity

formation water [22]. In order to separate the contributions from water-rock interactions, from the simple 145

mixing between formation water and fracturing fluids, the different species of interest are plotted against Cl 146 concentrations. In the absence of halite dissolution, chloride can be considered as conservative [13, 33]. As 147

such, the Cl concentrations are representative of the relative proportions of fracturing fluids and formation 148

149

water in the samples as described in [22]: $\frac{V_{inj}}{V_{inj}+V_{form}} = \frac{[Cl]_{spl}-[Cl]_{\infty}}{[Cl]_0-[Cl]_{\infty}}$ with V_{inj} the volume of injected water in the sample and V_{form} the volume of formation water in the sample, while $V_{form} + V_{inj} = V_{spl}$; $[Cl]_{spl}$ 150

151 is the chloride concentration in the sample while $[Cl]_0$ and $[Cl]_{\infty}$ are respectively the concentrations of

chloride in the hydraulic fracturing fluid and in the formation water. Another option for a conservative 152

tracer would be bromide but the dataset did not include this element. The conservative behavior of Cl was 153 also confirmed in [22] using stable isotopes of water. 154

The advantage of plotting the different water constituents against Cl is that it allows the identification of 155 156 conservative and non-conservative species. Indeed, if a species is conservative, it will correlate exactly with 157 Cl and the data points should plot on a line connecting the hydraulic fracturing fluid composition to the 158 formation water composition (red lines on the different figures). Any species plotting above or below the line reveals a non-conservative behavior with more or less of the species than conservative mixing would 159 160 predict and thus, a source or sink of this species is required. This behavior is likely the result of water-rock

161 interactions.

A complete results table can be found in Supplementary Materials. 162

163 4.2. Chemical and isotopic composition of flowback samples

The mixing of fracturing fluids with formation water as well as water-rock interactions caused the TDS 164 165 contents of the flowback samples to increase rapidly and steadily from 396 mg/l in the fracturing fluid to 96,000 mg/l after 7 days of flowback, and up to 204,000 mg/l for the produced water sample obtained after 166 167 14.5 months (Figure 2 and table SI-1).

Figures 3a-d and table SI-1 show the evolution of Ca (a), Mg (b), Ba (c) and Sr (d) concentrations in 168 flowback and produced water samples versus Cl concentrations. In Figures 3a and 3b, Ca and Mg con-169 centrations increased from 71 and 18 mg/l in the fracturing fluids to 4,200 and 800 mg/l after 7 days of 170 171 flowback, and further to 7,900 and 1,200 mg/l respectively after 14.5 months of production. Figures 3a and 3b reveal that the Ca and Mg concentrations in flowback waters obtained between days 2 and 7 plot above 172 the conservative mixing line between fracturing fluids and formation water, hence indicating an additional 173

174 source of Ca and Mg.

Ba and Sr concentrations increased from 0.16 mg/l and 0.52 mg/l in the fracturing fluids to 2.2 and 170 175 mg/l after 7 days, and further to 8.3 and 640 mg/l, respectively, after 14.5 months of production. Figures 176 177 3c and 3d reveal that the Ba and Sr concentrations of flowback waters obtained after the beginning of day 2 for Ba and day 1 for Sr plot below the conservative mixing line between fracturing fluids and formation 178

179 water, indicating some removal of Ba and Sr from the flowback fluids.

Figure 4 and table SI-1 show the evolution of sulfate concentrations in flowback fluids versus chloride 180 concentrations in all collected samples. Sulfate concentrations increased from 61 mg/l in the hydraulic 181 182 fracturing fluid to 780 mg/l in the flowback sample taken only a couple of hours later and then remained 183 rather constant (varying only between 690 and 880 mg/l) in samples obtained between the end of day 1 and day 7. After 14.5 months, the sulfate concentration had decreased to 210 mg/l. The cross-plot of sulfate 184 versus chloride concentrations indicates a highly non-conservative behavior of sulfate. 185

To elucidate additional sources of sulfate in flowback waters, $\delta^{34}S$ values of sulfate in the flowback 186 and produced water samples were determined and plotted versus sulfate and chloride concentrations in 187 Figures 5a and 5b, respectively. $\delta^{34}S$ values of sulfate increased from +6.4‰ in the hydraulic fracturing 188 189 fluid exponentially to $\approx+23\%$ after 7 days and further to +26.4% after 14.5 months. A cross-plot of $\delta^{34}S$ values versus δ^{18} O values of sulfate is shown in Figure 5c. Oxygen isotope ratios of sulfate increase 190 similarly from 0‰ to 12.6‰ after the first week of flowback. Unfortunately, the last sample obtained after 191 192 14.5 months was not analyzed for oxygen isotope ratios of sulfate.

193 Analysis of the concentrations of traces metals revealed that As, Ni, Pb, Ti, Th and Zn are characterized 194 by a distinctive pattern (table SI-1): while both the hydraulic fracturing fluid and the last sample obtained

Figure 2: Evolution of TDS in samples versus volume of flowback and produced water.

Figure 3: Evolution of calcium (a), magnesium (b), barium (c) and strontium (d) concentrations plotted versus chloride concentrations in flowback and produced water samples and the corresponding conservative mixing lines between fracturing fluids and formation water based on the conservative parameter Cl^- .

Figure 4: Evolution of sulfate concentration in flowback and produced water versus chloride concentrations.

Figure 5: Evolution of $\delta^{34}S$ values of dissolved sulfate plotted versus dissolved sulfate (a) and chloride (b) concentrations, and crossplot of $\delta^{34}S$ and δ^{18} O values of dissolved sulfate (c).

Figure 6: Evolution of arsenic (a), nickel (b), zinc (c), iron (d) and vanadium (e) concentrations in flowback samples plotted versus chloride concentrations – the labels correspond to the sequence of samples

after 14.5 months of production have low concentrations, shortly after the beginning of the flowback, the 195 concentrations of these elements spiked as shown in Figures 6a-c for As, Ni and Zn respectively. The 196 concentrations follow then a quick decrease toward the composition of the formation water. For Pb, the 197 198 peak concentration occurred slightly later than the other trace elements at a Cl concentration of 14000 mg/l (i.e. at 4 hours of flowback), while most of the trace elements displayed a peak concentration as early as Cl 199 concentration of 11000 mg/l (i.e. 1.5 hours after the beginning of flowback). The decrease in these trace 200 201 metal concentrations after the peak is different for each element with the sharpest decrease for Zn, and the 202 slowest decrease for As. Fe concentrations shown in Figure 6d display a similar pattern to the other trace 203 elements with a sharp increase in the early flowback from 0.22 mg/l to 64.5 mg/l after 9 hours and a very slow decrease to 36 mg/l after a week. The sample collected after 14.5 months had an Fe concentration 204 which had further decreased to 13 mg/l. Finally, Figure 6e presents the evolution of the concentration of 205 vanadium relative to the concentrations of Cl in flowback and produced water samples. Contrary to the 206 207 other trace metals V (and Be) exhibit a steady increase in respective concentrations. The concentration of Be rose from 0.006 μ g/l in the fracturing fluid to approximately 0.07 μ g/l in the sample after one week 208 209 of flowback and after 14.5 months the concentration had doubled to 0.14 μ g/l. The concentration of V increased from 0.43 μ g/l in the hydraulic fracturing water to about 4 μ g/l after one week of flowback and 210 9.5 μ g/l after 14.5 months. 211

212 4.3. Chemical and isotopic compositions of produced water samples from multiple wells

The TDS concentrations of the produced waters from the 16 wells sampled in the vicinity of the above 213 214 described well ranged from 102,000 mg/l in the well sampled after 118 days to 252,000 mg/l in the well sampled after 1202 days after commencement of production (mean 151,000 mg/l). TDS concentrations in 215 produced waters increased with increasing number of days after production commenced. Sulfate concen-216 trations in produced waters ranged from 220 mg/l in the well sampled after 1202 days to 840 mg/l in the 217 well that was sampled after 301 days (mean 530 mg/l) (Figure 4). In contrast to TDS, sulfate concentra-218 219 tions in produced waters were highest (> 600 mg/l) in wells that were sampled within 200 to 600 days after 220 commencement of production and which target the Upper Montney Formation. The lowest sulfate concen-221 trations (< 300 mg/l) were associated with produced waters from wells that were sampled more than 800 222 days after commencement of production, from the same pad. Figure 4 reveals that sulfate concentrations 223 of produced waters from the 16 wells display a trend of decreasing sulfate with increasing chloride concen-

trations and plot between the flowback samples (first week) from the single well and the produced water sample taken 14.5 months later.

Sulfur isotope ratios of the dissolved sulfate in produced waters ranged from 19.6‰ to 36.2‰ while oxygen isotope ratios of sulfate in produced waters ranged from 12.5‰ to 15.4‰. Figures 5a and b reveals that data for produced waters from the 16 wells plot between the first samples from the single well and the last sample taken after 14.5 months, similarly to Figure 4. On Figure 5c, the data for sulfate from the 16 wells extent the trend of sulfate isotope compositions from the flowback fluids of the single well.

231 4.4. Potential sources of additional sulfate and their isotopic fingerprints

The highly non-conservative behavior of sulfate concentrations in flowback fluids shown in Figure 4 suggests the existence of additional sulfate sources (on top of the sulfate derived from mixing with formation water) that appear to contribute in variable quantities to flowback fluids and produced waters as a function of time. These sources of additional sulfate include a) sulfate sourced from the decomposition of the ammonium persulfate breaker ($(NH_4^+)_2 \cdot S_2O_8^{2-}$), b) sulfate derived from pyrite (FeS₂) oxidation, and c) sulfate derived from anhydrite dissolution (CaSO₄). Ammonium persulfate is a strong oxidant (E° = 2.6 V [34]) used for breaking the guar gum in order to reduce the viscosity of the fluid upon flowback [35], reacting as follows:

$$S_2 O_8^{2-} = 2SO_4^{--}$$
 (1)

$$SO_4^{-} + H_2O = SO_4^{2-} + H^+ + HO^-$$
 (2)

$$Guar + HO^{-} = Guar' + H_2O$$
(3)

The four persulfate breaker samples were found to have $\delta^{34}S$ values of +5.5, +3.7, -1.5 and -5.0‰ yielding a mean $\delta^{34}S$ value of 0.7±4.8‰. This average $\delta^{34}S$ value is considered representative for persulfate breakers used in the industry.

 $\delta^{34}S$ values of total sulfur in the core samples, that is predominantly represented by pyrite, varied considerably from -20 to +15%. Using concentration and $\delta^{34}S$ values an amount-weighted average $\delta^{34}S$ value for pyrite of -1.1% for the entire Montney section, and an amount-weighted average $\delta^{34}S$ value of 1.6% for the pyrite in Middle Montney Formation was determined. As a consequence, a $\delta^{34}S$ value of 0% for pyrite, and for sulfate derived from pyrite oxidation was used for this study.

And finally, a $\delta^{34}S$ value of anhydrite was measured for small amounts of sulfate leached from the 248 Montney Formation core samples. Results ranged from +16 to +22‰ while [36] reported $\delta^{34}S$ values as 249 high as +28.8‰ for anhydrite extracted from the Montney Formation. In addition, anhydrite at the inter-250 face of the Upper Montney and the overlying Doig Formation was found to have $\delta^{34}S$ values ranging from 251 +24 to +26³ [29]. Therefore, sulfate derived from anhydrite dissolution is expected to have $\delta^{34}S$ values 252 as high as +25±3‰, whereas sulfate from pyrite oxidation or persulfate breakers would be characterized 253 by $\delta^{34}S$ near 0‰, with the latter two sources being indistinguishable based on sulfur isotope fingerprints. 254 Another phenomenon which could impact the sulfur isotope systematics is bacterial sulfate reduction 255 (BSR), which reduces sulfate to sulfide and is known to be accompanied by strong isotope fractionation 256 (~30‰ – [37, 38]) for both sulfur and oxygen affecting the remaining sulfate. Figure 5c, shows that the 257

258 oxygen isotopes of dissolved sulfate in produced water are around +15%. δ^{18} O values of dissolved sulfate 259 in the flowback samples plot between the value of the hydraulic fracturing fluid and that of sulfate in the 260 produced waters. Considering that typical δ^{18} O values of sulfate in natural evaporites plot between +10261 and +20% and +10 and +30% for $\delta^{34}S$ [39, 40], it is unlikely that extensive bacterial sulfate reduction is 262 occurring during the flowback as such a process would result in oxygen and sulfur isotope ratio of sulfate 263 much higher than the ones recorded. The high salinity of the flowback samples [41] may explain the limited

264 extent of BSR in the flowback and produced fluids from the investigated well.

265 5. Discussion

266 5.1. Elucidating sources of sulfate

Chemical and isotopic data were used in a semi-quantitative model to reveal the sources of sulfate and its dependence on flowback volume and time. The model considers that each sample contains sulfate from both the hydraulic fracturing fluid and the formation water, as well as sulfate from the breaker decomposition and additional sulfate potentially being derived from the water-rock interactions as expressed in equation (4).

$$[SO_4]_{spl} = [SO_4]_0 f + [SO_4]_{\infty} (1 - f) + [SO_4]_{\chi}$$
(4)

where $[SO_4]_{spl}$ is the sulfate concentration in the sample, $[SO_4]_0$ the sulfate concentration in the injected water, $[SO_4]_{\infty}$ the sulfate concentration in the formation water and $[SO_4]_{\chi}$ the concentration of sulfate from additional sources (i.e. water-rock interactions and persulfate decomposition). The mixing ratio f is defined as $f = -\frac{V_{inj}}{V_{inj}} = \frac{[Cl]_{spl}-[Cl]_{\infty}}{V_{inj}}$ with chloride considered as concernative

275 defined as $f = \frac{V_{inj}}{V_{inj} + V_{form}} = \frac{[Cl]_{spl} - [Cl]_{\infty}}{[Cl]_0 - [Cl]_{\infty}}$ with chloride considered as conservative.

276 Similarly S isotope ratios of sulfate in the sample can be expressed as follow (e.g. [42]):

$$\delta_{spl} = \frac{\delta_0 [SO_4]_0 f + \delta_\infty [SO_4]_\infty (1 - f) + \delta_\chi [SO_4]_\chi}{[SO_4]_{spl}}$$
(5)

Decomposing the S isotopic ratio according to the three identified additional sources (anhydrite, pyrite oxidation and persulfate decomposition), equation (5) can be written as:

$$\delta_{\chi} = \frac{[SO_4]_{an}\delta_{an} + [SO_4]_{per}\delta_{per} + [SO_4]_{pyr}\delta_{pyr}}{[SO_4]_{\chi}}$$
(6)

with the subscripts *an*, *per* and *pyr* meaning sulfate sourced respectively from anhydrite dissolution, persulfate decomposition and pyrite oxidation. Since $[SO_4]_{\chi} = [SO_4]_{an} + [SO_4]_{per} + [SO_4]_{pyr}$, equation (6) can be rewritten as follows:

$$\delta_{\chi} = \delta_{an} + \frac{[SO_4]_{per}}{[SO_4]_{\chi}} \left(\delta_{per} - \delta_{an} \right) + \frac{[SO_4]_{pyr}}{[SO_4]_{\chi}} \left(\delta_{pyr} - \delta_{an} \right)$$
(7)

Pyrite oxidation in the hydraulically fractured reservoir can be stimulated by the remaining dissolved oxygen in the hydraulic fracturing water, or from the attack of persulfate. The injected water was submitted to an oxygen removal stage before injection and hence it was assumed that the oxidation of pyrite is predominantly caused by persulfate. The reaction can be summarized by the following equation:

$$2 \operatorname{FeS}_2 + 15 \operatorname{S}_2 \operatorname{O}_8^{2-} + 16 \operatorname{H}_2 \operatorname{O} = 2 \operatorname{Fe}^{3+} + 34 \operatorname{SO}_4^{2-} + 32 \operatorname{H}^+$$
(8)

Equation (8) reveals that 15 moles of persulfate are required to oxidize 2 moles of pyrite, producing 34 moles of sulfate, 30 of which come from the persulfate decomposition and 4 of which come from the pyrite. As a result, we can write that $[SO_4]_{pyr} = \frac{4}{15}\alpha[per]$ with α representing the proportion of persulfate oxidizing the pyrite and [per] the quantity of persulfate which reacted in the sample. Since the primary purpose of persulfate is to breakdown the guar gum, it can be assumed that α is small.

The initial quantity of persulfate added to the injected water in this well was $[per]_0 \approx 200 \text{ mg/l} (0.2 \text{ kg/m}^3)$. One mole of persulfate will, upon reacting with pyrite or guar gum, produce 2 moles of sulfate according to the mechanism of equations (1) and (2). The quantity of sulfate coming from persulfate decomposition in a sample will then be:

$$[SO_4]_{per} = f \left[2([per]_0 - [per]_{unreacted}) - [SO_4]_{per}^{precipitated} \right]$$
(9)

$$[SO_4]_{per} = 2\beta[per]_0 \quad \text{with} \quad \beta = f\left(1 - \frac{[per]_{unreacted} + 1/2[SO_4]_{per}^{precipitated}}{[per]_0}\right) \tag{10}$$

Figure 7: Evolution of parameter β with Cl concentration using $\delta^{34}S$ values from the sulfate sources

where $[per]_{unreacted}$ is the quantity of persulfate which did not yet decompose (i.e. still present in persulfate form), and $[SO_4]_{per}^{precipitated}$ is the quantity of sulfate from the decomposition of persulfate which precipitated as sulfate mineral. Parameter β characterizes the departure between an ideal case with no

298 precipitation and instantaneous persulfate reaction (i.e. $\beta = f$), and reality (i.e. $\beta < f$, $[per]_{unreacted}$ and/or

299 $[SO_4]_{per}^{precipitated} \neq 0).$

300 Combining the previous considerations, we can rewrite (7) as:

$$\delta_{\chi} = \delta_{an} + \frac{\beta [per]_0}{[SO_4]_{\chi}} \left[2 \left(\delta_{per} - \delta_{an} \right) + \frac{4}{15} \alpha \left(\delta_{pyr} - \delta_{an} \right) \right]$$
(11)

301 If we combine equations (5) and (11), we can express the β parameter:

$$\beta = \frac{\delta_{spl}[\mathrm{SO}_4]_{spl} - \delta_0[\mathrm{SO}_4]_0 f - \delta_\infty[\mathrm{SO}_4]_\infty (1 - f) - \delta_{an}[\mathrm{SO}_4]_\chi}{[per]_0 \left[2\left(\delta_{per} - \delta_{an}\right) + \frac{4}{15}\alpha\left(\delta_{pyr} - \delta_{an}\right) \right]}$$
(12)

Figure 7 displays the evolution of the β parameter using the measured $\delta^{34}S$ values from all possible 302 sources: $\delta_{an} = 25\%$, $\delta_{pyr} = 0\%$, $\delta_{per} = 0.7\%$ and $\alpha = 10\%$. Even if these parameters are not completely 303 constrained (no direct measurement, or in the case of α , no literature data or modeling), the system does 304 305 not allow for much variation: first of all, because of α and the factor 4/15, the contribution from pyrite oxidation toward dissolved sulfate in flowback is negligible and thus its sulfur isotope ratio does not impact 306 the results. Secondly, the persulfate $\delta^{34}S$ value is bounded by the relation $\beta < f$, since in the absence of 307 precipitation and in case of instantaneous decomposition we have $\beta = f$. This leads to a condition of 308 $\delta_{per} < 1\%$ for $\delta_{an} = +25\%$, calculated on sample #9 (at Cl concentration of 28720 mg/l), which is consistent 309 310 with the measurements on persulfate breaker samples and cores.

As expected, β plots below the red curve corresponding to the mixing parameter f. This suggests that the decomposition of persulfate is not instantaneous, and that precipitation of sulfate bearing minerals is likely to occur at some point in time.

Figure 8: Sources of extra sulfate compared to simple mixing of sulfate in fracturing fluid and sulfate in formation water in the flowback samples as calculated from sulfur isotope ratios of sulfate.

Calculation of the different sulfate contributions from anhydrite, persulfate and pyrite oxidation in each sample is then possible knowing β . Using equation (4) we can write:

$$[SO_4]_{an} = [SO_4]_{spl} - [SO_4]_0 f + [SO_4]_{\infty} (1 - f) - \beta [per]_0 \left(2 + \frac{4}{15}\alpha\right)$$
(13)

316 It is evident from Figures 4 and 5 that the rapid increase in sulfate concentrations after hydraulic frac-317 turing is accompanied by an increase in $\delta^{34}S$ values of sulfate from $\approx 6\%$ to values >+14‰. If the majority 318 of the additional sulfate was derived from sulfate-containing breakers or from pyrite oxidation, a decrease 319 of $\delta^{34}S$ values of sulfate would have been expected. This is not what was observed. The increase in $\delta^{34}S$ 320 values of sulfate clearly revealed that the majority of the additional sulfate was derived from dissolution of 321 anhydrite with a $\delta^{34}S$ of \approx +25‰ consistent with the measurements on rock core samples.

322 Results from the model described above quantify the sources of additional sulfate compared to simple 323 mixing of sulfate in fracturing fluid and sulfate in formation water, in the flowback and produced water with respect to time as represented in Figure 8. In the samples from the initial phases of flowback, between 324 325 200 and 300 mg/l of sulfate were derived from the persulfate breaker and 500 mg/l from anhydrite dissolution. In samples from the next 6 days, the sulfate contribution from persulfate and associated pyrite 326 oxidation progressively decreased to about 50 mg/l, whereas the contribution from anhydrite dissolution 327 increased to about 700 mg/l, further supported by a progressive increase in $\delta^{34}S$ values towards +24‰. 328 Sulfate derived from pyrite oxidation was found to be negligible with a maximum of 4 mg/l (hence not 329 shown in Figure 8). This reveals that more than 90% of the extra sulfate in flowback waters one week 330 after hydraulic fracturing was derived from anhydrite dissolution. Figure 5 further shows that anhydrite 331 dissolution remains the predominant source of excess sulfate in produced waters 3 to 45 months after 332 333 hydraulic fracturing, although it appears that this sulfate source is limited leading to decreasing sulfate 334 concentrations with time through dilution by formation water and potentially some limited BSR.

335 5.2. Precipitation of calcite and sulfate bearing minerals

336 In Figure 7, parameter β plots below the mixing parameter f, revealing that there is less sulfate from 337 persulfate in the flowback samples than simple mixing would suggest. This can be either explained by the delay in persulfate decomposition, or by precipitation of sulfate bearing minerals. Persulfate decomposi-338 tion and its reaction with guar gum is very fast [43], as most processes involving radicals are. As a result, 339 340 it can be assumed that after a few hours, all persulfate is completely decomposed into sulfate. Therefore, 341 the only explanation of the discrepancy between β and f is the precipitation of sulfate bearing minerals. There are several candidates for this precipitation, such as re-precipitation of anhydrite (or gypsum), pre-342 343 cipitation of barite (BaSO₄) or celestite (SrSO₄). Figures 9a and b show the saturation indices for barite and celestite at three different temperatures, 5°C (average surface temperature for this specific location), 344 345 95°C (average downhole temperature for this well) and 25°C, calculated with PHREEQC and the Pitzer 346 database [44], from the composition of the different flowback samples. Barite is always supersaturated while celestite is undersaturated at the early stage of flowback and reaches equilibrium in the second half 347 348 of the first week, suggesting precipitation of barite and celestite (or a solid solution of both minerals). This 349 is further supported by Figures 3c,d revealing that both barium and strontium concentrations plot below 350 the conservative mixing line. Interestingly, barite is still supersaturated (or at equilibrium at 95°C), 14.5 351 months after hydraulic fracturing occurred. Similarly, celestite is also at saturation for all three temperatures for the last datapoint, suggesting that precipitation could still be occurring even after 14.5 months 352 of flowback and well production. The sustained supersaturation of barite over the 14.5 months may also 353 be explained by the use of scale inhibitors, as they destabilize and prevent precipitation but only up to a 354 certain threshold of supersaturation. This would suggest that the supersaturation of barium reached values 355 356 high enough to overcome the effect of scale inhibitors.

While Figure 8 reveals that dissolution of anhydrite is the predominant source of excess sulfate in 357 358 flowback and produced water samples, it is possible that anhydrite or gypsum also reprecipitate in the casing while flowback water flows upward to the surface if temperatures and saturation conditions change 359 360 from those downhole. The PHREEQC calculation (Figures 9c and d) shows that gypsum is undersaturated 361 at every stage of the flowback while anhydrite reaches saturation (and thus potentially precipitation) after Cl concentrations reach 30,000 mg/l at reservoir temperature, approximatively at the same time as celestite. 362 363 Anhydrite dissolution and persulfate decomposition/pyrite oxidation have a strong secondary impact on the other minerals and dissolved species present. In particular, the Montney siltstone is composed of 364 365 16% (w/w) dolomite which can dissolve through the acidification of the solution by the H^+ ions released 366 during pyrite oxidation (equation (8)) and persulfate attack on guar gum (equation (2)). Figure 3, shows that magnesium and calcium concentrations plot above their respective pure mixing lines, which is com-367 368 patible with dolomite dissolution.

Finally, Figure 9e shows that calcite is supersaturated for every temperature and significant precipitation of calcite can then be expected at every stage of flowback. This precipitation is due to the common ion effect, with anhydrite dissolution releasing large amounts of Ca, which then precipitate with the available dissolved inorganic carbon [45].

373 5.3. Mobilization of trace elements

374 Another consequence of the oxidating power of the hydraulic fracturing fluids is the potential release of 375 trace metals, which are included in the pyrite matrix and organic matter. Pyrite is known to co-precipitate 376 with numerous heavy metal traces such as nickel, arsenic and lead among others [46], while organic matter 377 can be linked to elements such as uranium, mercury, copper etc. [47, 48]. A combination of the oxidation 378 of pyrite and organic matter by the persulfate breaker has the potential to release these heavy metals in 379 solution which will increase the potential toxicity of the flowback waters and complicate their recycling 380 [49, 50, 51]. The marked increase of the concentrations of the elements represented in Figure 6 is most likely the result of pyrite and organic matter oxidation, releasing those elements into the flowback wa-381 382 ter (with the exception of Ti, which is likely a by-product of the Ti-based cross-linker). Once oxidation ceases, formation brine, lower in heavy metals than the initial flowback, will tend to "dilute" the heavy 383

Figure 9: Evolution of the saturation of barite (a), celestite (b), anhydrite (c), gypsum (d) and calcite (e) in the flowback and produced water samples

metal concentrations. However, the decrease in concentration is faster than just pure mixing. Some authors [18, 52] have previously highlighted this behavior and have linked it to the capture of heavy metals during precipitation of iron oxides which is likely to follow pyrite oxidation [53]. This is supported by the non-conservative behavior of iron in Figure 6d, which appears roughly similar to the behavior of the trace metals and by PHREEQC simulations showing oversaturation for all iron oxi-hydroxides (Fe(OH)₂, Fe(OH)₃, goethite and hematite).

Finally some trace elements Be and V (shown in Figure 6e) do not seem to be linked to a particular oxidation behavior and follow a simple mixing behavior. The most likely explanation for this behavior is that as Be and V are incompatible elements (i.e. these elements do not easily get incorporated into minerals) [54, 55]. It is then possible that none of the minerals involved in water-rock interactions contain relevant quantities of these elements, while the precipitation of sulfate-bearing minerals and iron oxi-hydroxides do not impact strongly their concentrations, leading to a somewhat conservative mixing behavior between a V- and Be-poor hydraulic fracturing fluid and a more concentrated formation water.

397 5.4. Field implications and conclusion

398 The evolution of the different elements in the flowback and produced water samples suggests the fol-399 lowing scenarios for the downhole geochemical reactions in the considered well, following hydraulic fracturing. First, within a few hours after injection, a small portion of the oxidative breaker reacts with the 400 host rock pyrite and the organic matter, releasing some sulfate and trace metals. The first returned water 401 has brackish salinity, and slightly elevated contents of sulfate and heavy metals. The release of H⁺ ions 402 by the oxidation reaction triggers the dissolution of dolomite which releases calcium, magnesium and dis-403 404 solved organic carbon in solution. In the meantime, anhydrite in the formation dissolves while the highly 405 saline formation water flows from the formation toward the hydraulic fractures. The barium and strontium contained in the formation water react with the sulfate released predominantly by anhydrite dissolution 406 and minor persulfate decomposition, and precipitate as barite and celestite (and potentially a solid solu-407 tion of both), despite the use of scale inhibitors. This precipitation along with the precipitation of iron 408 409 oxide/hydroxide scavenges the heavy metals released by the oxidative attack of the persulfate limiting their concentration in the flowback samples. Meanwhile, the extra calcium released by both dolomite and 410 anhydrite dissolution triggers calcite precipitation. 411

After all the persulfate breaker has either reacted or flowed back to the surface, and after the majority of anhydrite has been dissolved, the process halts and reverts to simple mixing between the formation water and the water present in the hydraulic fractures. Sulfate, iron and heavy metals are diluted to the values of the formation water, while Ca, Mg, Ba and Sr follow a linear evolution with Cl. This dilution of sulfate by the invasion of formation water is further supported by Figures 4 and 5 with the concentrations of constituents in produced waters from the 16 additional wells plotting between the flowback of the first week and the sample 14.5 months later.

419 All the scenarios described here have important implications for field operations. Geochemical pro-420 cesses such as dissolution, oxidation and scaling may lead to negative consequences on the potential productivity and longevity of the wells [56]. Mineral dissolution is usually a desirable process since it enhances 421 porosity [57, 52] and increases the permeability: an increase of a few percent of porosity can increase per-422 meability by several orders of magnitude [58, 59]. This could be of great importance for the optimization of 423 hydraulic fracturing as an increase of permeability means an improvement of the overall production of gas 424 from the fractures. On the other hand, secondary precipitation of minerals such as anhydrite, calcium car-425 bonate, iron oxides, barite and celestite can have a detrimental effect, by clogging the percolation paths, by 426 decreasing the effective aperture of the hydraulic fractures (proppant grains are very good seeds for mineral 427 428 precipitation) and by clogging the casing itself. A complete Thermo-Hydro-Chemo-Mechanical (THMC) 429 model seems necessary to grasp all the different processes and for evaluating whether the final outcome of the precipitation/dissolution balance is beneficial or detrimental to the productivity of the well. 430

Additionally, the release of heavy metals by pyrite and organic matter oxidation is problematic for all the recycling and reuse operations of wastewaters [4, 60], especially if these elements include radium. The precipitation of minerals can be a strong asset by trapping the problematic elements downhole. Introducing

scale inhibitors early (especially for barite), by forcing the precipitation of colloidal particles of barite are a 434 perfect way to both limit the potential danger of barite scaling and trap radium atoms before they reach the 435 surface [61], as radium easily substitutes to barium in barite. Similarly, the precipitation of iron hydroxides 436 should limit the quantity of heavy metals in the flowback water. The toxicity of flowback and produced 437 waters is mostly linked to the very high TDS [51]. However, it can be of interest to compare the quantities 438 of heavy metals in flowback and produced fluids against drinking water standards. For all heavy metals 439 and trace elements detected in the flowback and produced water samples, only Ni was beyond the World 440 Health Organization guidelines [62] for a short period. The remediation operations should then focus on 441

442 TDS and organic contaminants [63] as heavy metals do not pose a particular water quality problem.

443 6. Acknowledgements

This research was conducted as part of the G-baseline project, co-funded by the French Research Agency
 (ANR-14-CE05-0050 grant), the Natural Sciences and Engineering Research Council of Canada (NSERC
 grant n° 463605) and TOTAL.

447 References

- [1] Energy Information Administration (EIA). Annual Energy Outlook 2019 with projections to 2050.
 2019.
- [2] National Energy Board of Canada. NEB Canada's Energy Future 2018: Energy Supply and Demand
 Projections to 2040 Publication Information and Downloads. Technical report, 2018.
- [3] Tanya J. Gallegos and Brian A. Varela. Trends in hydraulic fracturing distributions and treatment
 fluids, additives, proppants, and water volumes applied to wells drilled in the United States from
 1947 through 2010—Data analysis and comparison to the literature. Technical report, US Department
 of the Interior US Geological Survey, 2015.
- [4] Avner Vengosh, Robert B. Jackson, Nathaniel Warner, Thomas H. Darrah, and Andrew Kondash. A
 Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and
 Hydraulic Fracturing in the United States. *Environmental Science & Technology*, 48(15):8334–8348,
 aug 2014.
- [5] Andrew J. Kondash, Nancy E. Lauer, and Avner Vengosh. The intensification of the water footprint of
 hydraulic fracturing. *Science Advances*, 4(8), 2018.
- [6] A.J. Kondash, E. Albright, and A. Vengosh. Quantity of flowback and produced waters from uncon ventional oil and gas exploration. *Science of the Total Environment*, 574:314–321, 2017.
- M. E. Blauch, R. R. Myers, T. R. Moore, and B. A Lipinski. Marcellus Shale Post-Frac Flowback Waters –
 Where is All the Salt Coming From and What are the Implications? *SPE 125740, SPE Regional Eastern Meeting*, pages 1–20, 2009.
- [8] Lara O. Haluszczak, Arthur W. Rose, and Lee R. Kump. Geochemical evaluation of flowback brine
 from Marcellus gas wells in Pennsylvania, USA. *Applied Geochemistry*, 28:55–61, 2013.
- Yunyan Ni, Caineng Zou, Huiying Cui, Jian Li, Nancy E. Lauer, Jennifer S. Harkness, Andrew J. Kondash, Rachel M. Coyte, Gary S. Dwyer, Dan Liu, Dazhong Dong, Fengrong Liao, and Avner Vengosh.
 Origin of Flowback and Produced Waters from Sichuan Basin, China. *Environmental Science and Tech-*nology, 52(24):14519–14527, 2018.
- [10] Elisabeth L. Rowan, Mark A. Engle, Thomas F. Kraemer, Karl T. Schroeder, Richard W. Hammack, and
 Michael W. Doughten. Geochemical and isotopic evolution of water produced from Middle Devonian
 Marcellus shale gas wells, Appalachian basin, Pennsylvania. AAPG Bulletin, 99(2):181–206, 2015.

- [11] James Rosenblum, Andrew W. Nelson, Bridger Ruyle, Michael K. Schultz, Joseph N. Ryan, and Karl G.
 Linden. Temporal characterization of flowback and produced water quality from a hydraulically frac tured oil and gas well. *Science of the Total Environment*, 596-597:369–377, 2017.
- [12] Jiemin Lu, Patrick J. Mickler, Jean-Philippe Nicot, Wanjoo Choi, William L. Esch, and Roxana Darvari.
 Geochemical interactions of shale and brine in autoclave experiments—Understanding mineral reactions during hydraulic fracturing of Marcellus and Eagle Ford Shales. *AAPG Bulletin*, 101(10):1567– 1597, oct 2017.
- [13] Yiman Li, Tianming Huang, Zhonghe Pang, and Chao Jin. Geochemical processes during hydraulic
 fracturing: a water-rock interaction experiment and field test study. *Geosciences Journal*, 21(5):753–
 763, 2017.
- [14] Thai T. Phan, Amelia N. Paukert Vankeuren, and J. Alexandra Hakala. Role of water-rock interaction
 in the geochemical evolution of Marcellus Shale produced waters. *International Journal of Coal Geology*,
 191(August 2017):95–111, 2018.
- [15] Lin Wang, John D. Fortner, and Daniel E. Giammar. Impact of Water Chemistry on Element Mobilization from Eagle Ford Shale. *Environmental Engineering Science*, 32(4):310–320, apr 2015.
- [16] Mingxiang Xu, Mojtaba Binazadeh, Ashkan Zolfaghari, and Hassan Dehghanpour. Effects of Dissolved
 Oxygen on Water Imbibition in Gas Shales. *Energy and Fuels*, 32(4):4695–4704, 2018.
- [17] J. K. Pearce, L. Turner, and D. Pandey. Experimental and predicted geochemical shale-water reactions:
 Roseneath and Murteree shales of the Cooper Basin. *International Journal of Coal Geology*, 187(September 2017):30–44, 2018.
- [18] Virginia Marcon, Craig Joseph, Kimberly E. Carter, Sheila W. Hedges, Christina L. Lopano, George D.
 Guthrie, and J. Alexandra Hakala. Experimental insights into geochemical changes in hydraulically
 fractured Marcellus Shale. *Applied Geochemistry*, 76:36–50, 2017.
- [19] Amelia N. Paukert Vankeuren, J. Alexandra Hakala, Karl Jarvis, and Johnathan E. Moore. Mineral Reactions in Shale Gas Reservoirs: Barite Scale Formation from Reusing Produced Water As Hydraulic Fracturing Fluid. *Environmental Science and Technology*, 51(16):9391–9402, 2017.
- [20] Ashkan Zolfaghari, Hassan Dehghanpour, Mike Noel, and Doug Bearinger. Laboratory and field anal ysis of flowback water from gas shales. *Journal of Unconventional Oil and Gas Resources*, 14:113–127,
 2016.
- Victor N. Balashov, Terry Engelder, Xin Gu, Matthew S. Fantle, and Susan L. Brantley. A model describing flowback chemistry changes with time after Marcellus Shale hydraulic fracturing. AAPG Bulletin, 99(1):143–154, 2015.
- F. Osselin, M. Nightingale, G. Hearn, W. Kloppmann, E. Gaucher, C. R. Clarkson, and B. Mayer. Quantifying the extent of flowback of hydraulic fracturing fluids using chemical and isotopic tracer approaches. *Applied Geochemistry*, 93(December 2017):20–29, 2018.
- [23] C.D. Rokosh, S.D.A. Anderson, and J.G. Pawlowicz. AER/AGS Special Report 99: QEMSCAN Analysis
 of Various Lithologies from Tight- and Shale-Gas Plays in Alberta. 2016.
- [24] Il Ho Yang and Hyun Suk Lee. Desorbed gas volume estimation using conventional well-log data for
 the Montney Formation, Deep Basin, Canada. *Journal of Petroleum Science and Engineering*, 162(June
 2017):633–651, 2018.
- [25] N. Riazi, C.R. Clarkson, A. Ghanizadeh, A. Vahedian, S. Aquino, and J.M. Wood. Determination of
 elastic properties of tight rocks from ultrasonic measurements: Examples from the Montney Forma tion (Alberta, Canada). *Fuel*, 196:442–457, may 2017.

- [26] C. R. Clarkson, S. M. Ghaderi, M. S. Kanfar, C. S. Iwuoha, P. K. Pedersen, M. Nightingale, M. Sheva lier, and B. Mayer. Estimation of fracture height growth in layered tight/shale gas reservoirs using
 flowback gas rates and compositions–Part II: Field application in a liquid-rich tight reservoir. *Journal* of Natural Gas Science and Engineering, 36:1031–1049, nov 2016.
- [27] A. Ghanizadeh, C.R. Clarkson, S. Aquino, O.H. Ardakani, and H. Sanei. Petrophysical and geome chanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and per meability characterization. *Fuel*, 153:664–681, 2015.
- 526 [28] Dirk Kirste, Steven Desrocher, Brad Spence, Bill Hoyne, Brian Tsang, and Ian Hutcheon. Fluid
 527 flow, water chemistry, gas chemistry and diagenesis in the subsurface Triassic in Alberta and British
 528 Columbia. Bulletin of Canadian Petroleum Geology, 45(4):742–764, 1997.
- 529 [29] Steven Desrocher, Ian Hutcheon, Dirk Kirste, and Charles M Henderson. Constraints on the generation
 530 of H₂S and CO₂ in the subsurface Triassic, Alberta Basin, Canada. *Chemical Geology*, 204(3-4):237–
 531 254, apr 2004.
- [30] G.R. Davies, T.F. Moslow, and M.D. Sherwin. The lower triassic Montney Formation, west-central
 Alberta. *Bulletin of Canadian Petroleum Geology*, 45(4):474–505, 1997.
- [31] Cathy A. Connolly, Lynn M. Walter, H. Baadsgaard, and Fred J. Longstaffe. Origin and Evolution of
 Formation Waters, Alberta Basin, Western Canada Sedimentary Basin. 1. Chemistry. *Applied Geochem- istry*, 5(4):375–395, 1990.
- [32] Cathy A. Connolly, Lynn M. Walter, H. Baadsgaard, and Fred J. Longstaffe. Origin and Evolution
 of Formation Waters, Alberta Basin, Western Canada Sedimentary Basin .2. Isotope Systematics and
 Water Mixing. *Applied Geochemistry*, 5(4):375–395, 1990.
- [33] Terry Engelder, Lawrence M. Cathles, and L. Taras Bryndzia. The fate of residual treatment water in
 gas shale. *Journal of Unconventional Oil and Gas Resources*, 7:33–48, 2014.
- [34] K. S. Sra, J. J. Whitney, N. R. Thomson, and J. F. Barker. Persulfate decomposition kinetics in the
 presence of aquifer materials. *Proceedings of the Annual International Conference on Soils, Sediments,* Water and Energy, 12(January):1–10, 2007.
- 545 [35] The Environmental Protection Agency. Analysis of Hydraulic Fracturing Fluid Data from the FracFo 546 cus Chemical Disclosure Registry 1.0. Technical Report March, U.S. Evironmental Protection Agency
 547 Office of Research and Development, Washington, 2015.
- [36] Mastaneh H. Liseroudi, O.H. Ardakani, H. Sanei, P. K. Pedersen, and J.M. Wood. Late sulfate cements
 in the lower Triassic Montney tight gas play and its relations to the origin of sulfate and H2S. In
 Abstracts of the 34th annual meeting of the Society of Organic Petrology, Calgary, Alberta, Canada, Calgary,
 Alberta, Canada, 2017.
- [37] James Farquhar, Don E Canfield, Andrew Masterson, Huiming Bao, and David Johnston. Sulfur and
 oxygen isotope study of sulfate reduction in experiments with natural populations from Fællestrand,
 Denmark. *Geochimica et Cosmochimica Acta*, 72(12):2805–2821, jun 2008.
- [38] Ramon Aravena and Bernhard Mayer. Isotopes and Processes in the Nitrogen and Sulfur Cycles. In
 Environmental Isotopes in Biodegradation and Bioremediation, pages 203–246. CRC Press, feb 2010.
- [39] George E. Claypool, William T. Holser, Isaac R. Kaplan, Hitoshi Sakai, and Israel Zak. The age curves
 of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. *Chemical Geology*,
 28(2003):199–260, 1980.

- [40] B. Mayer. Assessing Sources and Transformations of Sulphate and Nitrate in the Hydrosphere Using
 Isotope Techniques. In P.K. Aggarwal, J.R. Gat, and K.F. Froehlich, editors, *Isotopes in the Water Cycle*,
 pages 67–89. Springer-Verlag, Dordrecht, 2005.
- [41] Mark A. Engle and Elisabeth L. Rowan. Geochemical evolution of produced waters from hydraulic
 fracturing of the Marcellus Shale, northern Appalachian Basin: A multivariate compositional data
 analysis approach. *International Journal of Coal Geology*, 126:45–56, 2014.
- [42] C.A.J. Appelo and D. Postma. Geochemistry, Groundwater And Pollution, Second Edition. Taylor &
 Francis, 2005.
- I. M. Kolthoff and I. K. Miller. The Chemistry of Persulfate. I. The Kinetics and Mechanism of the
 Decomposition of the Persulfate Ion in Aqueous Medium 1. *Journal of the American Chemical Society*,
 73(7):3055–3059, jul 1951.
- [44] C. A.J. Appelo. Principles, caveats and improvements in databases for calculating hydrogeochemical
 reactions in saline waters from 0 to 200°C and 1 to 1000atm. *Applied Geochemistry*, 55:62–71, 2015.
- [45] Li Jin, Donald I Siegel, Laura K Lautz, Myron J Mitchell, Dennis E Dahms, and Bernhard Mayer.
 Calcite precipitation driven by the common ion effect during groundwater surface-water mixing : A
 potentially common process in streams with geologic settings containing gypsum. *Geological Society* of America Bulletin, 2009.
- [46] P.K. Abraitis, R.A.D. Pattrick, and D.J. Vaughan. Variations in the compositional, textural and electrical properties of natural pyrite: a review. *International Journal of Mineral Processing*, 74(1-4):41–59, nov 2004.
- [47] Eric C. Gaucher, Jeremy Lerat, Jerome Sterpenich, Regine Mosser-Ruck, and Jacques Pironon. Toxic
 Metals in Shales: Questions and Methods for a Better Management of Flow-Back Waters. URTeC,
 2014.
- [48] Jérémy G. Lerat, Jérôme Sterpenich, Régine Mosser-Ruck, Catherine Lorgeoux, Isabelle Bihannic,
 Claire I. Fialips, Niels H Schovsbo, Jacques Pironon, and Éric C. Gaucher. Metals and radionuclides
 (MaR) in the Alum Shale of Denmark: Identification of MaR-bearing phases for the better management of hydraulic fracturing waters. *Journal of Natural Gas Science and Engineering*, 53:139–152, may
 2018.
- [49] Kelvin B. Gregory, Radisav D. Vidic, and David A. Dzombak. Water management challenges associated
 with the production of shale gas by hydraulic fracturing. *Elements*, 7(3):181–186, 2011.
- [50] Ronald S. Balaba and Ronald B. Smart. Total arsenic and selenium analysis in Marcellus shale, high salinity water, and hydrofracture flowback wastewater. *Chemosphere*, 89(11):1437–1442, 2012.
- [51] Yuhe He, Shannon L. Flynn, Erik J. Folkerts, Yifeng Zhang, Dongliang Ruan, Daniel S. Alessi,
 Jonathan W. Martin, and Greg G. Goss. Chemical and toxicological characterizations of hydraulic
 fracturing flowback and produced water. *Water Research*, 114:78–87, 2017.
- [52] Anna L. Harrison, Adam D. Jew, Megan K. Dustin, Dana L. Thomas, Claresta M. Joe-Wong, John R. Bar gar, Natalie Johnson, Gordon E. Brown, and Katharine Maher. Element release and reaction-induced
 porosity alteration during shale-hydraulic fracturing fluid interactions. *Applied Geochemistry*, 82:47–
 62, jul 2017.
- [53] Adam D. Jew, Megan K. Dustin, Anna L. Harrison, Claresta M. Joe-Wong, Dana L. Thomas, Katharine
 Maher, Gordon E. Brown, and John R. Bargar. Impact of Organics and Carbonates on the Oxidation
 and Precipitation of Iron during Hydraulic Fracturing of Shale. *Energy & Fuels*, 31(4):3643–3658, apr
 2017.

- [54] J. Vesely, S A Norton, P. Skrivan, V Majer, P. Kram, T. Navratil, and J M Kaste. Environmental Chem istry of Beryllium. *Reviews in Mineralogy and Geochemistry*, 50(1):291–317, jan 2002.
- Edward S Grew. Mineralogy, Petrology and Geochemistry of Beryllium: An Introduction and List of
 Beryllium Minerals. *Reviews in Mineralogy and Geochemistry*, 50(1):1–76, jan 2002.
- [56] Wayne W. Frenier and Murtaza Ziauddin. Formation, Removal, and Inhibition of Inorganic Scale in the
 Oilfield Environment. Society of Petroleum Engineers, 2008.
- [57] Lixin Jin, Ryan Mathur, Gernot Rother, David Cole, Ekaterina Bazilevskaya, Jennifer Williams, Alex
 Carone, and Susan Brantley. Evolution of porosity and geochemistry in Marcellus Formation black
 shale during weathering. *Chemical Geology*, 356:50–63, 2013.
- [58] Piotr Szymczak and Anthony J C Ladd. Reactive-infiltration instabilities in rocks. Part 2. Dissolution
 of a porous matrix. *Journal of Fluid Mechanics*, 738:591–630, jan 2014.
- Florian Osselin, Pawel Kondratiuk, Agnieszka Budek, Olgierd Cybulski, Piotr Garstecki, and Piotr
 Szymczak. Microfluidic observation of the onset of reactive infiltration instability in an analog frac ture. *Geophysical Research Letters*, 43(13), 2016.
- 617 [60] Gregory P. Thiel and John H. Lienhard. Treating produced water from hydraulic fracturing: Compo 618 sition effects on scale formation and desalination system selection. *Desalination*, 346:54–69, 2014.
- [61] Julia Scheiber, Andrea Seibt, Johannes Birner, Nicolas Cuenot, Albert Genter, and Wilfried Moeckes.
 Barite Scale Control at the Soultz-sous-Forêts (France) EGS Site. In *Thirty-Eighth Workshop on Geothermal Reservoir Engineering*, 2014.
- [62] World Health Organisation. Guidelines for drinking-water quality: fourth edition incorporating thefirst addendum. jun 2017.
- [63] Tamzin A. Blewett, Perrine L. M. Delompré, Yuhe He, Erik J. Folkerts, Shannon L. Flynn, Daniel S.
 Alessi, and Greg G. Goss. Sublethal and Reproductive Effects of Acute and Chronic Exposure to
 Flowback and Produced Water from Hydraulic Fracturing on the Water Flea Daphnia magna. *Envi- ronmental Science & Technology*, 51(5):3032–3039, mar 2017.