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Abstract: In this paper, we discuss the use of the AADL 
(Architecture Analysis and Design Language) in the IST-
ASSERT project, which spans from 2004 to 2007. In the 
context of this project, the European Space Agency, in 
collaboration with tool providers and academic partners 
explored the use of AADL to build space systems. At the 
completion of the project, we provide our report and 
experiments on AADL for building critical systems. 

Keywords: IST-ASSERT, AADL, MDD, Stood, 
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1. Introduction 

Building Distributed Real-Time Embedded systems 
requires a stringent methodology. We note there is a 
strong link between the requirements and the final 
implementation (e.g. scheduling, resource dimensioning). 
Modeling, formal verification and code generation are 
state-of-the-art solutions to discuss requirements, validate 
and implement a design. 
 
The IST-ASSERT project, part of the 6th framework 
program of the European Commission aimed at providing 
tools, methods and runtime environments to ease the 
development of space critical systems. This project began 
in 2004, and will see its conclusion in January 2008. This 
project involved 30 partners from both the industrial and 
academic domain, for an overall budget of 15MEUR. At 
the completion of the project, we draw some conclusions 
on the outcome of this project. 
 
Being an integrated project, ASSERT explored many 
trends and solutions. There is not one common result in 
the project, but instead a full range of solutions for 
different steps in the engineering of complex systems. 
 
In the remainder of this paper, we focus on the AADL 
related results of this project. The SAE AADL language 
was a novel aspect of ASSERT. After is standardization in 
2004, AADL has been highly assessed by ASSERT 
partners. Constructive feedback has been provided to 
serve as “lessons learned” for defining AADLv2. 
 
In the next sections, we present the ASSERT project, and 
more specifically the ASSERT process for building space 
applications. We then present the incarnation of this 
process using AADL as a backbone to model applications. 

We finally describe a case study based on the integration 
of SCADE and SDL models. We show how an integrated 
tool-suite based on AADL allows complete code 
generation from high-level models to high-quality code, 
conformant with ESA standards. 

2. The ASSERT Project 

The ASSERT Project (Automated proof-based System 
and Software Engineering for Real-Time systems) is an 
integrated project partially funded by the European 
Commission within the Information Society Technologies 
priority of the 6th Framework Programme in the area 
embedded systems.  

The project is coordinated by the European Space Agency 
(ESA), and is a consortium made of 28 partners 
representing the space industry, research laboratories, 
software houses and tool developers. The project started 
in September 2004 and ended in January 2008.  

The main objective of ASSERT is to change the way 
system and software engineering is performed today to 
adopt a more reliable and scientific approach based on 
modeling, preservation of system properties and model 
transformation down to the final code.  

The current results include a process, a set of tool 
prototypes and case studies demonstrating the validity of 
the overall approach. The figure 1 recaps the main logic 
of the ASSERT process.  

The process consists in three phases: 

• A modeling phase, where the developer captures 
the functional and non functional properties of 
his system, 

• A model transformation and verification phase, 
which automatically verifies the feasibility of the 
system, 
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• An automatic code generation phase which 
produces a distributed real-time software system 
that is ready for download on hardware target. 
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Figure 1 ASSERT Process 

One of the main characteristics of this process is that, 
except in the first phase, it is fully automated, This means 
that apart from a set of models, no human intervention is 
required to generate a complete software system made of 
physically distributed nodes, and possibly developed 
using heterogeneous modeling languages and tools.  

The “zero manual-coding” approach has been in the heart 
of the whole ASSERT logic and has driven the 
development of innovative technologies and tools that 
until now only existed as theoretical concepts.  

To support this approach, two pillars have been built, that 
we have called the Interface view and the Data view. The 
objective behind these views is to capture as much 
“implementation-neutral” information about the system as 
possible, without constraining the user to select one 
particular development environment for describing the 
behavior of his system. The Interface view helps the user 
capture his system structure, identify functional blocks, 
and set non-functional attributes to interfaces. Example of 
such attribute can be a period for activating a function 
(see figure 2).  

The Data view, on the other hand, contains the description 
of all the messages that are exchanged between functional 
blocks, in an implementation language-neutral 
representation. We use for this description the ASN.1 
notation that gives enough expressive power to represent 
complex data types together with means to automatically 
generate binary encoders and decoders at code level. 

The functional blocks themselves can be implemented in 
virtually any modeling language; provided that a tool 
exists that can generate code for the behavior of the block. 
This is where the tools develop in ASSERT enter the 

game: by reading the Interface and Data view, they will 
detect that a given (known) code generator is used and 
automatically generate wrappers (that we call containers) 
to make a link between the functional code and the run-
time environment to send and receive messages.  
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Figure 2 Modeling an application 

When it is appropriate, the contents of data structures are 
automatically marshaled in a compact binary format 
before being transmitted to a network. This mechanism, 
that is added automatically, is required when sending data 
in an heterogeneous environment, or when the bandwidth 
of a bus is too limited to simply send a memory dump. 
ASN.1 tools are used for the encoding and decoding 
phases. When not needed, of course, the encoding 
functions are not used.  

The ASSERT technology can be adapted to any existing 
modeling framework and associated code generator (so 
far ObjectGeode SDL, SCADE, Simulink and Rhapsody 
are supported) to build the functional parts. 

The last “brick” of the ASSERT toolset is the virtual 
machine (VM). This essential element is made of a real-
time and distributed operating system that is able to 
ensure the preservation of the non-functional properties 
expressed in the Interface view.   

3. The “AADL” track 

The ASSERT development process is composed of a set 
of modeling and production activities which steps can be 
summarized as follow: 
 
- Data View: Definition of a set of data structures that 
must be expressed in ASN.1; 
- Functional View: Definition of a set of applicative 
operations that can be implemented in various 
implementation or modeling languages (Ada, C, Lustre, 
SDL, etc.). Operation parameters must refer to data types 
defined in the Data View. 
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- Interface View: Definition of a set of interacting 
Application level containers (APLC). APLC interfaces 
must refer to operations defined in the Function View. 
- Concurrency View: Definition of a set of interacting 
Virtual Machine level containers (VMLC). VMLC model 
aims at being automatically deduced from the three 
preceding views, by applying generation rules known as 
“Vertical Transformations”. 
 
The VMLC model can then be processed again, firstly by 
binding it onto execution platform architecture defined in 
a Deployment View, then by generating target language 
source code (i.e. Ada or C) to produce a set of executable 
files to be run on top of an ASSERT compliant run time 
executive. 
 
The ASSERT development process has been implemented 
in two parallel tracks. One of them uses the HRT-UML 
technology, and the other one is based on the Architecture 
Analysis and Design Language (AADL) international 
standard. This latter implementation of the ASSERT 
process, known as the “AADL track” is presented in 
details in this paper. 
 
3.1 A Quick Overview of AADL 
 
In this section, we provide a quick overview of the AADL 
modeling language. AADL is a versatile modeling 
language that can provide a basis to model all aspects of a 
system. 
 
AADL (Architecture Analysis and Design Language) [1] 
aims at describing DRE (Distributed Real-time 
Embedded) systems by assembling blocks separately 
developed.  The AADL allows for the description of both 
software and hardware parts of a system. It focuses on the 
definition of clear block interfaces, and separates the 
implementations from these interfaces. It can be expressed 
using both a graphical or a textual syntax.  
 
An AADL model can incorporate non-architectural 
elements: embedded or real-time characteristics of the 
components (execution time, memory footprint, etc.), 
behavioral descriptions, etc. Hence it is possible to use 
AADL as a backbone to describe all the aspects of a 
system.  
 
An AADL description is made of components. The 
AADL standard defines software components (data, 
thread, thread group, subprogram, process), execution 
platform components (memory, bus, processor, device) 
and hybrid components (system).  
 
Components describe well identified elements of the 
actual architecture. Subprograms model procedures like in 
C or Ada. Threads model the active part of an application 
(such as POSIX threads). AADL threads may have 
multiple operational modes. Each mode may describe a 
different behaviour and property values for the thread. 

Processes are memory spaces that contain the threads. 
Thread groups are used to create a hierarchy among 
threads. Processors model micro-processors and a 
minimal operating system (mainly a scheduler). 
Memories model hard disks, RAMs, buses model all 
kinds of networks, wires, devices model sensors, etc.  
Unlike other components, Systems do not represent 
anything concrete; they actually create building blocks to 
help structure the description.  
Component declarations have to be instantiated into 
subcomponents of other components in order to model an 
architecture. At the top-level, a system contains all the 
component instances. Most components can have 
subcomponents, so that an AADL description is 
hierarchical. A complete AADL description must provide 
a top-most level system that will contain the other 
components, thus providing the root of the architecture 
tree. The architecture in itself is the instantiation of this 
system.  
 
The interface of a component is called component type. It 
provides features (e.g. communication ports). 
Components communicate one with another by 
connecting their features. To a given component type 
correspond zero or several implementations. Each of them 
describe the internals of the components: subcomponents, 
connections between those subcomponents, etc. An 
implementation of a thread or a subprogram can specify 
call sequences to other subprograms, thus describing the 
execution flows in the architecture. Since there can be 
different implementations of a given component type, it is 
possible to select the actual components to put into the 
architecture, without having to change the other 
components, thus providing a convenient approach to 
configure applications.  
 
The AADL defines the notion of properties that can be 
attached to most elements (components, connections, 
features, etc.). Properties are attributes that specify 
constraints or characteristics that apply to the elements of 
the architecture: clock frequency of a processor, execution 
time of a thread, bandwidth of a bus, etc. Some standard 
properties are defined; but it is possible to define one’s 
own properties. A more detailed introduction to the 
AADL can be found in [2]. 
 
 
3.2 Data View 
 
Applicative data types must be specified using the 
specialized ASN.1 language. An utility tool provides an 
automatic conversion of these data type descriptions into a 
sequence of AADL declarations that allows for a proper 
reference of these data types during the other phases of 
the ASSERT modeling process in AADL.  
 
References to ASN.1 data types are represented by AADL 
Data components types and implementations whose 
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specification may be located inside a separate package or 
copied into the others “views” that must reference them 
for the purpose of typing ports, subprogram parameters or 
shared data subcomponents. 
 
3.3 Functional View 
 
Applicative functions can be described as black boxes by 
AADL subprogram components. Such an AADL 
representation of applicative functions consists in a 
subprogram component type expressing a typed parameter 
list if any, and a subprogram component implementation 
providing necessary details about the actual 
implementation language, the name of the corresponding 
piece of code in the source files and the functional 
dependencies (required remote functions).  
 
Additional information such as worst case execution time 
can also be handled by appropriate AADL properties to 
allow for various checks (schedulability, dependability, 
etc.). The set of AADL subprogram components that form 
the “Function View” can be grouped inside a separate 
package or directly included inside the other “views” that 
reference it. The picture below represents a functional 
view, with a set of cascaded calls. 
 

 
Figure 3 Functional View in AADL 

 
3.4 Interface View 
 
This view is the only one of the overall ASSERT process, 
that required some semantic add-ons to the standard 
AADL definitions. The “Interface View” can be 
expressed by a set of interacting AADL system 
components whose interfaces contain respectively in and 
out event ports, representing provided and required 
services.  
 
Interfaces define interactions between the components. To 
bring precise hard real time semantics, the ASSERT 
project restricted the semantics of the interactions to the 
one amenable to verification. ASSERT retained the 
Ravenscar Profile[6], defined in the context of the Ada 
language. This profile defines a subset of concurrent 
interactions that can be fully analyzed.  

 
The Ravenscar profile can be adapted to other semantics, 
and formed the root of the computational model supported 
by the interface view: the Ravenscar Computational 
Model. The precise RCM semantics is brought by a few 
specific AADL properties that have been invented for that 
purpose and are specified within the ASSERT property 
set: a few properties have been defined to represent cyclic 
(CYC), sporadic (SPO) or protected activities (PRO). 
 
The components defined in this view are called 
Application-Level Components (APLCs). 
 

 
Figure 4 Interface View in AADL 

 
3.5 Deployment View 
 
The description of the execution platform and the 
allocation of the software entities onto it can be performed 
in standard AADL. In an AADL operational system, 
computing hardware is represented by a set of processor 
and memory components, whereas executable software is 
composed of a set of threads within a process. Binding 
properties allows for proper allocation of threads to 
processors and processes to memories.  
 
3.6 Concurrency View  
 
The Interface View defines a high-level abstraction of the 
model, made of APLCs. To go downwards to fully 
executable system, we map this interface view, made of 
cyclic, sporadic or protected activities onto AADL 
components that actually perform such actions, namely 
threads and data components. These components are 
referred to as VM-level containers. 
 
The full definition of a software architecture in terms of 
ASSERT run-time compliant entities (VMLCs) could be 
directly performed in AADL, by specifying a set of 
interacting threads and shared data within processes. 
However, one of the goals of the ASSERT development 
process consists in enforcing automatic construction of 
the concurrent software architecture from the previous 
modeling views of the application. Such a generation of 
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the “Concurrency View” from the other views is known 
as the “Vertical Transformations”. 
 
By mapping the interface view (an ASSERT-specific 
model) onto the concurrency view, we retrieve the 
benefits of a fully standardized model that can be 
analyzed using AADL compliant tools. 
 
3.7 Code Generation 
 
Concurrency, Deployment and Data views are three 
complementary AADL models that define orthogonal 
aspects of a system. By combining these three models, the 
user has a full view on his system. 
 
Each AADL model is completed with supporting code; 
e.g. functional views come with SDL or SCADE models 
and associated C code, Data views come with ASN.1 
models and ASN.1 C marshalling code. From the 
concurrency view, one can derive a set of concurrency 
constructs that will animate these codes. 
 
We developed the Ocarina toolsuite as a “compiler for the 
AADL”. Ocarina maps AADL constructs onto a runtime 
that supports the semantics of AADL. We also devised 
PolyORB-HI, a runtime that supports both AADL and 
Ravenscar, written in Ada2005. 
 
Ocarina maps the various components of the AADL 
model onto corresponding pieces of code. It supports both 
local and distributed interactions. To do so, it fully 
exploits information from each view to build concurrent 
entities that will animate the model: 
 

• Data view: it defines type exchanges, so it is 
used to produce ASN.1 marshallers. One can also 
deduce an upper bound on the memory required 
to exchange information; 

• Interface view: it defines signatures of the 
functional blocks, from which one can deduce 
stub/skels (a la CORBA) to send/receive 
requests and process them on each node; 

• Concurrency view: it provides definition of 
computational resources (threads, mutexes, etc.) 
required to support the semantics of this system. 

• Deployment view: it defines the position of the 
different entities, and the communication path 
between them. It is used to configure the 
different naming tables within the system. 

 
By exploiting these different views, Ocarina generates 
Ada code that is fully compliant with both the Ravenscar 
profile, the restrictions defined by ESA for on-board 
space systems; and reflects the execution profile defined 
in the system. 
 
 
 

4. Tool support 
The ASSERT “AADL track” is supported by a tool-chain 
prototype that is composed of the following elements: 
 

• ASN.1 to AADL conversion tool, a C framework 
and associated code generator  to build ASN.1 
marshallers developed on purpose by Semantix; 

• Stood AADL modeling tool, and vertical 
transformation engines developed by Ellidiss [4]; 

• Ocarina AADL code generator and associated 
runtime developed by ENST University [5]. 

 
One of the advantages of using the AADL track for 
supporting the ASSERT process is that it is possible to 
express the various modeling views in a textual way, by 
the mean of a simple editor.  
 
However, in order to enforce the guided modeling process 
that is promoted by ASSERT, a prototype customization 
of the Stood graphical AADL tool has been performed 
during the project to support the Data, Function, Interface, 
and Deployment Views, as well as the Vertical 
Transformations. The following chapters show how these 
various modeling steps are currently supported by Stood. 
 

5. Evaluation  

To assess the AADL track, we have worked on a system 
based on a real industrial case-study. This case study 
comprises behavioural models developed in specialized 
languages: SDL for state machines and SCADE for 
dedicated computation of algorithms. The idea behind this 
choice was to demonstrate how the ASSERT process 
could handle a development where independent teams 
work separately and develop sub-systems using the most 
appropriate language. 

 
5.1 Case study  

This case study is representative of real system 
development, in particular in the space domain where 
industries are spread all over Europe, and where 
communication between teams is hard to manage.  

In that context, it is frequent that incompatible interfaces 
are discovered at integration time only. The cost for 
updating pieces of software and validating the global 
consistency of these systems is therefore high.  

In our case study, we have specified, at system level, a set 
of functional blocks communicating together and put a 
high effort in describing the precise data model in ASN.1. 
This data model contains about 70 complex data types 
that are used to describe messages between the state 
machines and data to feed the calculation functions.  
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The system is a real-time system that has the following 
cyclic behaviour: 

• At each cycle one function reads some sensors 
and make calculation to estimate the position of 
the spacecraft and send data to Earth, 

• One cycle out of five, another function is 
triggered by the first one to calculate some 
actuators output sent back to the first function; 
the time of this calculation is unknown (it is not a 
synchronous, blocking call); 

• The cyclic function continues being activated 
and making some calculation waiting for the 
answer of the second one; once it gets it, it sends 
the results to control the actuators. 

We consider this system as distributed: the first (cyclic) 
function is on one processor, and the second one on 
another processor. Each physical node contains a complex 
state machine and several calculation functions that work 
on their own static data. Some of these functions are 
therefore protected and are purposively developed by 
independent teams. 

The main non-functional property we require in the virtual 
machine is to guarantee an end-to-end reactivity between 
the reading of the sensors and the action on the actuators. 
In the scope of this paper we do not enter into the details 
on this aspect since what we want to show here is how the 
use of AADL to describe the system concretely help 
software engineers to build their system without writing 
any line of manual code, in particular to make the data 
structure conversions and link with the virtual machine. 

5.2 Building system’s views  

To build this system, we first devised the Data view of the 
system: an ASN.1 model of the different data types to be 
exchanged by the different functions to represent states. 
From this ASN.1 model, ASN.1 tools produce an AADL 
model that references these types, and a set of C functions 
for the corresponding marshallers . 

Then, we defined the Functional view of the system. For 
each automaton, we defined a SDL model to represent the 
behaviour of the system. For each computation function, a 
SCADE model is built. From these models, we also 
produced automatically a set of AADL models, and 
generated code using vendor-provided code generator. 

The next step is to produce the Interface view, 
representing the interaction between the different blocks: 
the SDL models are embodied by sporadic containers, 

each port of the SDL model is mapped onto a port of this 
container. SCADE models are passive subprograms called 
by the sporadic containers. Cyclic activation (“clock” 
signal) is performed by a cyclic container. 

The figure 3 shows an example of an APLC with sporadic 
activation of its interface. The figure is followed by the 
corresponding AADL textual specification where the 
ASSERT specific properties have been highlighted.  

 
Figure 3: Sporadic activation in AADL 

 
SYSTEM APLC 
FEATURES 
  op1 : IN EVENT PORT 
    { Compute_Entrypoint => "OPCS1"; 
      Assert_Properties::RCMoperation  

=> SUBPROGRAM OPCS1; 
      Assert_Properties::RCMoperationKind  

=> sporadic; 
      Assert_Properties::RCMPeriod  

=> 100 ms; }; 
  op2 : IN EVENT PORT 
    { Compute_Entrypoint => "OPCS2"; 
      Assert_Properties::RCMoperation  

=> SUBPROGRAM OPCS2; 
      Assert_Properties::RCMoperationKind  

=> variator; }; 
  op3 : IN EVENT PORT 
    { Compute_Entrypoint => "OPCS3"; 
      Assert_Properties::RCMoperation  

=> SUBPROGRAM OPCS3; 
      Assert_Properties::RCMoperationKind  

=> variator; }; 
END APLC; 
 
SYSTEM IMPLEMENTATION APLC.others 
SUBCOMPONENTS 
  FS : DATA FUNC_STATE; 
PROPERTIES 
  Assert_Properties::RCMoperationWorksOn  

=> REFERENCE FS APPLIES TO op1; 
  Assert_Properties::RCMoperationWorksOn  

=> REFERENCE FS APPLIES TO op2; 
  Assert_Properties::RCMoperationWorksOn  

=> REFERENCE FS APPLIES TO op3; 
END APLC.others; 

 Page 6/8 



Finally, the Deployment view is built to define the 
mapping of functions onto computational resources. 

 
Figure 5: AADL Deployment View with Stood  

Let us note these different models can be built by different 
teams, independently and then gathered to form the 
complete system.  

Tools play a big role for the system designer. One can use 
the most adequate tool for these different steps, e.g. 
ObjectGeode, SCADE Studio, ASN.1 editors for Data and 
Functional Views. The Interface and Deployment views 
require either a simple textual editor, or an AADL CASE 
tool like STOOD. 

The genericity of the ASSERT process also comes from 
the capability to let the designer use the most adequate 
tools for its current task. Versatility of AADL helps 
combining models in an easy way. 

5.3 Weaving views  

The Interface view is an abstraction to ease the modelling 
of the system, but it remains non-standard. The first 
automated step is to map this view onto the concurrenct 
view, that is plain AADL.  

This step is supported by STOOD. STOOD supports a full 
model-to-model transformation engine, built around 
declarative rules. These rules are exercised on the system 
until the model does not evolve anymore. Each rule maps 
one high-level constructs (cyclic container, protected 
activity), onto a lower-level AADL equivalent one 
(AADL thread, data component).  

Data, Functional, Concurrency and Deployment views 
denote orthogonal models that can be combined to form 
the system. To each element of this models, a piece of 
code can be attached (ASN.1 C marshaller, SCADE node, 
concurrent Ada code). 

Ocarina exploits these different views to deduce the exact 
set of threads, buffers required to animate the model. 
Furthermore, it produces the naming table, stubs and 
skeletons to support interactions among nodes. 

The next step is to use an orchestration builder script so 
that the different pieces of code are woven together to 
form the final application. Defining such script is highly 
technical: it involves understanding precisely how the 
each code generator produces code so that one can “plug” 
other code, e.g. calling SCADE code from a SDL model; 
triggering a SDL port. By defining a complete process, 
the system designer only needs to focus on its own set of 
models: Data, Functional and Interface views. From these 
models, a complete automated process handles code 
generation. 

Current tool support allows one to process this case study, 
leading to a full running example.  

5.4 Running the system  

The different tools generate either portable C or Ada code. 
We compile the system on native platforms, or embedded 
one. ASSERT partners defined an Ada compiler for the 
LEON2 processor. This processor has been selected by 
ESA for its next generation platforms. Final executable 
runs well on either the tsim LEON simulator, or Gaisler’s 
RASTAN boards, meeting all resource requirements. 
However, it will be optimized in next iterations of 
ASSERT.  

Let us note this case study was performed without writing 
a single line of code; focusing on the models and moving 
directly to executable system is a key achievement of the 
ASSERT project. This achievement had to be validated by 
industrial partners to strengthen ASSERT achievements, 
with actual systems run on their own development boards. 
Other case studies, proposed and performed by ASSERT 
industrial partners demonstrated the same level of 
achievement.  

6. Lessons Learned 
During this exercise, we have been able to assess the 
suitability of AADL to capture a system’s structure, 
interfaces, and non-functional attributes, in order to 
“implement” the assert process.  
 
Given the initial requirements from the project, it was first 
not possible to directly map all the project’s “entities” to 
AADL constructs. In general, the first evaluations showed 
that AADL was more suitable to express physical system 
architectures rather than more abstract logical architecture 
(independent from implementation), and this first glance 
led to discard AADL as the main system language by 
some assert partners, in favour of a UML profile.  
 
But it quickly appeared that AADL had also unique 
strengths and potential that UML could not compete with 
(such as being an unambiguous textual language, as 
opposed to an informal graphical notation with “fuzzy” 
semantics). If data types are not well supported in AADL, 
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it was possible to build an elegant way to make a link with  
another textual-friendly notation (ASN.1). Such flexibility 
allowed us to quickly build tools around AADL to 
connect AADL partial models to other modelling tools (so 
far, we tested ASN.1, SCADE, SDL). 
 
Besides, AADL appeared to be a very flexible language 
that goes further than most conventional modelling tools 
thanks for example to the extensible properties 
mechanisms.  Here, there is no complex “stereotypes” and 
“tags” expressed as extensions of a meta-model, but 
simple property sets that allow us to combine the use of 
ASSERT-specific system attributes with standard, off-the-
shelves AADL tools. Such property sets are defined as 
plain-text for easier adaptation. Tool support can then 
simply parse these new property sets to add new 
capabilities. 
 
Let us note also that the graphical AADL notation, 
supported by the STOOD tool, is used by ESA as a 
complement to the textual notation to give a higher-level 
view of the model when required. 
 
In the future it is planned to improve the graphical AADL 
notation and CASE tool to provide a more integrated 
toolset and guide the user through all the steps of the 
process. At the moment, the automated part concerns the 
code generation, once all the models are ready.  
 
Current tools do not help much yet on the best ways to 
build these models: how to capture the system 
architecture, defining the semantics of these attributes, the 
best step in the process to set them, how to select the most 
appropriate language to model the system behaviour, etc. 
Such extension to build “wizards” is certainly an 
important challenge for future industrial projects. 
 

7. Conclusion 
In this paper, we showed the main achievements 
performed within the scope of the ASSERT project. 
 
The ASSERT project focuses on the definition of an 
integrated process to build ESA next generation mission –
critical systems. By focusing on model-driven 
engineering, we aimed at exploiting state of the art 
software engineering process. 
 
ASSERT defines a generic process, where one defines 
high-level components (APLCs), data types and 
functional models (expressed using industry-strength tools 
like SDL, SCADE …). By mapping these different 
models onto an AADL model, we showed how to 
combine these complementary views to build a full 
executable model of the system, expressed in standard 
AADL 1.0; and then to generate code from it. Generated 
code combines code from different origins; AADL, SDL, 

SCADE, ASN.1 code generator’s output is orchestrated to 
produce one full executable. 
 
We validate this approach on industrial case studies 
provided by ESA. Such evaluation demonstrated the 
pertinence of the approach. Code quality is satisfactory, 
model are built in full compliance with the ASSERT 
process and is partially automated from model to code. 
 
Future work, to be carried out in further projects, will 
contemplate defining tools to help building models. This 
is a strong industrial challenge for complex critical 
systems. 
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