
HAL Id: insu-02270109
https://insu.hal.science/insu-02270109

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architecture for Multiprocessor Systems for Distributed
Computing

R Natarajan

To cite this version:
R Natarajan. Architecture for Multiprocessor Systems for Distributed Computing. Embedded Real
Time Software and Systems (ERTS2008), Jan 2008, toulouse, France. �insu-02270109�

https://insu.hal.science/insu-02270109
https://hal.archives-ouvertes.fr

Architecture for Multiprocessor Systems for Distributed
Computing

R Natarajan, Anurag R
TATA ELXSI LIMITED, Technopark, Trivandrum

Kerala, INDIA-695581
Tel: +91-471-252 7214

Abstract: The growth in technology and the new
developments in the semiconductor domain resulted
in the transition of software from an auxiliary role to a
primary role in implementing critical systems in
vehicles. This resulted in an increasing trend
towards the usage of electronic systems in vehicles.
The usage of software for precise control and
implementation of new features is gaining
momentum in both automotive and avionics domain.
As a result the number of processing units are fast
increasing and systems are becoming more and
more complex. The use of distributed computing and
the complex requirements demands the need for
unique software architecture. The biggest challenge
faced by system designers is to have software
architecture to maximize the utilization of the
computing resources. This paper presents a
comprehensive architecture to utilize the power of
multi processor systems and high-speed fault
tolerant communication protocols, in implementing a
distributed computing platform for next generation of
systems in avionics and automotive domain.
Keywords: Software architecture, node,
multiprocessing, ”by-wire” system, fault tolerance,
redundant system, safety-critical system.

1. Introduction
The usage of electronics in automotive and avionics
sector for safety critical systems is growing
exponentially. Their use in the critical aspects of
driving, braking was restrained by the dependability
of the existing communication networks and
processing power. The evolution of new
communication networks, coupled with powerful
semiconductor cores can address the safety critical
and fault tolerant electronic system needs The new
communication networks (FlexRay, TTP) built up
around protocols accommodate powerful techniques
to ensure dependability in the data exchange. Also,
the usage of multi processor systems is now rapidly
increasing to meet the processing power demands.
The new features in modern vehicles are
accomplished by incorporating feature specific
functional modules. This results in the usage of large
number of processing centres. As systems become
complex, it becomes even more difficult to manage
the software development and deployment. The
challenge is to develop dependable software
architecture for safety critical features for distributed
computing. The proposed architecture addresses

multiprocessor computing framework and
mechanisms for fault tolerance. The architecture is
made configurable and scalable to address multi
cores/ multi processors in a single board
collaborating on a communication network
(distributed computing nodes) The suggested
architecture for distributed processing enable the
OEMs and Tier-1 manufacturers to develop and
deploy several features in the vehicles with
considerably less effort in a cost-effective manner
with high degree of fault tolerance.

2. Architecture
The proposed Multi Node Software Framework is
presented in the figure 1 given below. The Multi
Node Manager (MNM) manages the hardware
resources, and provides set of interfaces that can be
employed in developing application tasks. The MNM
has two major functionalities: 1. To provide an
environment for application task execution 2.For
communicating between different nodes in a
network.

Node 1

P1 P2

Multi Node Manager

Hardware

Scheduler

Fault Manager

Other Basic
modules

Application Link Layer

Application Tasks

COM

Node 3

P1

Node 2

P1

Figure 1: Multi Node Software Framework

Definitions:
Node: Any processing unit that forms part of a
distributed system. The node may contain single or
multiple processors. In case of multiple processors,
the processors can be linked with each other by a
link-port. Node can be imagined as a single entity
with one or more processors, which does a specific
functionality and communicate with similar nodes
using a communication port.

 Page 1/8

Link-port: An interconnection between two or more
processors within a node (local). It can be high-
speed link bus or a shared memory.
Communication-port: The communication port
enables a node to be connected with other nodes
(Remote) (e.g. TTP, CAN or similar bus
architectures).
Messages: Message is any piece of information
exchanged between processing units within a node
or between nodes. There are two classes of
messages namely System messages and Data
messages. The System messages are OS control
information & OS data, exchanged between
processing units within a node (Local) or between
nodes (Remote). The Data messages are
information data that are passed locally or remotely

2.1 System Features:
The main features of the proposed MNM task
execution module are: support of multitasking fixed
number of tasks, pre-emptive task scheduling by
static priority, inter-task/processor communication
and synchronization via semaphores, messages,
and queues. The application tasks can utilize MNM
services using the library interface provided. The
MNM implements kernel threads for managing the
system. These threads communicate with each other
using system messages. The main functionalities of
the MNM threads are listed below
• Task scheduling
• Command execution
• Communication
• Fault detection and Handling
• Resource management
The services provided by the MNM are of two types:
local services and remote services.
An application task can generate a call to a function
of the kernel, e.g., to manipulate a semaphore or any
other resource, which can be either a Local call,
which is executed at the local processor or a Remote
call, which is executed in another processor. Calls
are either local or remote depending on the location
of the resources being manipulated in the call.
The application task execution environment is
implemented by scheduler, which supports both
Single Processor and Multi processor task
execution. In Single Processor configuration the
MNM scheduler behaves more or less similar to a
commercial RTOS. But in Multi Processor
configuration it enables multi processing between
different processors in a node interconnected by link
-port. The OS resources for multi processing are
shared between the different processors using the
supported link mechanism. The link ports provide
high-speed and bi-directional data transfer between

system nodes. Processing units within a node
communicate asynchronously through a link. Links
can be used to form a network of processing units.
Each processing unit in a node has an identifier,
which makes it possible for other components to
uniquely identify particular processing unit/node in
the system. The processing units communicate
through the exchange of messages. Each message
can be characterized by a Source & destination id,
message priority and data/command. Processing
units maintain a static routing table for routing of
messages.
The second major functionality is to provide an
infrastructure for data exchange between different
nodes in a communication network. The
communication network can be Time triggered or
Event triggered network that helps in information
exchange. The data messages are transferred using
the above mechanism.
The following sections present the main components
of the proposed MNM.

MNM Framework

Link Driver(Link-port/Shared
Memory)

Communication Driver(CAN/
FlexRay)

Link Interface

Sender Receiver

Scheduler

Fault Manager

Remote
Command

Handler

Local Command
Handler

Communication Router

Data Copy Handler

Time
Manager

Resource
Manager

Figure 2: Multi Node Management Modules

2.1 Scheduler
Each application task has a corresponding Task
Control Block (TCB), which is a data structure where
the task information is stored. A TCB contain the
task identification, task priority, the context, task
state, and handles of resource object used by the
task. All kernel threads can access the TCBs, but
they are used mainly for multitasking.
The proposed system use pre-emptive task
scheduling based on static priority as scheduling

 Page 2/8

policy. The kernel uses two parameters to perform
multi tasking: the running task and the next task
ready to execute.
When a task is running, the two parameters indicate
the same task. If an operation that causes the
suspension of the running task happens, the thread
that executes this operation invokes the Scheduler
thread in order to schedule the next task. Another
way could be to raise the priority of the next task
than the running task in which case the Scheduler
thread schedules this task.
Scheduler thread when called saves the machine
context in the TCB of the task being suspended and
restores the status of the task being scheduled for
execution.
2.2 Communication Router
The communication router module manages three
threads
• Local Command Handler (LCH)
• Remote Command Handler (RCH)
• Data copy Handler
Calls generated by the application tasks can be
either a local call, which is executed at the local
processor or a remote call, which is executed in
another processor (node). The decision of remote or
local call is determined by the location of the
resources being manipulated in the call. When the
local processor encounters a remote call, the call is
encapsulated in a command message, and this
message is sent to the destination processor. At the
destination node, the kernel of this processor
decodes the command and executes the
corresponding call. Some calls return information to
the application tasks that generate them. The
application task that executes the call is blocked
waiting for the call to return.
2.2.1 Local Command Handler
The Local Command Handler thread handles the
execution of the local calls. After a call is issued,
LCH decodes and executes the call. The execution
of a call may trigger the scheduling of another task.
In this case, LCH requests the Scheduler thread to
schedule this new task for execution.
2.2.2 Remote Control Handler
The Remote Command Handler thread handles the
execution of calls received from other processors.
RCH is similar to LCH, except for that LCH only
receives one call at a time, while RCH can receive
multiple calls.
2.2.3 Data Copy Handler
The Copy handler copies data blocks from the
processor memory to external node using the sender
thread services. After receiving a copy request, Copy
handler provides the required data transfer by
copying data blocks from the system memory and

forwarding these blocks to the Sender thread. When
the transfer finishes, Copy handler sets the task
waiting for the copy to be completed as ready to
execute. This task may be either a local or a remote
task.
The copy handler also manages the data messages
transmission and reception to the other nodes. In
case of data messages the copy handler sends the
message to the corresponding node using the link
interface & communication driver services. The
received data messages from other nodes are
transferred to the task(s) configured for reception.
2.3 Link Interface
Link interface provides a standard interface for the
kernel threads to communicate with other processors
and nodes within the system. The proposed system
uses link ports for inter processor communication.
The communication ports are used for the data
message exchange between nodes. The link
interface also implements a suitable routing
algorithm.
2.4. Sender & Receiver
The Sender and Receiver threads handle the
sending and receiving of messages through
processor link ports and node communication ports.
Sender follows a store and forward policy: After
receiving a remote request from another thread it
sends the message to the link interface. Incoming
messages are transferred by the link interface to the
receiver thread. After receiving a message, Receiver
checks the message destination. In case the
destination is the local processor, either a data
message copied to the destination address, or a
command message is forwarded to RCH, depending
on whether data or command messages are
received. In case the destination is a remote
processor, Receiver requests the appropriate
Sender thread to forward the message to the
destination. Each message gets the same priority as
the application task that generates the message.
The messages with higher priorities are sent before
(overtake) messages with lower priorities. In case of
data messages the sender module transmits the
data using the communication driver. The received
data messages are transferred to the data copy
handler for forwarding to the configured application
tasks.
2.5 Time Manager
The time manager monitors the passage of time and
manages the timers. This thread handles the system
tick used for scheduling. Timers are kept in a timing
linked list. When a timeout occurs, i.e., the number
of pending ticks for a certain timer equals zero, the
timer is removed from the list, the task associated
with the timer gets an indication of the occurrence of
the timeout, and Scheduler is called in order to
schedule the task for execution.

 Page 3/8

The time manager can also be configured to
synchronize all the timing parameters with respect to
the network time. This is essential in TTP
communication where tasks are configured based on
the network time. The scheduler using the schedule
tables manages the execution of the tasks. The time
manager provides the network time for the schedule
management.
2.6 Resource Manager
This module manages all the kernel objects used by
the kernel threads, this include semaphore objects,
TCBs, memory pools etc.
The capabilities provided by the proposed MNM OS
module allow the application tasks to create and
manipulate structures such as tasks, semaphores,
queues, messages, and timers.
2.7 Fault Manager
The fault manager is responsible for fault detection
and management. In case of fail safe system the
fault manager triggers the execution of the fail-safe
algorithm and manages the system states. In fail-
operational configuration, this module is responsible
for the faulty node detection algorithm and fault
recovery mechanism.

3. Realization of the concept from automotive
perspective

The concept was practically realized by building an
automotive by-wire system. The system was realized
using FlexRay communication protocol as
communication backbone. The system was first
designed using six nodes, two master nodes (Master
and Redundant slave) and four actuator nodes. The
Freescale S12X processor® was selected for this.
The Freescale MFR 4300 FlexRay controller® was
used as the communication interface.
The multi processing features was addressed using
Tiger SHARC processors from Analog Devices. Two
processors were linked using the LVDS link to form a
two-processor node. One Tiger SHARC processor
was interfaced with MFR 4300 controller (memory-
mapped) for communication interface.
The following sections describe the system that was
used to prove the proposed MNM architecture.
3.1 By-wire Systems
A “by-wire” system refers to a control system that
designed to replace the traditional mechanical or
hydraulic linkages with electronic linkages. This by-
wire concept was originally adopted in the aerospace
industry. But now by-wire technology has made its
entry into the ground vehicles as well. Automotive
by-wire includes three categories: throttle by-wire,
steer by-wire (SBW), and brake by-wire (BBW).
Consider a simple BBW system in a car. This
consists of two brake pedal sensors and four brake-
actuator nodes at the four wheels.

The Right-Front (R FRONT) and the Left-Rear (L
REAR) actuator nodes accept the brake pedal
pressure from one fail-silent brake pedal sensor. The
Left-Front (L FRONT) and Right-Rear (R REAR)
actuator nodes accept the brake pedal pressure from
the other fail-silent brake pedal sensor.

R FRONTL FRONT

R REARL REAR

Figure 3:Brake by-wire system

Every wheel node informs all other nodes about its
view of the brake pedal sensors, performs a
distributed algorithm to allocate the brake force to
each wheel and controls the brake at its local wheel.
3.2 Brake by-wire system using MNM
architecture
The system shown in Figure 3 was realized using
the MNM architecture with focus on a centralized
control centre with redundancy. This is represented
in Figure 4.

Control Centre

Actuator
(FL)
P

Master

P

Slave

P

Actuator
(RL)
P

Actuator
(FR)
P

Actuator
(RR)
P

Figure 4: Brake by wire (Control Centre and Actuator
nodes)
The control centre had two nodes with single
processor each, which implements the braking
control algorithms. One node in control centre acted

 Page 4/8

as the master and the other node as the slave. The
master and the slave control centres are connected
to four simulated actuator nodes on a fault-tolerant
communication network like FlexRay.
Both the nodes in the control centre process the data
acquired from the different actuator nodes through
the communication network. The control actions to
be taken are sent through the communication
network, which are in turn used by the simulated
actuator nodes.
The actuator nodes are configured to accept
commands from only one node of the control centre
and the commands from the other node are ignored.
This makes use of adequate fault-tolerant
redundancy mechanisms. Hence each node in the
control centre will be a mirror of each other and keep
a check on the other one in order to ensure the fault-
tolerance of the system.
3.2.1 Task Scheduler and Time Manager
The MNM scheduler was configured in a time
triggered way with schedule tables to execute the
feature tasks (braking force calculation, vehicle slip
calculation and vehicle velocity calculation).
3.2.2 Communication Interface
FlexRay communication was used for network over
which the messages are passed. The interface
configures the bus for the wake-up, start-up and
actives modes of operation. The two nodes of the
control centre are configured as coldstart nodes.
3.2.3 Sender and Receiver
The Sender and Receiver handle two types of
messages: data messages from the actuator nodes
(for brake force information) and data messages to
the actuator nodes containing control action
information.
3.2.4 Communication Router
System messages are local and are handled by the
LCH. The data messages are routed based on the
whether it was internal message (vehicle velocity
input for slip calculation task) or remote message
(brake force for each actuator nodes).
3.2.5 Fault Manager
The control algorithm residing inside the control
centre computes the required control force and
commands the actuator nodes for actuation In case
of a failure of one of the actuator nodes, the
algorithm executes the intended function by
redistributing the braking forces to the remaining
functional actuators. The fault management module
of the MNM can detect the fault from the fact that
there is no braking force available at one of the
actuators and can trigger the execution of the
algorithm for the corrective procedure that is to be
undertaken.
The fault management module compares the states
of the replicated control centre nodes Master and

Slave. If the master fails, it is discarded and the
Slave takes its place. The system employed for this
node only focussed on the fail-safe behaviour. In
order to provide enhanced fault tolerance, TMR may
be adopted for the Control centre. The faulty unit
could be recognized by the majority voting which
would be removed from the system.
3.3 Multi processing using MNM architecture
The multi processing capability of the MNM
architecture was also studied for the brake by-wire
application.
The control centre had only one node with two
processing units interconnected using LVDS link-port
processor, which implements the braking control
algorithms. One processing unit of control centre
node is connected to four simulated actuator nodes
on FlexRay network. This node processes the data
acquired from the different actuator nodes through
the communication network and executed vehicle
slip calculation and vehicle velocity calculation tasks.
The other processing unit was assigned with the
braking force calculation.
In this configuration MNM was handling both local
and remote data and system messages. The system
message was internal as well as external, since it is
a multi processor realization of the control node. The
MNM scheduler was configured in a time triggered
way with schedule tables to execute the feature
tasks in both the processing units of the node
The system messages are of local and remote type.
The system messages were employed for
synchronization of the tasks running on both the
processing units as well as for passing the required
data between the processing units. The braking
force information was passed to the processing unit
with FlexRay interface using system message and
the same is transmitted to the actuator nodes as
data messages.
The fault handling feature in this system was
examined by simulating a failure in one of the brake
actuators. Simulation of right front brake actuator
failure results in no braking force at the right front
wheel. So application of brake results in reduction of
total braking force and the total deceleration below
the desired values. The proper correction in the
algorithm for the redistribution of braking forces was
observed.
The system was studied using this configuration to
analyse the MNM multi-processing configuration.
Using the LVDS link the two processing units
performed as expected.

4. Realization of the concept from avionics
perspective

Fly-by-wire has been a byword in the avionics field
for a considerable period now. We attempt to show

 Page 5/8

the architecture of a distributed system that
implements a Flight Control System for an aircraft.
The system was conceived and implemented with
dual redundancy, and in hot standby mode, for the
safety critical nodes. Triple modular redundancy was
also employed in the areas of inertial sensor data
acquisition.
The major nodes in the system are the sensor nodes
(like the Inertial Navigation unit and the Air Data
system), the Flight Control Computer (FCC) for
guidance and autopilot, the Actuator Control nodes.
In addition the Display Controller node handles the
Head Up Display system.
Figure 5 shows the architecture of the Fly-by-wire
system for flight control. Each node in this system
employed two processors, one of these handling the
link port and the other the number crunching and
processing. The MIL-STD-1553B bus was used as
the link between the various nodes. The
deterministic nature of this time division multiplexed
bus supports the hard real-time requirements of the
system.
Dual redundancy was achieved by duplicating the
nodes, viz., by having two chains of operational
nodes. Full node connectivity was provided in each
chain and between chains cross-connectivity was
provided.
In the system, tasks run with static fixed priorities,
and follow definite periodicities. Each node was
allotted a set of functions that it must execute within
a deadline. Also, there exists a precedence
relationship between tasks executed in the different
nodes. A good example is that sensor data
acquisition would need to precede the navigation
task.

Inertial
Navigation

System
(Main)

Inertial
Navigation

System
(Standby)

Air Data
System

(Standby)

Air Data
System
(Main)

FCC
(Main)

FCC
(Standby)

Actuator
Control
Node
(Main)

Actuator
Control
Node

(Standby)

HUD

Figure 5. Fly by wire Flight Control System
Communication between the nodes via the 1553B
bus also used a time-driven mechanism. The
protocol itself supports destination id, data/command
messages, as well as a parity check.
Message integrity was enhanced by providing an
application software layer over the protocol. This
layer uses several message validation mechanisms
like CRC checks, parity checks etc. for establishing
fault free communication.
4.1 MNM support for fly-by-wire
4.1.1 Scheduler & Time Manager
The scheduler in each node maintains its Task
Control Block (TCB) and the Time Manager triggers
the execution of each task. For instance, the sensor
Acquisition Node acquires information from the
sensors, runs sensor-specific compensation
algorithms and executes a voting algorithm for
sensor data validation before communicating to the
Flight Computer. In addition as low-priority task, the
node also executed a periodic health check task.
The MNM scheduler in these nodes checks that
deadlines have been met, and when violated raises
appropriate flags. Both local and remote messages
are used in these nodes.
Some nodes may operate solely on messages
passed to them by the FCC. The MNM scheduler in
such cases was event driven rather than time
triggered.
In order to support real-time execution of functions in
the distributed architecture, tight synchronism among
the various nodes was required. The Time Manager
executes this function. Real time in each of the
nodes is maintained by its own clock. To maintain
synchronism among them special system messages
are passed over the link ports and the relative skews
among the nodes was brought down to the required
levels by applying time correction.
4.1.2 Communication Interface
The system uses the MIL-STD-1553B bus for data
and system message exchanges. Each node was
configured to handle several types of messages
corresponding to its functionality. They include the
protocol defined BC-RT, RT-BC, RT-RT messages.
In addition it also implemented the routing over the
appropriate bus. For example, in the FCC it takes
the form of accepting inputs from the sensor nodes
in the two chains and of communicating control data
to the actuator nodes.
4.1.3 Sender and Receiver
The Sender thread in the node, formats and stores
the various messages. On receiving a request from
another thread, say, the communication task in the
TCB, it sends the message to the link interface. The
Receiver thread receives messages from the link

 Page 6/8

interface and routes it to the LCH for an internal
command or to the RCH for an external command.
For example, the sender in the FCC formats
messages to all other nodes for system as well as
data messages. Its MNM Receiver routes mostly to
the LCH, however in some cases where data needs
to be sent between two other nodes, then it would be
routed to the RCH.
4.1.2 Communication Router
As explained in the earlier section, the FCC
executes calls to both the RCH and the LCH.
Several nodes in this system execute calls to the
LCH only. Examples are the HUD and the actuator
nodes, wherein the message is received from the
FCC.
4.2 Fault manager and redundancy management
The distributed, dual redundant architecture was
provided with enough connectivity to ensure that the
overall function is executed even if one or several of
the nodes develops a failure. To elaborate on this,
two nodes are employed for carrying out the
functions of the Air Data system: viz., calculating
parameters like altitude, altitude rates, airspeed, etc
using data from the air-pressure sensors. The
information from these nodes is sent to both the
Flight Control nodes as inputs. Even if one of the Air
Data systems were to fail, connectivity is such that
both the FCCs would still be provided with valid data.
This kind of architecture ensures that the system
meets the high reliability figures demanded.
The fault manager in the node has the task of
identifying any system faults and containing them as
far as possible. Several software schemes like
maintaining recovery blocks, or multiple data copies
are resorted to for fault containment. If successful,
these ensure that the system functions in its primary
mode, thereby guaranteeing full function execution.
If the fault is such that this is not possible, then the
fault manager indicates its fault to the other nodes.
In this case, the overall MNM architecture is
organised to re-configure the system so that full
function is executed as far as possible.
In the event that this is also not possible, the MNM
then resorts to falling back to a salvage mode of
operation wherein the node supports enough
functionality for a safe operation.
The overall architecture thus supported a tightly
synchronised fault tolerant distributed system and
was highly flexible, amenable to any kind of avionics
system.
The MNM architecture also supported a hierarchical
tree structure for the communication link, making it
possible to include other systems like display and
recording systems.
Validation of such a distributed system was a
challenging task, but the MNM architecture enables

the software architecture to be validated easily. The
main reason for this is that the software components
across nodes are common.

5. Advantages of the architecture
MNM is a comprehensive architecture to utilize the
power of multi processor systems and high-speed
fault tolerant communication protocols, in
implementing a distributed computing platform for
next generation of vehicles. MNM can cater to the
requirements of distributed computing. Multi
processing nodes with high processing power can
reduce the number of computing nodes. With the
computational power of multi processor systems the
number existing nodes can be drastically reduced.
This can be achieved by developing fewer
computational nodes (High load centres), which are
connected to the actuator/sensor nodes (Low load
centres) through a high-speed communication
network. This concept simplifies the testing and
diagnostics requirements by virtue of its distributed
nature. Providing hardware redundancy can be
treated merely as an extension to the distributed
architecture, which in turn improves reliability.
The other important features of this concept are
composability and extensibility. Addition of a node to
provide a new feature or to implement a new
algorithm is achieved in a cost effective manner and
with less effort. These features are attractive both in
the avionics as well as the automotive space.
This concept improves the verification and validation
procedures, by allowing more standardized
procedures, effectively reducing the development
cycle time.
Actuator/sensor nodes need only ECUs of lesser
computational capabilities. Hence the attempt to
employ redundancy at the input/output ends
becomes very much cost effective.
Also, having both processor and sensor capabilities
on the same chip would result in greater expense.
The centralized approach can lead to the scenario
where sensors and actuators are separated from the
controllers processing the algorithms. This in turn will
increase the yield of the discrete sensor and actuator
ICs. This brings about reasonable advantages from
the chip design and fabrication point as well.
As the number of computing nodes increases, the
effort required for software configuration
management increases significantly. From the
software configuration management perspective
reduction in the number of computing nodes makes
it easier to maintain the integrity of the system.
In distributed architecture certain nodes will be not
utilizing the system resources to full extent. The
MNM can be used to design a centralized computing
scheme to utilize the full capabilities of the
computing platform. This concept also reduces the
amount of redundant code that goes into system.

 Page 7/8

All computing nodes make use of basic software
layer (MNM and drivers), which is functionally
common for all. The basic software component can
be a licensed software component that comes from a
vendor. Reducing the number of nodes can reduce
the license fee for these basic software components
that make a node.
Another advantage of this concept is the reduction in
bus communication, since the implementations of
the different sub-systems are in the same
computational centre. The signals required for these
sub-systems can be implemented as local data
messages. The local data messages can improve
the deterministic nature of the system, which is an
important characteristic of active safety systems.

6. Limitations
It is challenging to convince the users the
applications of proposed framework. Carmakers will
have to find ways to make the users feel that such
systems are equally desirable. Multi processing
techniques and communication protocol like FlexRay
is yet to be qualified in extreme environment
conditions.
The suggested architecture is not drawn in line with
any existing standards. In automotive domain
emerging framework like AUTOSAR address
distributed computing and the required software infra
structure to implement this. But AUTOSAR currently
does not address multi processing and safety
features. The proposed architecture can be used to
complement such standards to address symmetric
multiprocessing and safety features.

7. Conclusion
The discussed architecture can address processing
using multiple processors to multi tasking using a
single processor. The architecture also takes into
account the requirements of connectivity, which is
vital for distributed computing from a vehicle
perspective. Currently the multi processing is
envisaged using high-speed link-ports and shared
memory, but in future the communication network
protocol can support high data rates. This enables
the usage of such networks for multi processing thus
avoiding current high-speed processor link
mechanisms. The MNM architecture is designed in a
way to address this, since it is independent of the
underlying physical connection scheme employed for
multi processing.

The volume of software that goes into a vehicle is
enormous. Hence the software that goes into the
system will determine the major share of the vehicle
cost. The MNM architecture is a unique framework
that can address multi processing control centres
with low computational power actuator/sensor
interconnected using a standard bus communication
protocol. This approach as discussed can reduce the

software components that go into the vehicle when
compared with pure distributed computing. This will
avoid duplicating the same software components in
different nodes. This could reduce the total software
license costs too. Hence this paper presents a
novel approach for cost-effectiveness in automotive
and avionics domain in future.

6. Acknowledgement
This work is supported by TATA ELXSI IP
development programme. The authors would like to
thank the management for supporting their work and
for stimulating discussions.

8. References
[1] E.A.Bretz, “By-wire cars turn the corner”, IEEE

Spectrum magazine, vol.38, no.4, Apr. 2001, pp.
60-73.

[2] M.Bertoluzzo, P.Bolognesi, O.Bruno, G.Buja,
A.Landi, and A.Zuccollo, “Drive-by-wire systems for
ground vehicles”, in Proc. of IEEE International
Symposium on Industrial Electronics, pp.711-716,
2004.

[3] Tata Elxsi knowledge database

[4] B.Hedenetz and R. Belschner, “Brake-by-wire

without Mechanical Backup by Using a TTP-
Communication Network”, SAE International
Congress

[5] FlexRay Protocol Specification version 2.1

9. Glossary
BBW. Brake By Wire
BC Bus Controller
CAN. Controller Area Network
ECU. Electronic Control Unit
FCC Flight Control computer
LCH. Local Command Handler
LVDS. Low Voltage Differential Signal
MNM. Multi Node Manager
OEM. Original Equipments Manufacturer
OS. Operating System
RCH. Remote Command Handler
RT Remote Terminal
RTOS. Real Time Operating System
SBW. Steer By Wire
SMP. Symmetric Multi Processing
TCB. Task Control Block
TMR. Triple Modular Redundant
TTP. Time Triggered Protocol

 Page 8/8

